An Introduction to the Volume Conjecture and its generalizations, II

Hitoshi Murakami

Tohoku University
8

Workshop on Volume Conjecture and Related Topics in Knot Theory Indian Institute of Science Education and Research, Pune 20th December, 2018

(1) Link invariant from a Yang-Baxter operator

(2) Example of calculation
(3) 'Proof' of the VC

Braid presentation of a link

Braid presentation of a link

Theorem (J.W. Alexander)
Any knot or link can be presented as the closure of a braid.

Braid presentation of a link

Theorem (J.W. Alexander)
Any knot or link can be presented as the closure of a braid.

Braid presentation of a link

Theorem (J.W. Alexander)
Any knot or link can be presented as the closure of a braid.

n-braid group has

Braid presentation of a link

Theorem (J.W. Alexander)
Any knot or link can be presented as the closure of a braid.

n-braid group has

- generators: $\sigma_{i}(i=1,2, \ldots, n-1):\left|\left.\right|_{2} \cdots \nmid \lambda_{i+1} \cdots\right|_{n-1} \mid$

Braid presentation of a link

Theorem (J.W. Alexander)
Any knot or link can be presented as the closure of a braid.

n-braid group has

- generators: $\sigma_{i}(i=1,2, \ldots, n-1)$:

- relations: $\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}(|i-j|>1)$,

Markov's theorem

Markov's theorem

Theorem (A.A. Markov)
β and β^{\prime} give equivalent links $\Leftrightarrow \beta$ and β^{\prime} are related by

Markov's theorem

Theorem (A.A. Markov)
β and β^{\prime} give equivalent links $\Leftrightarrow \beta$ and β^{\prime} are related by

- conjugation $(\alpha \beta \Leftrightarrow \beta \alpha)$:

Markov's theorem

Theorem (A.A. Markov)
β and β^{\prime} give equivalent links $\Leftrightarrow \beta$ and β^{\prime} are related by

- conjugation $(\alpha \beta \Leftrightarrow \beta \alpha)$:

- stabilization $\left(\beta \Leftrightarrow \beta \sigma_{n}^{ \pm 1}\right)$:

Yang-Baxter operator

Yang-Baxter operator

- V : an N-dimensional vector space over \mathbb{C}.

Yang-Baxter operator

- V : an N-dimensional vector space over \mathbb{C}.
- $R: V \otimes V \rightarrow V \otimes V(R$-matrix $), \mu: V \rightarrow V$: isomorphisms,

Yang-Baxter operator

- V : an N-dimensional vector space over \mathbb{C}.
- $R: V \otimes V \rightarrow V \otimes V$ (R-matrix), $\mu: V \rightarrow V$: isomorphisms,
- a, b : non-zero complex numbers.

Yang-Baxter operator

- V : an N-dimensional vector space over \mathbb{C}.
- $R: V \otimes V \rightarrow V \otimes V(R$-matrix $), \mu: V \rightarrow V$: isomorphisms,
- a, b : non-zero complex numbers.

Definition (V. Turaev)
(R, μ, a, b) is called an enhanced Yang-Baxter operator if it satisfies

Yang-Baxter operator

- V : an N-dimensional vector space over \mathbb{C}.
- $R: V \otimes V \rightarrow V \otimes V(R$-matrix $), \mu: V \rightarrow V$: isomorphisms,
- a, b : non-zero complex numbers.

Definition (V. Turaev)
($R, \mu, a, b)$ is called an enhanced Yang-Baxter operator if it satisfies

- $\left(R \otimes \mathrm{Id}_{v}\right)\left(\mathrm{Id}_{v} \otimes R\right)\left(R \otimes \mathrm{Id}_{v}\right)=\left(\mathrm{Id}_{v} \otimes R\right)\left(R \otimes \mathrm{Id}_{v}\right)\left(\mathrm{Id}_{v} \otimes R\right)$, (Yang-Baxter equation)

Yang-Baxter operator

- V : an N-dimensional vector space over \mathbb{C}.
- $R: V \otimes V \rightarrow V \otimes V(R$-matrix $), \mu: V \rightarrow V$: isomorphisms,
- a, b : non-zero complex numbers.

Definition (V. Turaev)
($R, \mu, a, b)$ is called an enhanced Yang-Baxter operator if it satisfies

- $\left(R \otimes \mathrm{Id}_{v}\right)\left(\mathrm{Id}_{v} \otimes R\right)\left(R \otimes \mathrm{Id}_{v}\right)=\left(\mathrm{Id}_{v} \otimes R\right)\left(R \otimes \mathrm{Id}_{v}\right)\left(\mathrm{Id}_{v} \otimes R\right)$, (Yang-Baxter equation)
- $R(\mu \otimes \mu)=(\mu \otimes \mu) R$,

Yang-Baxter operator

- V : an N-dimensional vector space over \mathbb{C}.
- $R: V \otimes V \rightarrow V \otimes V(R$-matrix $), \mu: V \rightarrow V$: isomorphisms,
- a, b : non-zero complex numbers.

Definition (V. Turaev)
($R, \mu, a, b)$ is called an enhanced Yang-Baxter operator if it satisfies

- $\left(R \otimes \mathrm{Id}_{v}\right)\left(\mathrm{Id}_{v} \otimes R\right)\left(R \otimes \mathrm{Id}_{v}\right)=\left(\mathrm{Id}_{v} \otimes R\right)\left(R \otimes \mathrm{Id}_{v}\right)\left(\mathrm{Id}_{v} \otimes R\right)$, (Yang-Baxter equation)
- $R(\mu \otimes \mu)=(\mu \otimes \mu) R$,
- $\operatorname{Tr}_{2}\left(R^{ \pm}(\operatorname{ld} v \otimes \mu)\right)=a^{ \pm 1} b \operatorname{ld}_{V}$.

Yang-Baxter operator

- V : an N-dimensional vector space over \mathbb{C}.
- $R: V \otimes V \rightarrow V \otimes V(R$-matrix $), \mu: V \rightarrow V$: isomorphisms,
- a, b : non-zero complex numbers.

Definition (V. Turaev)

($R, \mu, a, b)$ is called an enhanced Yang-Baxter operator if it satisfies

- $\left(R \otimes \operatorname{ld}_{V}\right)\left(\operatorname{Id}_{v} \otimes R\right)\left(R \otimes \operatorname{ld}_{V}\right)=\left(\operatorname{Id}_{v} \otimes R\right)\left(R \otimes \operatorname{Id}_{V}\right)\left(\mathrm{Id}_{v} \otimes R\right)$, (Yang-Baxter equation)
- $R(\mu \otimes \mu)=(\mu \otimes \mu) R$,
- $\operatorname{Tr}_{2}\left(R^{ \pm}(\operatorname{ld} v \otimes \mu)\right)=a^{ \pm 1} b \operatorname{ld}_{V}$.
$\mathrm{Tr}_{2}: V \otimes V \rightarrow V$ is the operator trace. (For $M \in \operatorname{End}(V \otimes V)$ given by a matrix $M_{k l}^{i j}, \operatorname{Tr}_{2}(M)$ is given by $\sum_{m} M_{k m}^{i m}$.)

Braid \Rightarrow endomorphism

Replace

Braid \Rightarrow endomorphism

Replace

with

Braid \Rightarrow endomorphism

Replace

Braid \Rightarrow endomorphism

Braid \Rightarrow endomorphism

Replace

Braid \Rightarrow endomorphism

Replace

$$
n \text {-braid } \beta \Rightarrow \text { homomorphism } \Phi(\beta): V^{\otimes n} \rightarrow V^{\otimes n}
$$

Braid \Rightarrow endomorphism

$$
n \text {-braid } \beta \Rightarrow \text { homomorphism } \Phi(\beta): V^{\otimes n} \rightarrow V^{\otimes n}
$$

Definition of an invariant

Definition
 n-braid $\beta \Rightarrow$ a link L.

Definition of an invariant

Definition
n-braid $\beta \Rightarrow$ a link L.
$T_{(R, \mu, a, b)}(L):=$

Definition of an invariant

Definition

n-braid $\beta \Rightarrow$ a link L.

$$
T_{(R, \mu, a, b)}(L):=a^{-w(\beta)} b^{-n} \operatorname{Tr}_{1}\left(\operatorname{Tr}_{2}\left(\cdots\left(\operatorname{Tr}_{n}\left(\Phi(\beta) \mu^{\otimes n}\right)\right) \cdots\right)\right),
$$

where $\operatorname{Tr}_{k}: V^{\otimes k} \rightarrow V^{\otimes(k-1)}$ is defined similarly, and $w(\beta)$ is the sum of exponents.

Definition of an invariant

Definition

n-braid $\beta \Rightarrow$ a link L.

$$
T_{(R, \mu, a, b)}(L):=a^{-w(\beta)} b^{-n} \operatorname{Tr}_{1}\left(\operatorname{Tr}_{2}\left(\cdots\left(\operatorname{Tr}_{n}\left(\Phi(\beta) \mu^{\otimes n}\right)\right) \cdots\right)\right),
$$

where $\operatorname{Tr}_{k}: V^{\otimes k} \rightarrow V^{\otimes(k-1)}$ is defined similarly, and $w(\beta)$ is the sum of exponents.

Invariance of $T_{(R, \mu, a, b)}(L)$ under braid relation and conjugation

Invariance of $T_{(R, \mu, a, b)}(L)$ under braid relation and conjugation

- Invariance under the braid relation $\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}$.

Invariance of $T_{(R, \mu, a, b)}(L)$ under braid relation and conjugation

- Invariance under the braid relation $\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}$.

Invariance of $T_{(R, \mu, a, b)}(L)$ under braid relation and conjugation

- Invariance under the braid relation $\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}$.

Invariance of $T_{(R, \mu, a, b)}(L)$ under braid relation and conjugation

- Invariance under the braid relation $\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}$.

- invariance under conjugation

Invariance of $T_{(R, \mu, a, b)}(L)$ under braid relation and conjugation

- Invariance under the braid relation $\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}$.

- invariance under conjugation

Invariance of $T_{(R, \mu, a, b)}(L)$ under braid relation and conjugation

- Invariance under the braid relation $\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}$.

- invariance under conjugation

Invariance of $T_{(R, \mu, a, b)}(L)$ under braid relation and conjugation

- Invariance under the braid relation $\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}$.

