An Introduction to the Volume Conjecture
and its generalizations, Il

Hitoshi Murakami

Tohoku University

Workshop on Volume Conjecture and Related Topics in Knot Theory
Indian Institute of Science Education and Research, Pune
20th December, 2018

Hitoshi Murakami (Tohoku University £ ) Volume Conjecture, Il IISER, Pune, 20th December, 2018 1/30



@ Link invariant from a Yang—Baxter operator

© Example of calculation

© 'Proof’ of the VC
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Braid presentation of a link
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Link invariant from a Yang—Baxter operator

Braid presentation of a link

Theorem (J.W. Alexander) J

Any knot or link can be presented as the closure of a braid.
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Link invariant from a Yang—Baxter operator
Braid presentation of a link

Theorem (J.W. Alexander)

Any knot or link can be presented as the closure of a braid.

n-braid group has

e generators: o; (i=1,2,...,n—1): e X

nln

i l+1
e relations: ojo; = gjo; (|i —j| > 1),
T \

Hitoshi Murakami (Tohoku University £3) Volume Conjecture, Il IISER, Pune, 20th December, 2018

3/30



Link invariant from a Yang—Baxter operator

Markov's theorem
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Markov's theorem

Theorem (A.A. Markov)
B and 3’ give equivalent links < (3 and (3’ are related by

y
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Yang—Baxter operator
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Link invariant from a Yang—Baxter operator

Yang—Baxter operator

@ V: an N-dimensional vector space over C.
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Link invariant from a Yang—Baxter operator

Yang—Baxter operator

@ V: an N-dimensional vector space over C.
e R: V®V = V®V (R-matrix), u: V — V: isomorphisms,
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Link invariant from a Yang—Baxter operator

Yang—Baxter operator

@ V: an N-dimensional vector space over C.
e R: V®V = V®V (R-matrix), u: V — V: isomorphisms,

@ a, b: non-zero complex numbers.
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Link invariant from a Yang—Baxter operator

Yang—Baxter operator

@ V: an N-dimensional vector space over C.
e R:V®V — V®V (R-matrix), u: V — V: isomorphisms,

@ a, b: non-zero complex numbers.

Definition (V. Turaev)

(R, i, a,b) is called an enhanced Yang—Baxter operator if it satisfies
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Link invariant from a Yang—Baxter operator

Yang—Baxter operator

@ V: an N-dimensional vector space over C.
e R:V®V — V®V (R-matrix), u: V — V: isomorphisms,

@ a, b: non-zero complex numbers.

Definition (V. Turaev)
(R, i, a,b) is called an enhanced Yang—Baxter operator if it satisfies

o (Reldy)(ldy ®R)(R®Idy) = (ldy ®@R)(R @ Idy)(Idy ®R),
(Yang—Baxter equation)

Hitoshi Murakami (Tohoku University £3) Volume Conjecture, |1 IISER, Pune, 20th December, 2018 5 /30



Link invariant from a Yang—Baxter operator

Yang—Baxter operator

@ V: an N-dimensional vector space over C.
e R:V®V — V®V (R-matrix), u: V — V: isomorphisms,

@ a, b: non-zero complex numbers.

Definition (V. Turaev)
(R, i, a,b) is called an enhanced Yang—Baxter operator if it satisfies

o (Reldy)(ldy ®R)(R®Idy) = (ldy ®@R)(R @ Idy)(Idy ®R),
(Yang—Baxter equation)

o R(u®pu)=(np®upR,

Hitoshi Murakami (Tohoku University £3) Volume Conjecture, |1 IISER, Pune, 20th December, 2018 5 /30



Link invariant from a Yang—Baxter operator

Yang—Baxter operator

@ V: an N-dimensional vector space over C.
e R:V®V — V®V (R-matrix), u: V — V: isomorphisms,

@ a, b: non-zero complex numbers.

Definition (V. Turaev)
(R, i, a,b) is called an enhanced Yang—Baxter operator if it satisfies
e (Reldy)(ldy ®R)(R®Idy) = (Idy ®R)(R® Idy)(ldy ®R),
(Yang—Baxter equation)
o R(u®pu)=(np®upR,
o Tro(RE(Idy ®u)) = a*tbldy.
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Link invariant from a Yang—Baxter operator

Yang—Baxter operator

@ V: an N-dimensional vector space over C.
e R:V®V — V®V (R-matrix), u: V — V: isomorphisms,

@ a, b: non-zero complex numbers.