- invariance under conjugation

Invariance of $T_{(R, \mu, a, b)}(L)$ under stabilization

Invariance of $T_{(R, \mu, a, b)}(L)$ under stabilization

- invariance under stabilization

Invariance of $T_{(R, \mu, a, b)}(L)$ under stabilization

- invariance under stabilization

Invariance of $T_{(R, \mu, a, b)}(L)$ under stabilization

- invariance under stabilization

Invariance of $T_{(R, \mu, a, b)}(L)$ under stabilization

- invariance under stabilization

Theorem (Turaev)
$T_{(R, \mu, a, b)}$ is a link invariant.

Quantum (\mathfrak{g}, V) invariant

Quantum (\mathfrak{g}, V) invariant

- $\mathfrak{g}:$ a Lie algebra,
- V : its representation

Quantum (\mathfrak{g}, V) invariant

- \mathfrak{g} : a Lie algebra,
- V : its representation
\Rightarrow
an enhanced Yang-Baxter operator (R, μ, a, b) with a parameter q.

Quantum (\mathfrak{g}, V) invariant

- \mathfrak{g} : a Lie algebra,
- V : its representation
\Rightarrow
an enhanced Yang-Baxter operator (R, μ, a, b) with a parameter q.
\Rightarrow
quantum (\mathfrak{g}, V) invariant with a parameter q.

Quantum (\mathfrak{g}, V) invariant

- \mathfrak{g} : a Lie algebra,
- V : its representation
\Rightarrow
an enhanced Yang-Baxter operator (R, μ, a, b) with a parameter q.
\Rightarrow
quantum (\mathfrak{g}, V) invariant with a parameter q.

Definition

The quantum $\left(s l(2, \mathbb{C}), V_{N}\right)$ invariant is called the N-dimensional colored Jones polynomial $J_{N}(L ; q)$.

Quantum (\mathfrak{g}, V) invariant

- \mathfrak{g} : a Lie algebra,
- V : its representation
\Rightarrow
an enhanced Yang-Baxter operator (R, μ, a, b) with a parameter q.
\Rightarrow
quantum (\mathfrak{g}, V) invariant with a parameter q.

Definition

The quantum $\left(s l(2, \mathbb{C}), V_{N}\right)$ invariant is called the N-dimensional colored Jones polynomial $J_{N}(L ; q)$.

- $V_{N}: N$-dimensional irreducible representation of $s l(2, \mathbb{C})$.

Quantum (\mathfrak{g}, V) invariant

- \mathfrak{g} : a Lie algebra,
- V : its representation
\Rightarrow
an enhanced Yang-Baxter operator (R, μ, a, b) with a parameter q.
\Rightarrow
quantum (\mathfrak{g}, V) invariant with a parameter q.

Definition

The quantum $\left(s l(2, \mathbb{C}), V_{N}\right)$ invariant is called the N-dimensional colored Jones polynomial $J_{N}(L ; q)$.

- $V_{N}: N$-dimensional irreducible representation of $s l(2, \mathbb{C})$.
- $J_{2}(L ; q)$ is the ordinary Jones polynomial.

Quantum (\mathfrak{g}, V) invariant

- \mathfrak{g} : a Lie algebra,
- V : its representation
\Rightarrow
an enhanced Yang-Baxter operator (R, μ, a, b) with a parameter q.
\Rightarrow
quantum (\mathfrak{g}, V) invariant with a parameter q.

Definition

The quantum $\left(s l(2, \mathbb{C}), V_{N}\right)$ invariant is called the N-dimensional colored Jones polynomial $J_{N}(L ; q)$.

- $V_{N}: N$-dimensional irreducible representation of $s l(2, \mathbb{C})$.
- $J_{2}(L ; q)$ is the ordinary Jones polynomial.
- $J_{N}($ unknot $; q)=1$.

Definition of the colored Jones polynomial, I

Definition of the colored Jones polynomial, I

- $V:=\mathbb{C}^{N}$.

Definition of the colored Jones polynomial, I

- $V:=\mathbb{C}^{N}$.
- $R\left(e_{k} \otimes e_{l}\right):=\sum_{i, j=0}^{N-1} R_{k l}^{i j} e_{i} \otimes e_{j}$ and $\mu\left(e_{j}\right):=\sum_{i=0}^{N-1} \mu_{j}^{i} e_{i}$.

Definition of the colored Jones polynomial, I

- $V:=\mathbb{C}^{N}$.
- $R\left(e_{k} \otimes e_{l}\right):=\sum_{i, j=0}^{N-1} R_{k l}^{i j} e_{i} \otimes e_{j}$ and $\mu\left(e_{j}\right):=\sum_{i=0}^{N-1} \mu_{j}^{i} e_{i}$.

$$
\text { - } \begin{aligned}
R_{k l}^{i j}:= & \sum_{m=0}^{\min (N-1-i, j)} \delta_{l, i+m} \delta_{k, j-m} \frac{\{l\}!\{N-1-k\}!}{\{i\}!\{m\}!\{N-1-j\}!} \\
& \times q^{(i-(N-1) / 2)(j-(N-1) / 2)-m(i-j) / 2-m(m+1) / 4},
\end{aligned}
$$

Definition of the colored Jones polynomial, I

- $V:=\mathbb{C}^{N}$.
- $R\left(e_{k} \otimes e_{l}\right):=\sum_{i, j=0}^{N-1} R_{k l}^{i j} e_{i} \otimes e_{j}$ and $\mu\left(e_{j}\right):=\sum_{i=0}^{N-1} \mu_{j}^{i} e_{i}$.
- $R_{k l}^{i j}:=\sum_{m=0}^{\min (N-1-i, j)} \delta_{l, i+m} \delta_{k, j-m} \frac{\{l\}!\{N-1-k\}!}{\{i\}!\{m\}!\{N-1-j\}!}$
$\times q^{(i-(N-1) / 2)(j-(N-1) / 2)-m(i-j) / 2-m(m+1) / 4}$,
- $\left(R^{-1}\right)_{k \mid}^{j j}:=\sum_{m=0}^{\min (N-1-i, j)} \delta_{l, i-m} \delta_{k, j+m} \frac{\{k\}!\{N-1-\mid\}!}{\{j\}!\{m\}!\{N-1-i\}!}$

$$
\times q^{-(i-(N-1) / 2)(j-(N-1) / 2)-m(i-j) / 2+m(m+1) / 4},
$$

with $\{m\}:=q^{m / 2}-q^{-m / 2}$ and $\{m\}!:=\{1\}\{2\} \cdots\{m\}$.

Definition of the colored Jones polynomial, I

- $V:=\mathbb{C}^{N}$.
- $R\left(e_{k} \otimes e_{l}\right):=\sum_{i, j=0}^{N-1} R_{k l}^{i j} e_{i} \otimes e_{j}$ and $\mu\left(e_{j}\right):=\sum_{i=0}^{N-1} \mu_{j}^{i} e_{i}$.
- $R_{k l}^{i j}:=\sum_{m=0}^{\min (N-1-i, j)} \delta_{l, i+m} \delta_{k, j-m} \frac{\{l\}!\{N-1-k\}!}{\{i\}!\{m\}!\{N-1-j\}!}$
$\times q^{(i-(N-1) / 2)(j-(N-1) / 2)-m(i-j) / 2-m(m+1) / 4}$,
- $\left(R^{-1}\right)_{k \mid}^{j j}:=\sum_{m=0}^{\min (N-1-i, j)} \delta_{l, i-m} \delta_{k, j+m} \frac{\{k\}!\{N-1-l\}!}{\{j\}!\{m\}!\{N-1-i\}!}$

$$
\times q^{-(i-(N-1) / 2)(j-(N-1) / 2)-m(i-j) / 2+m(m+1) / 4},
$$

with $\{m\}:=q^{m / 2}-q^{-m / 2}$ and $\{m\}!:=\{1\}\{2\} \cdots\{m\}$.

- $\mu_{j}^{i}:=\delta_{i, j} q^{(2 i-N+1) / 2}$.

Definition of the colored Jones polynomial, II

Definition of the colored Jones polynomial, II

$\underset{\left(R, \mu, q^{\left(N^{2}-1\right) / 4}, 1\right) \text { gives an enhanced Yang-Baxter operator. }}{\Rightarrow}$

Definition of the colored Jones polynomial, II

\Rightarrow
$\left(R, \mu, q^{\left(N^{2}-1\right) / 4}, 1\right)$ gives an enhanced Yang-Baxter operator.
Definition
$J_{N}(L ; q):=T_{\left(R, \mu, q^{\left(N^{2}-1\right) / 4}, 1\right)}(K) \times \frac{\{1\}}{\{N\}}:$ colored Jones polynomial.
Note: $T_{\left(R, \mu, q^{\left.\left(N^{2}-1\right) / 4,1\right)}\right.}(\bigcirc)=\operatorname{Tr}_{1}(\mu)=q^{1-N}+q^{3-N}+\cdots+q^{N-1}=\frac{\{N\}}{\{1\}}$.

An example of calculation

An example of calculation

$$
J_{N}(L ; q):=T_{\left(R, \mu, q^{\left.\left(N^{2}-1\right) / 4,1\right)}\right.}(L) \times \frac{\{1\}}{\{N\}}
$$

An example of calculation

$$
J_{N}(L ; q):=T_{\left(R, \mu, q^{\left.\left(N^{2}-1\right) / 4,1\right)}\right.}(L) \times \frac{\{1\}}{\{N\}}
$$

To calculate $J_{N}(L ; q)$ we leave the left-most strand without closing.

This gives a linear map $\varphi: \mathbb{C}^{N} \rightarrow \mathbb{C}^{N}$, which is a scalar multiple by Schur's lemma.

An example of calculation

$$
J_{N}(L ; q):=T_{\left(R, \mu, q^{\left.\left(N^{2}-1\right) / 4,1\right)}\right.}(L) \times \frac{\{1\}}{\{N\}}
$$

To calculate $J_{N}(L ; q)$ we leave the left-most strand without closing.

This gives a linear map $\varphi: \mathbb{C}^{N} \rightarrow \mathbb{C}^{N}$, which is a scalar multiple by Schur's lemma.

We fix a basis $\left\{e_{0}, e_{1}, \ldots, e_{N-1}\right\}$ of C^{N}.

An example of calculation

$$
J_{N}(L ; q):=T_{\left(R, \mu, q^{\left(N^{2}-1\right) / 4}, 1\right)}(L) \times \frac{\{1\}}{\{N\}}
$$

To calculate $J_{N}(L ; q)$ we leave the left-most strand without closing.

This gives a linear map $\varphi: \mathbb{C}^{N} \rightarrow \mathbb{C}^{N}$, which is a scalar multiple by Schur's lemma.

We fix a basis $\left\{e_{0}, e_{1}, \ldots, e_{N-1}\right\}$ of C^{N}. The linear map is a scalar multiple and so e_{i} is multiplied by S for any i.

An example of calculation

$$
J_{N}(L ; q):=T_{\left(R, \mu, q^{\left.\left(N^{2}-1\right) / 4,1\right)}\right.}(L) \times \frac{\{1\}}{\{N\}}
$$

To calculate $J_{N}(L ; q)$ we leave the left-most strand without closing.

This gives a linear map $\varphi: \mathbb{C}^{N} \rightarrow \mathbb{C}^{N}$, which is a scalar multiple by Schur's lemma.

We fix a basis $\left\{e_{0}, e_{1}, \ldots, e_{N-1}\right\}$ of C^{N}. The linear map is a scalar multiple and so e_{i} is multiplied by S for any i. Since

$$
\begin{aligned}
T_{\left(R, \mu, q^{\left.\left(N^{2}-1\right) / 4,1\right)}\right.}(L) & =q^{-w(\beta)\left(N^{2}-1\right) / 4} \operatorname{Tr}_{1}(\varphi \mu) \\
& =q^{-w(\beta)\left(N^{2}-1\right) / 4} \sum_{i=0}^{N-1} S q^{(2 i-N+1) / 2} \\
& =q^{-w(\beta)\left(N^{2}-1\right) / 4} \frac{\{N\}}{\{1\}} S,
\end{aligned}
$$

An example of calculation

$$
J_{N}(L ; q):=T_{\left(R, \mu, q^{\left.\left(N^{2}-1\right) / 4,1\right)}\right.}(L) \times \frac{\{1\}}{\{N\}}
$$

To calculate $J_{N}(L ; q)$ we leave the left-most strand without closing.

This gives a linear map $\varphi: \mathbb{C}^{N} \rightarrow \mathbb{C}^{N}$, which is a scalar multiple by Schur's lemma.

We fix a basis $\left\{e_{0}, e_{1}, \ldots, e_{N-1}\right\}$ of C^{N}. The linear map is a scalar multiple and so e_{i} is multiplied by S for any i. Since

$$
\begin{aligned}
T_{\left(R, \mu, q^{\left.\left(N^{2}-1\right) / 4,1\right)}\right.}(L) & =q^{-w(\beta)\left(N^{2}-1\right) / 4} \operatorname{Tr}_{1}(\varphi \mu) \\
& =q^{-w(\beta)\left(N^{2}-1\right) / 4} \sum_{i=0}^{N-1} S q^{(2 i-N+1) / 2} \\
& =q^{-w(\beta)\left(N^{2}-1\right) / 4} \frac{\{N\}}{\{1\}} S,
\end{aligned}
$$

we have $J_{N}(L ; q)=q^{-w(\beta)\left(N^{2}-1\right) / 4} S$.

How to label arcs (due to T. Le)

How to label arcs (due to T. Le)

How to label arcs (due to T. Le)

How to label arcs (due to T. Le)

Label the incoming arc with $N-1$.

How to label arcs (due to T. Le)

The last one should be $N-1$ by Schur's lemma. The next one should also be $N-1$, since it is $\geq N-1$.

How to label arcs (due to T. Le)

Choose i.

How to label arcs (due to T. Le)

This is also i, since the sum of the labels of the incoming arcs equals the sum of the labels of the outgoing arcs.

How to label arcs (due to T. Le)

How to label arcs (due to T. Le)

Choose k.

How to label arcs (due to T. Le)

The sum of the labels of the incoming arcs equals the sum of the labels of the outgoing arcs.

How to label arcs (due to T. Le)

How to label arcs (due to T. Le)

How to label arcs (due to T. Le)

A better way of labeling

A better way of labeling

It is sometimes useful to regard a knot as the closure of a (1, 1)-tangle:

A better way of labeling

It is sometimes useful to regard a knot as the closure of a (1, 1)-tangle:

In this case we also need the following rules.

A better way of labeling

It is sometimes useful to regard a knot as the closure of a (1, 1)-tangle:

In this case we also need the following rules.
(\checkmark) Put μ at each local minimum where the arc goes from left to right,

A better way of labeling

It is sometimes useful to regard a knot as the closure of a (1, 1)-tangle:

In this case we also need the following rules.
(\cup) Put μ at each local minimum where the arc goes from left to right, (\curvearrowright) Put μ^{-1} at each local maximum where the arc goes from left to right.

A better way of labeling

It is sometimes useful to regard a knot as the closure of a (1, 1)-tangle:

In this case we also need the following rules.
(\checkmark) Put μ at each local minimum where the arc goes from left to right, (\curvearrowright) Put μ^{-1} at each local maximum where the arc goes from left to right.

If we put 0 at the top and the bottom, the other labelings become

A better way of labeling

It is sometimes useful to regard a knot as the closure of a (1, 1)-tangle:

In this case we also need the following rules.
(\cup) Put μ at each local minimum where the arc goes from left to right, (\curvearrowright) Put μ^{-1} at each local maximum where the arc goes from left to right.

If we put 0 at the top and the bottom, the other ${ }_{i}$ labelings become

The colored Jones polynomial of (8)

The colored Jones polynomial of (8)

$\left.J_{N}(8) ; q\right)$

The colored Jones polynomial of (8)

$$
=\sum_{\substack{0 \leq i \leq N, 1,0 \leq i \leq N-1 \\ 0 \leq i+j \leq N-1}}^{\left.J_{N}(8) ; q\right)} R_{0, i}^{i, 0}\left(R^{-1}\right)_{i+j, 0}^{i, j} R_{i, j}^{0, i+j}\left(R^{-1}\right)_{0, j}^{j, 0}\left(\mu^{-1}\right)_{i}^{i} \mu_{j}^{j}
$$

The colored Jones polynomial of (8)

$$
\begin{aligned}
& J_{N}(\text { (§) } ; q) \\
& =\sum_{\substack{0 \leq i \leq N-1,0 \leq j \leq N-1 \\
0 \leq i+j \leq N-1}} R_{0, i}^{i, 0}\left(R^{-1}\right)_{i+j, 0}^{i, j} R_{i, j}^{0, i+j}\left(R^{-1}\right)_{0, j}^{j, 0}\left(\mu^{-1}\right)_{i}^{i} \mu_{j}^{j} \\
& =\sum_{\substack{0 \leq i \leq N-1,0 \leq j \leq N-1 \\
0 \leq i+j \leq N-1}}(-1)^{i} \frac{\{i+j\}!\{N-1\}!}{\{i\}!\{j\}!\{N-1-i-j\}!} q^{-(N-1) i / 2+(N-1) j / 2-i^{2} / 4+j^{2} / 4-3 i / 4+3 j / 4}
\end{aligned}
$$

The colored Jones polynomial of (8)

$$
\begin{aligned}
& \left.J_{N}(8) ; q\right) \\
& =\sum_{\substack{0 \leq i \leq N-1,0 \leq j \leq N-1 \\
0 \leq i+j \leq N-1}} R_{0, i}^{i, 0}\left(R^{-1}\right)_{i+j, 0}^{i, j} R_{i, j}^{0, i+j}\left(R^{-1}\right)_{0, j}^{j, 0}\left(\mu^{-1}\right)_{i}^{i} \mu_{j}^{j} \\
& =\sum_{\substack{0 \leq i \leq N-1,0 \leq \leq N \leq-1 \\
0 \leq i+j \leq N-1}}(-1)^{i} \frac{\{i+j\}!\{N-1\}!}{\{i\}!\{j\}!\} N-1-i-j\}!} q^{-(N-1) i / 2+(N-1) j / 2-i^{2} / 4+j^{2} / 4-3 i / 4+3 j / 4} \\
& =\sum_{k=0}^{N-1} \frac{\{N-1\}!}{\{N-1-k\}!} q^{k^{2} / 4+N k / 2+k / 4}\left(\sum_{i=0}^{k}(-1)^{i} \frac{\{k\}!}{\{i\}!\{k-i\}!} q^{-N i-i k / 2-i / 2}\right) .
\end{aligned}
$$

The colored Jones polynomial of (8)

$$
\begin{aligned}
& \left.J_{N}(8) ; q\right) \\
& =\sum_{\substack{0 \leq i \leq N-1,0 \leq j \leq N-1 \\
0 \leq i+j \leq N-1}} R_{0, i}^{i, 0}\left(R^{-1}\right)_{i+j, 0}^{i, j} R_{i, j}^{0, i+j}\left(R^{-1}\right)_{0, j}^{j, 0}\left(\mu^{-1}\right)_{i}^{i} \mu_{j}^{j} \\
& =\sum_{\substack{0 \leq i \leq N-1,0 \leq j \leq N-1 \\
0 \leq i+j \leq N-1}}(-1)^{i} \frac{\{i+j\}!\{N-1\}!}{\{i\}!\{j\}!\{N-1-i-j\}!} q^{-(N-1) i / 2+(N-1) j / 2-i^{2} / 4+j^{2} / 4-3 i / 4+3 j / 4} \\
& =\sum_{k:=i+j}^{N-1} \frac{\{N-1\}!}{\{N-1-k\}!} q^{k^{2} / 4+N k / 2+k / 4}\left(\sum_{i=0}^{k}(-1)^{i} \frac{\{k\}!}{\{i\}!\{k-i\}!} q^{-N i-i k / 2-i / 2}\right) .
\end{aligned}
$$

Using the formula $\sum_{i=0}^{k}(-1)^{i} q^{l i / 2} \frac{\{k\}!}{\{i\}!\{k-i\}!}=\prod_{g=1}^{k}\left(1-q^{(I+k+1) / 2-g}\right)$,

The colored Jones polynomial of (B)

$$
\begin{aligned}
& \left.J_{N}(8) ; q\right) \\
& =\sum_{\substack{0 \leq i \leq N-1,0 \leq j \leq N-1 \\
0 \leq i+j \leq N-1}} R_{0, i}^{i, 0}\left(R^{-1}\right)_{i+j, 0}^{i, j} R_{i, j}^{0, i+j}\left(R^{-1}\right)_{0, j}^{j, 0}\left(\mu^{-1}\right)_{i}^{i} \mu_{j}^{j} \\
& =\sum_{\substack{0 \leq i \leq N-1,0 \leq \leq N \leq N-1 \\
0 \leq i+j \leq N-1}}(-1)^{i} \frac{\{i+j\}!\{N-1\}!}{\{i\}!\{j\}!\} N-1-i-j\}!} q^{-(N-1) i / 2+(N-1) j / 2-i^{2} / 4+j^{2} / 4-3 i / 4+3 j / 4} \\
& =\sum_{k=0}^{N-1} \frac{\{N-1\}!}{\{N-1-k\}!} q^{k^{2} / 4+N k / 2+k / 4}\left(\sum_{i=0}^{k}(-1)^{i} \frac{\{k\}!}{\{i\}!\{k-i\}!} q^{-N i-i k / 2-i / 2}\right) .
\end{aligned}
$$

Using the formula $\sum_{i=0}^{k}(-1)^{i} q^{i i / 2} \frac{\{k\}!}{\{i\}!\{k-i\}!}=\prod_{g=1}^{k}\left(1-q^{(l+k+1) / 2-g}\right)$, we have the following formula (K. Habiro and T. Lê).

$$
\left.J_{N}(\S) ; q\right)=\frac{1}{\{N\}} \sum_{k=0}^{N-1} \frac{\{N+k\}!}{\{N-1-k\}!} .
$$

Quantum factorial at the N -th root of unity

Quantum factorial at the N -th root of unity

$$
q=\zeta_{N}:=\exp (2 \pi \sqrt{-1} / N)
$$

Quantum factorial at the N -th root of unity

$$
\begin{aligned}
& q=\zeta_{N}:=\exp (2 \pi \sqrt{-1} / N) \\
& \Rightarrow
\end{aligned}
$$

Quantum factorial at the N -th root of unity

$$
\begin{aligned}
& q=\zeta_{N}:=\exp (2 \pi \sqrt{-1} / N) \\
& \Rightarrow \quad\{k\}!\{N-k-1\}!
\end{aligned}
$$

Quantum factorial at the N-th root of unity

$$
\begin{aligned}
q= & \zeta_{N}:=\exp (2 \pi \sqrt{-1} / N) \\
\Rightarrow & \{k\}!\{N-k-1\}! \\
= & \pm\left(a \operatorname{power} \text { of } \zeta_{N}\right) \times\left(1-\zeta_{N}\right)\left(1-\zeta_{N}^{2}\right) \cdots\left(1-\zeta_{N}^{k}\right) \\
& \times\left(1-\zeta_{N}\right)\left(1-\zeta_{N}^{2}\right) \cdots\left(1-\zeta_{N}^{N-1-k}\right)
\end{aligned}
$$

Quantum factorial at the N-th root of unity

$$
\begin{aligned}
& q=\zeta_{N}:=\exp (2 \pi \sqrt{-1} / N) \\
& \Rightarrow \quad\{k\}!\{N-k-1\}! \\
&= \pm\left(\operatorname{a~power~of~} \zeta_{N}\right) \times\left(1-\zeta_{N}\right)\left(1-\zeta_{N}^{2}\right) \cdots\left(1-\zeta_{N}^{k}\right) \\
& \times\left(1-\zeta_{N}\right)\left(1-\zeta_{N}^{2}\right) \cdots\left(1-\zeta_{N}^{N-1-k}\right) \\
&= \pm\left(\operatorname{a~power} \text { of } \zeta_{N}\right) \times\left(1-\zeta_{N}\right)\left(1-\zeta_{N}^{2}\right) \cdots\left(1-\zeta_{N}^{k}\right) \\
& \times\left(1-\zeta_{N}^{N-1}\right)\left(1-\zeta_{N}^{N-2}\right) \cdots\left(1-\zeta_{N}^{k+1}\right)
\end{aligned}
$$

Quantum factorial at the N -th root of unity

$$
\begin{aligned}
q= & \zeta_{N}:=\exp (2 \pi \sqrt{-1} / N) \\
\Rightarrow & \{k\}!\{N-k-1\}! \\
= & \pm\left(a \text { power of } \zeta_{N}\right) \times\left(1-\zeta_{N}\right)\left(1-\zeta_{N}^{2}\right) \cdots\left(1-\zeta_{N}^{k}\right) \\
& \times\left(1-\zeta_{N}\right)\left(1-\zeta_{N}^{2}\right) \cdots\left(1-\zeta_{N}^{N-1-k}\right) \\
= & \pm\left(\text { a power of } \zeta_{N}\right) \times\left(1-\zeta_{N}\right)\left(1-\zeta_{N}^{2}\right) \cdots\left(1-\zeta_{N}^{k}\right) \\
& \times\left(1-\zeta_{N}^{N-1}\right)\left(1-\zeta_{N}^{N-2}\right) \cdots\left(1-\zeta_{N}^{k+1}\right) \\
= & \pm\left(a \operatorname{power} \text { of } \zeta_{N}\right) \times 2^{N-1} \sin (\pi / N) \sin (2 \pi / N) \cdots \sin ((N-1) \pi / N)
\end{aligned}
$$

Quantum factorial at the N-th root of unity

$$
\begin{aligned}
q= & \zeta_{N}:=\exp (2 \pi \sqrt{-1} / N) \\
\Rightarrow & \{k\}!\{N-k-1\}! \\
= & \pm\left(a \operatorname{power} \text { of } \zeta_{N}\right) \times\left(1-\zeta_{N}\right)\left(1-\zeta_{N}^{2}\right) \cdots\left(1-\zeta_{N}^{k}\right) \\
& \times\left(1-\zeta_{N}\right)\left(1-\zeta_{N}^{2}\right) \cdots\left(1-\zeta_{N}^{N-1-k}\right) \\
= & \pm\left(\operatorname{a} \text { power of } \zeta_{N}\right) \times\left(1-\zeta_{N}\right)\left(1-\zeta_{N}^{2}\right) \cdots\left(1-\zeta_{N}^{k}\right) \\
& \times\left(1-\zeta_{N}^{N-1}\right)\left(1-\zeta_{N}^{N-2}\right) \cdots\left(1-\zeta_{N}^{k+1}\right) \\
= & \pm\left(a \text { power of } \zeta_{N}\right) \times 2^{N-1} \sin (\pi / N) \sin (2 \pi / N) \cdots \sin ((N-1) \pi / N) \\
= & \pm\left(\operatorname{a} \text { power of } \zeta_{N}\right) \times N
\end{aligned}
$$

Quantum factorial at the N-th root of unity

$$
\begin{aligned}
q= & \zeta_{N}:=\exp (2 \pi \sqrt{-1} / N) \\
\Rightarrow & \{k\}!\{N-k-1\}! \\
= & \pm\left(\text { a power of } \zeta_{N}\right) \times\left(1-\zeta_{N}\right)\left(1-\zeta_{N}^{2}\right) \cdots\left(1-\zeta_{N}^{k}\right) \\
& \times\left(1-\zeta_{N}\right)\left(1-\zeta_{N}^{2}\right) \cdots\left(1-\zeta_{N}^{N-1-k}\right) \\
= & \pm\left(a \text { power of } \zeta_{N}\right) \times\left(1-\zeta_{N}\right)\left(1-\zeta_{N}^{2}\right) \cdots\left(1-\zeta_{N}^{k}\right) \\
& \times\left(1-\zeta_{N}^{N-1}\right)\left(1-\zeta_{N}^{N-2}\right) \cdots\left(1-\zeta_{N}^{k+1}\right) \\
= & \pm\left(\text { a power of } \zeta_{N}\right) \times 2^{N-1} \sin (\pi / N) \sin (2 \pi / N) \cdots \sin ((N-1) \pi / N) \\
= & \pm\left(\text { a power of } \zeta_{N}\right) \times N
\end{aligned}
$$

$$
\text { - }\left(\zeta_{N}\right)_{k^{+}}:=\left(1-\zeta_{N}\right) \cdots\left(1-\zeta_{N}^{k}\right),\left(\zeta_{N}\right)_{k^{-}}:=\left(1-\zeta_{N}\right) \cdots\left(1-\zeta_{N}^{N-1-k}\right) .
$$

Quantum factorial at the N-th root of unity

$$
\begin{aligned}
q= & \zeta_{N}:=\exp (2 \pi \sqrt{-1} / N) \\
\Rightarrow & \{k\}!\{N-k-1\}! \\
= & \pm\left(\text { a power of } \zeta_{N}\right) \times\left(1-\zeta_{N}\right)\left(1-\zeta_{N}^{2}\right) \cdots\left(1-\zeta_{N}^{k}\right) \\
& \times\left(1-\zeta_{N}\right)\left(1-\zeta_{N}^{2}\right) \cdots\left(1-\zeta_{N}^{N-1-k}\right) \\
= & \pm\left(a \text { power of } \zeta_{N}\right) \times\left(1-\zeta_{N}\right)\left(1-\zeta_{N}^{2}\right) \cdots\left(1-\zeta_{N}^{k}\right) \\
& \times\left(1-\zeta_{N}^{N-1}\right)\left(1-\zeta_{N}^{N-2}\right) \cdots\left(1-\zeta_{N}^{k+1}\right) \\
= & \pm\left(\text { a power of } \zeta_{N}\right) \times 2^{N-1} \sin (\pi / N) \sin (2 \pi / N) \cdots \sin ((N-1) \pi / N) \\
= & \pm\left(\text { a power of } \zeta_{N}\right) \times N
\end{aligned}
$$

- $\left(\zeta_{N}\right)_{k^{+}}:=\left(1-\zeta_{N}\right) \cdots\left(1-\zeta_{N}^{k}\right),\left(\zeta_{N}\right)_{k^{-}}:=\left(1-\zeta_{N}\right) \cdots\left(1-\zeta_{N}^{N-1-k}\right)$.
- $\left(\zeta_{N}\right)_{k^{+}}\left(\zeta_{N}\right)_{k^{-}}= \pm\left(\right.$a power of $\left.\zeta_{N}\right) \times N$.

Quantum factorial at the N-th root of unity

$$
\begin{aligned}
q= & \zeta_{N}:=\exp (2 \pi \sqrt{-1} / N) \\
\Rightarrow & \{k\}!\{N-k-1\}! \\
= & \pm\left(\text { a power of } \zeta_{N}\right) \times\left(1-\zeta_{N}\right)\left(1-\zeta_{N}^{2}\right) \cdots\left(1-\zeta_{N}^{k}\right) \\
& \times\left(1-\zeta_{N}\right)\left(1-\zeta_{N}^{2}\right) \cdots\left(1-\zeta_{N}^{N-1-k}\right) \\
= & \pm\left(a \text { power of } \zeta_{N}\right) \times\left(1-\zeta_{N}\right)\left(1-\zeta_{N}^{2}\right) \cdots\left(1-\zeta_{N}^{k}\right) \\
& \times\left(1-\zeta_{N}^{N-1}\right)\left(1-\zeta_{N}^{N-2}\right) \cdots\left(1-\zeta_{N}^{k+1}\right) \\
= & \pm\left(\text { a power of } \zeta_{N}\right) \times 2^{N-1} \sin (\pi / N) \sin (2 \pi / N) \cdots \sin ((N-1) \pi / N) \\
= & \pm\left(\text { a power of } \zeta_{N}\right) \times N
\end{aligned}
$$

- $\left(\zeta_{N}\right)_{k^{+}}:=\left(1-\zeta_{N}\right) \cdots\left(1-\zeta_{N}^{k}\right),\left(\zeta_{N}\right)_{k^{-}}:=\left(1-\zeta_{N}\right) \cdots\left(1-\zeta_{N}^{N-1-k}\right)$.
- $\left(\zeta_{N}\right)_{k^{+}}\left(\zeta_{N}\right)_{k^{-}}= \pm\left(\right.$a power of $\left.\zeta_{N}\right) \times N$.
- $\{k\}!= \pm\left(\right.$ a power of $\left.\zeta_{N}\right) \times\left(\zeta_{N}\right)_{k^{+}}$, $\{N-1-k\}!= \pm\left(\right.$ a power of $\left.\zeta_{N}\right) \times\left(\zeta_{N}\right)_{k^{-}}$.

R-matrix as a product of quantum factorial

R-matrix as a product of quantum factorial

$$
R_{k l}^{i j}=\sum_{m} \pm\left(a \text { power of } \zeta_{N}\right) \times \delta_{l, i+m} \delta_{k, j-m} \frac{\{I\}!\{N-1-k\}!}{\{i\}!\{m\}!\{N-1-j\}!}
$$

R-matrix as a product of quantum factorial

$$
\begin{aligned}
R_{k l}^{i j} & =\sum_{m} \pm\left(\text { a power of } \zeta_{N}\right) \times \delta_{l, i+m} \delta_{k, j-m} \frac{\{l\}!\{N-1-k\}!}{\{i\}!\{m\}!\{N-1-j\}!} \\
& =\sum_{m} \delta_{l, i+m} \delta_{k, j-m} \frac{ \pm\left(\text { a power of } \zeta_{N}\right) \times N^{2}}{\left(\zeta_{N}\right)_{m^{+}}\left(\zeta_{N}\right)_{i^{+}}\left(\zeta_{N}\right)_{k^{+}}\left(\zeta_{N}\right)_{j^{-}}\left(\zeta_{N}\right)_{l^{-}}}
\end{aligned}
$$

R-matrix as a product of quantum factorial

$$
\begin{aligned}
R_{k l}^{i j} & =\sum_{m} \pm\left(\text { a power of } \zeta_{N}\right) \times \delta_{l, i+m} \delta_{k, j-m} \frac{\{l\}!\{N-1-k\}!}{\{i\}!\{m\}!\{N-1-j\}!} \\
& =\sum_{m} \delta_{l, i+m} \delta_{k, j-m} \frac{ \pm\left(\text { a power of } \zeta_{N}\right) \times N^{2}}{\left(\zeta_{N}\right)_{m^{+}}\left(\zeta_{N}\right)_{i^{+}}\left(\zeta_{N}\right)_{k^{+}}\left(\zeta_{N}\right)_{j^{-}}\left(\zeta_{N}\right)_{I^{-}}} \\
\left(R^{-1}\right)_{k l}^{i j} & =\sum_{m} \delta_{l, i-m} \delta_{k, j+m} \frac{ \pm\left(\text { a power of } \zeta_{N}\right) \times N^{-2}}{\left(\zeta_{N}\right)_{m^{+}}\left(\zeta_{N}\right)_{i^{-}}\left(\zeta_{N}\right)_{k^{-}}\left(\zeta_{N}\right)_{j^{+}}\left(\zeta_{N}\right)_{l^{+}}}
\end{aligned}
$$

R-matrix as a product of quantum factorial

$$
\begin{aligned}
& R_{k l}^{i j}=\sum_{m} \pm\left(\text { a power of } \zeta_{N}\right) \times \delta_{l, i+m} \delta_{k, j-m} \frac{\{l\}!\{N-1-k\}!}{\{i\}!\{m\}!\{N-1-j\}!} \\
&=\sum_{m} \delta_{l, i+m} \delta_{k, j-m} \frac{ \pm\left(\text { a power of } \zeta_{N}\right) \times N^{2}}{\left(\zeta_{N}\right)_{m^{+}}\left(\zeta_{N}\right)_{i^{+}}\left(\zeta_{N}\right)_{k^{+}}\left(\zeta_{N}\right)_{j^{-}}\left(\zeta_{N}\right)_{l^{-}}} \\
&\left(R^{-1}\right)_{k l}^{i j}=\sum_{m} \delta_{l, i-m} \delta_{k, j+m} \frac{ \pm\left(\text { a power of } \zeta_{N}\right) \times N^{-2}}{\left(\zeta_{N}\right)_{m^{+}}\left(\zeta_{N}\right)_{i^{-}}\left(\zeta_{N}\right)_{k^{-}}\left(\zeta_{N}\right)_{j^{+}}\left(\zeta_{N}\right)_{l^{+}}} \\
& \Rightarrow
\end{aligned}
$$

$$
J_{N}\left(K ; \zeta_{N}\right)=\sum_{\substack{\text { labellings } \\ i, j, k, l \\ \text { on arcs }}}\left(\prod_{ \pm \text {-crossings }} \frac{ \pm\left(\text { a power of } \zeta_{N}\right) \times N^{ \pm 2}}{\left(\zeta_{N}\right)_{m^{+}}\left(\zeta_{N}\right)_{i^{ \pm}}\left(\zeta_{N}\right)_{k^{ \pm}}\left(\zeta_{N}\right)_{j^{\mp}}\left(\zeta_{N}\right)_{I \mp}}\right)
$$

Approximation of the quantum factorial

$$
\log \left(\zeta_{N}\right)_{k^{+}}=\sum_{j=1}^{k} \log \left(1-\zeta_{N}^{j}\right)
$$

Approximation of the quantum factorial

$$
\begin{aligned}
\log \left(\zeta_{N}\right)_{k^{+}} & =\sum_{j=1}^{k} \log \left(1-\zeta_{N}^{j}\right) \\
& =\sum_{j=1}^{k} \log (1-\exp (2 \pi \sqrt{-1} j / N))
\end{aligned}
$$

Approximation of the quantum factorial

$$
\begin{aligned}
\log \left(\zeta_{N}\right)_{k^{+}} & =\sum_{j=1}^{k} \log \left(1-\zeta_{N}^{j}\right) \\
& =\sum_{j=1}^{k} \log (1-\exp (2 \pi \sqrt{-1} j / N)) \\
& (x:=j / N)
\end{aligned}
$$

Approximation of the quantum factorial

$$
\begin{aligned}
& \log \left(\zeta_{N}\right)_{k^{+}}=\sum_{j=1}^{k} \log \left(1-\zeta_{N}^{j}\right) \\
&=\sum_{j=1}^{k} \log (1-\exp (2 \pi \sqrt{-1} j / N)) \\
&(x:=j / N) \\
& \approx N \int_{0}^{k / N} \log (1-\exp (2 \pi \sqrt{-1} x)) d x
\end{aligned}
$$

Here $\underset{N \rightarrow \infty}{\approx}$ means a very rough approximation.

Approximation of the quantum factorial

$$
\begin{aligned}
& \log \left(\zeta_{N}\right)_{k^{+}}=\sum_{j=1}^{k} \log \left(1-\zeta_{N}^{j}\right) \\
&=\sum_{j=1}^{k} \log (1-\exp (2 \pi \sqrt{-1} j / N)) \\
&(x:=j / N) \\
& \approx N \int_{0}^{k / N} \log (1-\exp (2 \pi \sqrt{-1} x)) d x \\
& N \rightarrow \infty \\
&(y:=\exp (2 \pi \sqrt{-1} x))
\end{aligned}
$$

Here $\underset{N \rightarrow \infty}{\approx}$ means a very rough approximation.

Approximation of the quantum factorial

$$
\begin{aligned}
& \log \left(\zeta_{N}\right)_{k^{+}}=\sum_{j=1}^{k} \log \left(1-\zeta_{N}^{j}\right) \\
&=\sum_{j=1}^{k} \log (1-\exp (2 \pi \sqrt{-1} j / N)) \\
&(x:=j / N) \\
& \approx N \int_{0}^{k / N} \log (1-\exp (2 \pi \sqrt{-1} x)) d x \\
&(y:=\exp (2 \pi \sqrt{-1} x)) \\
&=\frac{N}{2 \pi \sqrt{-1}} \int_{1}^{\exp (2 \pi \sqrt{-1} k / N)} \frac{\log (1-y)}{y} d y .
\end{aligned}
$$

Here $\underset{N \rightarrow \infty}{\approx}$ means a very rough approximation.

Approximation of the quantum factorial by dilogarithm

Approximation of the quantum factorial by dilogarithm

- Dilogarithm $\operatorname{Li}_{2}(z):=-\int_{0}^{z} \frac{\log (1-y)}{y} d y=\sum_{n=1}^{\infty} \frac{z^{n}}{n^{2}}$.

Approximation of the quantum factorial by dilogarithm

- Dilogarithm $\mathrm{Li}_{2}(z):=-\int_{0}^{z} \frac{\log (1-y)}{y} d y=\sum_{n=1}^{\infty} \frac{z^{n}}{n^{2}}$.
(Recall: $\operatorname{Li}_{1}(z):=-\log (1-z)=\sum_{n=1}^{\infty} \frac{z^{n}}{n}$.)

Approximation of the quantum factorial by dilogarithm

- Dilogarithm $\operatorname{Li}_{2}(z):=-\int_{0}^{z} \frac{\log (1-y)}{y} d y=\sum_{n=1}^{\infty} \frac{z^{n}}{n^{2}}$.
(Recall: $\mathrm{Li}_{1}(z):=-\log (1-z)=\sum_{n=1}^{\infty} \frac{z^{n}}{n}$.)
Vol(tetrahedron parametrized by $z)=\operatorname{Im} \operatorname{Li}(z)-\log |z| \arg (1-z)$.

Approximation of the quantum factorial by dilogarithm

- Dilogarithm $\mathrm{Li}_{2}(z):=-\int_{0}^{z} \frac{\log (1-y)}{y} d y=\sum_{n=1}^{\infty} \frac{z^{n}}{n^{2}}$.
(Recall: $\operatorname{Li}_{1}(z):=-\log (1-z)=\sum_{n=1}^{\infty} \frac{z^{n}}{n}$.)
Vol(tetrahedron parametrized by $z)=\operatorname{Im} \operatorname{Li}(z)-\log |z| \arg (1-z)$.

- $\log \left(\zeta_{N}\right)_{k^{+}} \underset{N \rightarrow \infty}{\approx} \frac{N}{2 \pi \sqrt{-1}}\left[\mathrm{~L}_{2}(1)-\mathrm{Li}_{2}\left(\zeta_{N}^{k}\right)\right]$.

Approximation of the quantum factorial by dilogarithm

- Dilogarithm $\mathrm{Li}_{2}(z):=-\int_{0}^{z} \frac{\log (1-y)}{y} d y=\sum_{n=1}^{\infty} \frac{z^{n}}{n^{2}}$.
(Recall: $\operatorname{Li}_{1}(z):=-\log (1-z)=\sum_{n=1}^{\infty} \frac{z^{n}}{n}$.)
Vol(tetrahedron parametrized by $z)=\operatorname{Im} \operatorname{Li}(z)-\log |z| \arg (1-z)$.

- $\log \left(\zeta_{N}\right)_{k^{+}} \underset{N \rightarrow \infty}{ } \frac{N}{2 \pi \sqrt{-1}}\left[\mathrm{Li}_{2}(1)-\mathrm{Li}_{2}\left(\zeta_{N}^{k}\right)\right]$.
- $\left(\zeta_{N}\right)_{k^{+}} \underset{N \rightarrow \infty}{\approx} \exp \left[-\frac{N}{2 \pi \sqrt{-1}} \operatorname{Li}_{2}\left(\zeta_{N}^{k}\right)\right]$.

Approximation of the quantum factorial by dilogarithm

- Dilogarithm $\operatorname{Li}_{2}(z):=-\int_{0}^{z} \frac{\log (1-y)}{y} d y=\sum_{n=1}^{\infty} \frac{z^{n}}{n^{2}}$.
(Recall: $\mathrm{Li}_{1}(z):=-\log (1-z)=\sum_{n=1}^{\infty} \frac{z^{n}}{n}$.)
$\operatorname{Vol}($ tetrahedron parametrized by $z)=\operatorname{Im} \operatorname{Li}_{2}(z)-\log |z| \arg (1-z)$.

- $\log \left(\zeta_{N}\right)_{k^{+}} \underset{N \rightarrow \infty}{\approx} \frac{N}{2 \pi \sqrt{-1}}\left[\operatorname{Li}_{2}(1)-\operatorname{Li}_{2}\left(\zeta_{N}^{k}\right)\right]$.
- $\left(\zeta_{N}\right)_{k^{+}} \underset{N \rightarrow \infty}{\approx} \exp \left[-\frac{N}{2 \pi \sqrt{-1}} \operatorname{Li}_{2}\left(\zeta_{N}^{k}\right)\right]$.
- $\left(\zeta_{N}\right)_{k^{-}} \underset{N \rightarrow \infty}{\approx} \exp \left[-\frac{N}{2 \pi \sqrt{-1}} \operatorname{Li}_{2}\left(\zeta_{N}^{-k-1}\right)\right] \underset{N \rightarrow \infty}{\approx} \exp \left[-\frac{N}{2 \pi \sqrt{-1}} L i_{2}\left(\zeta_{N}^{-k}\right)\right]$.

Approximation of the colored Jones polynomial by Li_{2}

Approximation of the colored Jones polynomial by Li_{2}

$$
J_{N}\left(K ; \zeta_{N}\right) \underset{N \rightarrow \infty}{\approx}
$$

$\sum_{\text {abellings }}$ (polynomial of N)
$\exp \left[\frac{N}{2 \pi \sqrt{-1}}\right.$
$\sum_{\text {cossings }}\left\{\mathrm{Li}_{2}\left(\zeta_{N}^{m}\right)+\mathrm{Li}_{2}\left(\zeta_{N}^{ \pm i}\right)+\mathrm{Li}_{2}\left(\zeta_{N}^{\mp j}\right)+\mathrm{Li}_{2}\left(\zeta_{N}^{ \pm k}\right)+\mathrm{Li}_{2}\left(\zeta_{N}^{\mp \prime}\right)+\right.$ log terms $\left.\}\right]$,

Approximation of the colored Jones polynomial by Li_{2}

$$
\begin{aligned}
& J_{N}\left(K ; \zeta_{N}\right) \underset{N \rightarrow \infty}{ } \sum_{\text {labellings }}^{(\text {polynomial of } N)} \\
& \exp \left[\frac{N}{2 \pi \sqrt{-1}}\right. \\
& \left.\sum_{\text {rossings }}\left\{\mathrm{Li}_{2}\left(\zeta_{N}^{m}\right)+\mathrm{Li}_{2}\left(\zeta_{N}^{ \pm i}\right)+\mathrm{Li}_{2}\left(\zeta_{N}^{\mp j}\right)+\mathrm{Li}_{2}\left(\zeta_{N}^{ \pm k}\right)+\mathrm{Li}_{2}\left(\zeta_{N}^{\mp \prime}\right)+\text { log terms }\right\}\right],
\end{aligned}
$$

where a log term comes from a power of ζ_{N}.

Approximation of the colored Jones polynomial by Li_{2}

$$
J_{N}\left(K ; \zeta_{N}\right) \underset{N \rightarrow \infty}{\approx}
$$

\sum (polynomial of N)
labellings
$\exp \left[\frac{N}{2 \pi \sqrt{-1}}\right.$
$\sum_{\text {rossings }}\left\{\operatorname{Li}_{2}\left(\zeta_{N}^{m}\right)+\mathrm{Li}_{2}\left(\zeta_{N}^{ \pm i}\right)+\mathrm{Li}_{2}\left(\zeta_{N}^{\mp j}\right)+\mathrm{Li}_{2}\left(\zeta_{N}^{ \pm k}\right)+\mathrm{Li}_{2}\left(\zeta_{N}^{\mp /}\right)+\right.$ log terms $\left.\}\right]$,
where a log term comes from a power of ζ_{N}. For example

$$
\zeta_{N}^{k^{2}}=\exp \left(\frac{N}{2 \pi \sqrt{-1}}\left(\frac{2 \pi \sqrt{-1} k}{N}\right)^{2}\right)=\exp \left[\frac{N}{2 \pi \sqrt{-1}}\left(\log \zeta_{N}^{k}\right)^{2}\right] .
$$

Approximation of the colored Jones polynomial by integral

Approximation of the colored Jones polynomial by integral

- i_{1}, \ldots, i_{c} : labellings on arcs.

Approximation of the colored Jones polynomial by integral

- i_{1}, \ldots, i_{c} : labellings on arcs.
- $V\left(\zeta_{N}^{i_{1}}, \ldots, \zeta_{N}^{i_{c}}\right):=$
$\sum\left\{\operatorname{Li}_{2}\left(\zeta_{N}^{m}\right)+\operatorname{Li}_{2}\left(\zeta_{N}^{ \pm i}\right)+\operatorname{Li}_{2}\left(\zeta_{N}^{\mp j}\right)+\operatorname{Li}_{2}\left(\zeta_{N}^{ \pm k}\right)+\operatorname{Li}_{2}\left(\zeta_{N}^{\mp \prime}\right)+\right.$ log terms $\}$. crossings

Approximation of the colored Jones polynomial by integral

- i_{1}, \ldots, i_{c} : labellings on arcs.
- $V\left(\zeta_{N}^{i_{1}}, \ldots, \zeta_{N}^{i_{c}}\right):=$
$\sum\left\{\operatorname{Li}_{2}\left(\zeta_{N}^{m}\right)+\operatorname{Li}_{2}\left(\zeta_{N}^{ \pm i}\right)+\operatorname{Li}_{2}\left(\zeta_{N}^{\mp j}\right)+\operatorname{Li}_{2}\left(\zeta_{N}^{ \pm k}\right)+\operatorname{Li}_{2}\left(\zeta_{N}^{\mp \prime}\right)+\right.$ log terms $\}$. crossings

$$
J_{N}\left(K ; \zeta_{N}\right) \underset{N \rightarrow \infty}{\approx} \sum_{i_{1}, \ldots, i_{c}}(\text { polynomial of } N) \exp \left[\frac{N}{2 \pi \sqrt{-1}} V\left(\zeta_{N}^{i_{N}}, \ldots, \zeta_{N}^{i_{c}}\right)\right]
$$

(ignore polynomials since exp grows much bigger)

Approximation of the colored Jones polynomial by integral

- i_{1}, \ldots, i_{c} : labellings on arcs.
- $V\left(\zeta_{N}^{i_{1}}, \ldots, \zeta_{N}^{i_{c}}\right):=$
$\sum\left\{\operatorname{Li}_{2}\left(\zeta_{N}^{m}\right)+\operatorname{Li}_{2}\left(\zeta_{N}^{ \pm i}\right)+\operatorname{Li}_{2}\left(\zeta_{N}^{\mp j}\right)+\operatorname{Li}_{2}\left(\zeta_{N}^{ \pm k}\right)+\operatorname{Li}_{2}\left(\zeta_{N}^{\mp \prime}\right)+\right.$ log terms $\}$. crossings

$$
J_{N}\left(K ; \zeta_{N}\right) \underset{N \rightarrow \infty}{\approx} \sum_{i_{1}, \ldots, i_{c}}(\text { polynomial of } N) \exp \left[\frac{N}{2 \pi \sqrt{-1}} V\left(\zeta_{N}^{i_{N}}, \ldots, \zeta_{N}^{i_{c}}\right)\right]
$$

(ignore polynomials since exp grows much bigger)

$$
\underset{N \rightarrow \infty}{\approx} \sum_{i_{1}, \ldots, i_{c}} \exp \left[\frac{N}{2 \pi \sqrt{-1}} V\left(\zeta_{N}^{i_{1}}, \ldots, \zeta_{N}^{i_{c}}\right)\right]
$$

Approximation of the colored Jones polynomial by integral

- i_{1}, \ldots, i_{c} : labellings on arcs.
- $V\left(\zeta_{N}^{i_{1}}, \ldots, \zeta_{N}^{i_{c}}\right):=$
$\sum\left\{\operatorname{Li}_{2}\left(\zeta_{N}^{m}\right)+\operatorname{Li}_{2}\left(\zeta_{N}^{ \pm i}\right)+\operatorname{Li}_{2}\left(\zeta_{N}^{\mp j}\right)+\operatorname{Li}_{2}\left(\zeta_{N}^{ \pm k}\right)+\operatorname{Li}_{2}\left(\zeta_{N}^{\mp \prime}\right)+\right.$ log terms $\}$. crossings

$$
J_{N}\left(K ; \zeta_{N}\right) \underset{N \rightarrow \infty}{\approx} \sum_{i_{1}, \ldots, i_{c}}(\text { polynomial of } N) \exp \left[\frac{N}{2 \pi \sqrt{-1}} V\left(\zeta_{N}^{i_{N}}, \ldots, \zeta_{N}^{i_{c}}\right)\right]
$$

(ignore polynomials since exp grows much bigger)

$$
\begin{aligned}
& \underset{N \rightarrow \infty}{\approx} \sum_{i_{1}, \ldots, i_{c}} \exp \left[\frac{N}{2 \pi \sqrt{-1}} V\left(\zeta_{N}^{i_{1}}, \ldots, \zeta_{N}^{i_{c}}\right)\right] \\
& \underset{N \rightarrow \infty}{\approx} \int_{J_{1}} \cdots \int_{J_{c}} \exp \left[\frac{N}{2 \pi \sqrt{-1}} V\left(z_{1}, \ldots, z_{c}\right) d z_{1} \cdots d z_{c}\right]
\end{aligned}
$$

Approximation of the colored Jones polynomial by integral

- i_{1}, \ldots, i_{c} : labellings on arcs.
- $V\left(\zeta_{N}^{i_{1}}, \ldots, \zeta_{N}^{i_{c}}\right):=$
$\sum\left\{\operatorname{Li}_{2}\left(\zeta_{N}^{m}\right)+\operatorname{Li}_{2}\left(\zeta_{N}^{ \pm i}\right)+\operatorname{Li}_{2}\left(\zeta_{N}^{\mp j}\right)+\operatorname{Li}_{2}\left(\zeta_{N}^{ \pm k}\right)+\operatorname{Li}_{2}\left(\zeta_{N}^{\mp \prime}\right)+\right.$ log terms $\}$. crossings

$$
J_{N}\left(K ; \zeta_{N}\right) \underset{N \rightarrow \infty}{\approx} \sum_{i_{1}, \ldots, i_{c}}(\text { polynomial of } N) \exp \left[\frac{N}{2 \pi \sqrt{-1}} V\left(\zeta_{N}^{i_{N}}, \ldots, \zeta_{N}^{i_{c}}\right)\right]
$$

(ignore polynomials since exp grows much bigger)

$$
\begin{aligned}
& \approx \underset{N \rightarrow \infty}{\approx} \sum_{i_{1}, \ldots, i_{c}} \exp \left[\frac{N}{2 \pi \sqrt{-1}} V\left(\zeta_{N}^{i_{1}}, \ldots, \zeta_{N}^{i_{c}}\right)\right] \\
& \approx \underset{N \rightarrow \infty}{\approx} \int_{J_{1}} \cdots \int_{J_{c}} \exp \left[\frac{N}{2 \pi \sqrt{-1}} V\left(z_{1}, \ldots, z_{c}\right) d z_{1} \cdots d z_{c}\right],
\end{aligned}
$$

where J_{1}, \ldots, J_{c} are some contours.

Saddle Point Method

Saddle Point Method

Theorem (Saddle Point Method)

Assume that
(1) $d h\left(z_{0}\right) / d z=0$ and $d^{2} h\left(z_{0}\right) / d z^{2} \neq 0$.
(2) Im $h(z)$ is constant for z in some neighborhood of z_{0}.
(3) $\operatorname{Re} h(z)$ takes its strict maximum along Γ at z_{0}.

Then

$$
\int_{\Gamma} \exp (N h(z)) d z \underset{N \rightarrow \infty}{\sim} \frac{\sqrt{2 \pi} \exp \left(N h\left(z_{0}\right)\right)}{\sqrt{N} \sqrt{-d^{2} h\left(z_{0}\right) / d z^{2}}} .
$$

Saddle Point Method

Theorem (Saddle Point Method)

Assume that
(1) $d h\left(z_{0}\right) / d z=0$ and $d^{2} h\left(z_{0}\right) / d z^{2} \neq 0$.
(2) Im $h(z)$ is constant for z in some neighborhood of z_{0}.
(3) $\operatorname{Re} h(z)$ takes its strict maximum along Γ at z_{0}.

Then

$$
\int_{\Gamma} \exp (N h(z)) d z \underset{N \rightarrow \infty}{\sim} \frac{\sqrt{2 \pi} \exp \left(N h\left(z_{0}\right)\right)}{\sqrt{N} \sqrt{-d^{2} h\left(z_{0}\right) / d z^{2}}}
$$

$\because \int_{-\infty}^{\infty} e^{-a x^{2}} d x=\frac{\sqrt{\pi}}{\sqrt{a}} \Rightarrow$

$$
\int_{\Gamma} e^{N h(z)} d z \underset{n \rightarrow \infty}{\approx} \int_{\Gamma} e^{N\left(h\left(z_{0}\right)+\frac{h^{\prime \prime}\left(z_{0}\right)}{2}\left(z-z_{0}\right)^{2}\right)} d z \underset{n \rightarrow \infty}{\approx} e^{N h\left(z_{0}\right)} \frac{\sqrt{2 \pi}}{\sqrt{-N h^{\prime \prime}\left(z_{0}\right)}} .
$$

Saddle Point Method

Theorem (Saddle Point Method)

Assume that

(1) $d h\left(z_{0}\right) / d z=0$ and $d^{2} h\left(z_{0}\right) / d z^{2} \neq 0$.
(2) Im $h(z)$ is constant for z in some neighborhood of z_{0}.
(3) $\operatorname{Re} h(z)$ takes its strict maximum along Γ at z_{0}.

Then

$$
\int_{\Gamma} \exp (N h(z)) d z \underset{N \rightarrow \infty}{\sim} \frac{\sqrt{2 \pi} \exp \left(N h\left(z_{0}\right)\right)}{\sqrt{N} \sqrt{-d^{2} h\left(z_{0}\right) / d z^{2}}}
$$

$\because \int_{-\infty}^{\infty} e^{-a x^{2}} d x=\frac{\sqrt{\pi}}{\sqrt{a}} \Rightarrow$

$$
\int_{\Gamma} e^{N h(z)} d z \underset{n \rightarrow \infty}{\approx} \int_{\Gamma} e^{N\left(h\left(z_{0}\right)+\frac{h^{\prime \prime}\left(z_{0}\right)}{2}\left(z-z_{0}\right)^{2}\right)} d z \underset{n \rightarrow \infty}{\approx} e^{N h\left(z_{0}\right)} \frac{\sqrt{2 \pi}}{\sqrt{-N h^{\prime \prime}\left(z_{0}\right)}} .
$$

To apply the saddle point method we usually change the contour so that it passes though the saddle point z_{0} where $h^{\prime}\left(z_{0}\right)=0$.

Application of the saddle point method

Application of the saddle point method

Suppose

$$
\frac{\partial V}{\partial z_{k}}\left(x_{1}, \ldots, x_{c}\right)=0 \quad(k=1, \ldots, c)
$$

at $\left(x_{1}, \ldots, x_{c}\right)$.

Application of the saddle point method

Suppose

$$
\frac{\partial V}{\partial z_{k}}\left(x_{1}, \ldots, x_{c}\right)=0 \quad(k=1, \ldots, c)
$$

at $\left(x_{1}, \ldots, x_{c}\right)$. Then by the saddle point method

Application of the saddle point method

Suppose

$$
\frac{\partial V}{\partial z_{k}}\left(x_{1}, \ldots, x_{c}\right)=0 \quad(k=1, \ldots, c)
$$

at $\left(x_{1}, \ldots, x_{c}\right)$. Then by the saddle point method

$$
J_{N}\left(K ; \zeta_{N}\right) \underset{N \rightarrow \infty}{\approx} \exp \left[\frac{N}{2 \pi \sqrt{-1}} V\left(x_{1}, \ldots, x_{c}\right)\right]
$$

Application of the saddle point method

Suppose

$$
\frac{\partial V}{\partial z_{k}}\left(x_{1}, \ldots, x_{c}\right)=0 \quad(k=1, \ldots, c)
$$

at $\left(x_{1}, \ldots, x_{c}\right)$. Then by the saddle point method

$$
J_{N}\left(K ; \zeta_{N}\right) \underset{N \rightarrow \infty}{\approx} \exp \left[\frac{N}{2 \pi \sqrt{-1}} V\left(x_{1}, \ldots, x_{c}\right)\right]
$$

$$
2 \pi \sqrt{-1} \lim _{N \rightarrow \infty} \frac{\log J_{N}\left(K ; \zeta_{N}\right)}{N}=V\left(x_{1}, \ldots, x_{c}\right)
$$

Difficulties

Difficulties

Difficulties so far:

Difficulties

Difficulties so far:

- Replacing the summation into an integral

$$
\begin{aligned}
\sum_{i_{1}, \ldots, i_{c}} \exp & {\left[\frac{N}{2 \pi \sqrt{-1}} V\left(\zeta_{N}^{i_{1}}, \ldots, \zeta_{N}^{i_{c}}\right)\right] } \\
& \underset{N \rightarrow \infty}{\approx} \int_{J_{1}} \cdots \int_{J_{c}} \exp \left[\frac{N}{2 \pi \sqrt{-1}} V\left(z_{1}, \ldots, z_{c}\right) d z_{1} \cdots d z_{c}\right]
\end{aligned}
$$

Difficulties

Difficulties so far:

- Replacing the summation into an integral

$$
\sum_{i_{1}, \ldots, i_{c}} \exp \left[\frac{N}{2 \pi \sqrt{-1}} V\left(\zeta_{N}^{i_{1}}, \ldots, \zeta_{N}^{i_{c}}\right)\right]
$$

$$
\underset{N \rightarrow \infty}{\approx} \int_{J_{1}} \cdots \int_{J_{c}} \exp \left[\frac{N}{2 \pi \sqrt{-1}} V\left(z_{1}, \ldots, z_{c}\right) d z_{1} \cdots d z_{c}\right]
$$

- How to apply the saddle point method. In particular, which saddle point to choose. In general, we have many solutions to the system of equations.

$$
\begin{array}{r}
\int_{J_{1}} \cdots \int_{J_{c}} \exp \left[\frac{N}{2 \pi \sqrt{-1}} V\left(z_{1}, \ldots, z_{c}\right) d z_{1} \cdots d z_{c}\right] \\
\underset{N \rightarrow \infty}{\approx} \exp \left[\frac{N}{2 \pi \sqrt{-1}} V\left(x_{1}, \ldots, x_{c}\right)\right]
\end{array}
$$

Decomposition into octahedra (by D. Thurston)

Decomposition into octahedra (by D. Thurston)

Decompose the knot complement into (topological, truncated) tetrahedra.

Decomposition into octahedra (by D. Thurston)

Decompose the knot complement into (topological, truncated) tetrahedra.

- Around each crossing, put an octahedron:

Decomposition into octahedra (by D. Thurston)

Decompose the knot complement into (topological, truncated) tetrahedra.

- Around each crossing, put an octahedron:

- Decompose the octahedron into five tetrahedra:

Decomposition into topological tetrahedra

Decomposition into topological tetrahedra

- Pull the vertices to the point at infinity:

Decomposition into topological tetrahedra

- Pull the vertices to the point at infinity:

- $S^{3} \backslash K$ is now decomposed into topological, truncated tetrahedra, decorated with complex numbers $\zeta_{N}^{i_{k}}$.

Decomposition into hyperbolic tetrahedra

Decomposition into hyperbolic tetrahedra

- Each topological, truncated tetrahedron is decorated with a complex number $\zeta_{N}^{i_{k}}$.

Decomposition into hyperbolic tetrahedra

- Each topological, truncated tetrahedron is decorated with a complex number $\zeta_{N}^{i_{k}}$.
- We want to regard it as a hyperbolic, ideal tetrahedron.

Decomposition into hyperbolic tetrahedra

- Each topological, truncated tetrahedron is decorated with a complex number $\zeta_{N}^{i_{k}}$.
- We want to regard it as a hyperbolic, ideal tetrahedron.
- Recall that we have replaced a summation over i_{k} into an integral over z_{k}.

Decomposition into hyperbolic tetrahedra

- Each topological, truncated tetrahedron is decorated with a complex number $\zeta_{N}^{i_{k}}$.
- We want to regard it as a hyperbolic, ideal tetrahedron.
- Recall that we have replaced a summation over i_{k} into an integral over z_{k}.
- Replace $\zeta_{N}^{i_{k}}$ with a complex variable z_{k}.

Decomposition into hyperbolic tetrahedra

- Each topological, truncated tetrahedron is decorated with a complex number $\zeta_{N}^{i_{k}}$.
- We want to regard it as a hyperbolic, ideal tetrahedron.
- Recall that we have replaced a summation over i_{k} into an integral over z_{k}.
- Replace $\zeta_{N}^{i_{k}}$ with a complex variable z_{k}.
- Regard the tetrahedron decorated with z_{k} as an hyperbolic, ideal tetrahedron parametrized by z_{k}.

Hyperbolic structure on the knot complement

Hyperbolic structure on the knot complement

- Now the knot complement is decomposed into ideal, hyperbolic tetrahedra parametrized by z_{1}, \ldots, z_{c}.

Hyperbolic structure on the knot complement

- Now the knot complement is decomposed into ideal, hyperbolic tetrahedra parametrized by z_{1}, \ldots, z_{c}.
- Choose z_{1}, \ldots, z_{c} so that we can glue these tetrahedra well, that is,

Hyperbolic structure on the knot complement

- Now the knot complement is decomposed into ideal, hyperbolic tetrahedra parametrized by z_{1}, \ldots, z_{c}.
- Choose z_{1}, \ldots, z_{c} so that we can glue these tetrahedra well, that is,
- around each edge, the sum of angles is 2π,

Hyperbolic structure on the knot complement

- Now the knot complement is decomposed into ideal, hyperbolic tetrahedra parametrized by z_{1}, \ldots, z_{c}.
- Choose z_{1}, \ldots, z_{c} so that we can glue these tetrahedra well, that is,
- around each edge, the sum of angles is 2π,
- the triangles that appear in the boundary torus make the torus Euclidean.

Hyperbolic structure on the knot complement

- Now the knot complement is decomposed into ideal, hyperbolic tetrahedra parametrized by z_{1}, \ldots, z_{c}.
- Choose z_{1}, \ldots, z_{c} so that we can glue these tetrahedra well, that is,
- around each edge, the sum of angles is 2π,
- the triangles that appear in the boundary torus make the torus Euclidean.
- These conditions are the same as the system of equations that we used in the saddle point method!

$$
\frac{\partial V}{\partial z_{k}}\left(x_{1}, \ldots, x_{c}\right)=0 \quad(k=1, \ldots, c)
$$

Hyperbolic structure on the knot complement

- Now the knot complement is decomposed into ideal, hyperbolic tetrahedra parametrized by z_{1}, \ldots, z_{c}.
- Choose z_{1}, \ldots, z_{c} so that we can glue these tetrahedra well, that is,
- around each edge, the sum of angles is 2π,
- the triangles that appear in the boundary torus make the torus Euclidean.
- These conditions are the same as the system of equations that we used in the saddle point method!

$$
\frac{\partial V}{\partial z_{k}}\left(x_{1}, \ldots, x_{c}\right)=0 \quad(k=1, \ldots, c)
$$

- $\Rightarrow\left(x_{1}, \ldots, x_{c}\right)$ gives the complete hyperbolic structure.

Hyperbolic structure on the knot complement

- Now the knot complement is decomposed into ideal, hyperbolic tetrahedra parametrized by z_{1}, \ldots, z_{c}.
- Choose z_{1}, \ldots, z_{c} so that we can glue these tetrahedra well, that is,
- around each edge, the sum of angles is 2π,
- the triangles that appear in the boundary torus make the torus Euclidean.
- These conditions are the same as the system of equations that we used in the saddle point method!

$$
\frac{\partial V}{\partial z_{k}}\left(x_{1}, \ldots, x_{c}\right)=0 \quad(k=1, \ldots, c)
$$

- $\Rightarrow\left(x_{1}, \ldots, x_{c}\right)$ gives the complete hyperbolic structure.
- Then, what does $V\left(x_{1}, \ldots, x_{c}\right)\left(=2 \pi \sqrt{-1} \lim _{N \rightarrow \infty} \frac{\log J_{N}\left(K, \zeta_{N}\right)}{N}\right)$ mean?

Geometric meaning of the limit

Geometric meaning of the limit

Recall: $V\left(x_{1}, \ldots, x_{c}\right)$ is the sum of $\operatorname{Li}_{2}\left(x_{k}\right)$ (and log), where x_{k} defines an ideal hyperbolic tetrahedron.

Geometric meaning of the limit

Recall: $V\left(x_{1}, \ldots, x_{c}\right)$ is the sum of $\operatorname{Li}_{2}\left(x_{k}\right)$ (and log), where x_{k} defines an ideal hyperbolic tetrahedron. We use the following formula:

Vol(tetrahedron parametrized by $z)=\operatorname{Im} \operatorname{Li}_{2}(z)-\log |z| \arg (1-z)$.

Geometric meaning of the limit

Recall: $V\left(x_{1}, \ldots, x_{c}\right)$ is the sum of $\operatorname{Li}_{2}\left(x_{k}\right)$ (and log), where x_{k} defines an ideal hyperbolic tetrahedron. We use the following formula:
$\operatorname{Vol}($ tetrahedron parametrized by $z)=\operatorname{Im} \operatorname{Li}_{2}(z)-\log |z| \arg (1-z)$.
Therefore we finally have

Geometric meaning of the limit

Recall: $V\left(x_{1}, \ldots, x_{c}\right)$ is the sum of $\operatorname{Li}_{2}\left(x_{k}\right)$ (and log), where x_{k} defines an ideal hyperbolic tetrahedron. We use the following formula:
$\operatorname{Vol}($ tetrahedron parametrized by $z)=\operatorname{Im} \operatorname{Li}_{2}(z)-\log |z| \arg (1-z)$.
Therefore we finally have

$$
\operatorname{Im}\left(2 \pi \sqrt{-1} \lim _{N \rightarrow \infty} \frac{\log J_{N}\left(K, \zeta_{N}\right)}{N}\right)=\operatorname{Vol}\left(S^{3} \backslash K\right)
$$

Geometric meaning of the limit

Recall: $V\left(x_{1}, \ldots, x_{c}\right)$ is the sum of $\operatorname{Li}_{2}\left(x_{k}\right)$ (and log), where x_{k} defines an ideal hyperbolic tetrahedron. We use the following formula:

Vol(tetrahedron parametrized by $z)=\operatorname{Im} \operatorname{Li}_{2}(z)-\log |z| \arg (1-z)$.
Therefore we finally have

$$
\begin{gathered}
\operatorname{Im}\left(2 \pi \sqrt{-1} \lim _{N \rightarrow \infty} \frac{\log J_{N}\left(K, \zeta_{N}\right)}{N}\right)=\operatorname{Vol}\left(S^{3} \backslash K\right) \\
2 \pi \lim _{N \rightarrow \infty} \frac{\log \left|J_{N}\left(K, \zeta_{N}\right)\right|}{N}=\operatorname{Vol}\left(S^{3} \backslash K\right),
\end{gathered}
$$

which is the Volume Conjecture.