Definition (V. Turaev)
(R, i, a,b) is called an enhanced Yang—Baxter operator if it satisfies
o (R®Idy)(ldy ®R)(R®Idy) = (Idy ®R)(R® Idy)(ldy ®R),
(Yang—Baxter equation)
o R(u®pu)=(np®upR,
] Trg(Ri(ldV ®'u)) = ailbld\/.
Try: V ® V — Vs the operator trace. (For M € End(V ® V) given by a
matrix M}, Tro(M) is given by >, Mi™ )
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Braid = endomorphism

Replace
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Link invariant from a Yang—Baxter operator

Braid = endomorphism

Replace N with

N
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Link invariant from a Yang—Baxter operator

Braid = endomorphism

Vv
Replace v\/\v with ,
Ve v
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Link invariant from a Yang—Baxter operator

Braid = endomorphism

Vv
Replace v\/ with ,and \/v with
N v
VeV
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Link invariant from a Yang—Baxter operator

Braid = endomorphism

Vv VvV
Replace v\/ with , and \/v with (&
N v
rev Vv
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Link invariant from a Yang—Baxter operator

Braid = endomorphism

Vv VvV
Replace v\/ with , and \/v with (&
N v
rev Vv

n-braid 8 = homomorphism ®(3): V®" — y&n
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Link invariant from a Yang—Baxter operator

Braid = endomorphism

Vv VvV
Replace v\/ with , and \/v with (&
N v
rev Vv

n-braid 8 = homomorphism ®(3): V®" — y&n

v

Hitoshi Murakami (Tohoku University £3) Volume Conjecture, |l IISER, Pune, 20th December, 2018 6 /30



Link invariant from a Yang—Baxter operator

Definition of an invariant

Definition
n-braid 5 = a link L.
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Link invariant from a Yang—Baxter operator

Definition of an invariant

Definition
n-braid 5 = a link L.
T(Ruap) (L) ==
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Link invariant from a Yang—Baxter operator

Definition of an invariant
Definition
n-braid 8 = a link L.
T(Ruap) (L) == a B p=nTr, <Tr2(- - (Trp (®(B)u®")) - - )>’

where Try: V@K — v@(k=1) is defined similarly, and w(3) is the sum of
exponents.
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Link invariant from a Yang—Baxter operator

Definition of an invariant
Definition
n-braid 5 = a link L.

T(Ruap)(L) = a b= Try <Tr2 (- (Trn (®(B)u®)) - - .)>,

where Try: V@K — v@(k=1) is defined similarly, and w(3) is the sum of

exponents.

aal
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Link invariant from a Yang—Baxter operator

Invariance of T(g , .p)(L) under braid relation and
conjugation
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Link invariant from a Yang—Baxter operator

Invariance of T(g , .p)(L) under braid relation and
conjugation

@ Invariance under the braid relation cjoj110; = 0j4+10i0j4+1.
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Link invariant from a Yang—Baxter operator

Invariance of T(g , .p)(L) under braid relation and
conjugation

@ Invariance under the braid relation cjoj110; = 0j4+10i0j4+1.

Xt\\\@

braid relation
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Link invariant from a Yang—Baxter operator

Invariance of T(g , .p)(L) under braid relation and
conjugation

@ Invariance under the braid relation cjoj110; = 0j4+10i0j4+1.

N k\ rever rever
s
N N

braid relation VRvevr VRV
Yang—Baxter equation
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Link invariant from a Yang—Baxter operator

Invariance of T(g , .p)(L) under braid relation and
conjugation

@ Invariance under the braid relation cjoj110; = 0j4+10i0j4+1.

N k\ rever rever
s
N N

braid relation VRvevr VRV
Yang—Baxter equation

@ invariance under conjugation

Try is invariant
under conjugation

(#®#)R:R(u®u)
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Link invariant from a Yang—Baxter operator

Invariance of T(g ,.p)(L) under stabilization
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Link invariant from a Yang—Baxter operator

Invariance of T(g ,.p)(L) under stabilization

@ invariance under stabilization

WL o o
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Link invariant from a Yang—Baxter operator

Invariance of T(g ,.p)(L) under stabilization

@ invariance under stabilization

= ab
Tra (R(Idy ®u) =abldy
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Link invariant from a Yang—Baxter operator

Invariance of T(g ,.p)(L) under stabilization

@ invariance under stabilization

= ab
Tra (R(Idy ®u) =abldy

Theorem (Turaev)
T(Ru,a,p) Is @ link invariant. J
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Quantum (g, V) invariant
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Quantum (g, V) invariant

@ g: a Lie algebra,

@ V' its representation
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Quantum (g, V) invariant
@ g: a Lie algebra,
@ V' its representation

=
an enhanced Yang—Baxter operator (R, y1, a, b) with a parameter g.
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Quantum (g, V) invariant

@ g: a Lie algebra,

@ V: its representation

=
an enhanced Yang—Baxter operator (R, y1, a, b) with a parameter g.
=

quantum (g, V) invariant with a parameter q.
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Quantum (g, V) invariant

@ g: a Lie algebra,

@ V: its representation

=
an enhanced Yang—Baxter operator (R, y1, a, b) with a parameter g.
=

quantum (g, V) invariant with a parameter q.

Definition
The quantum (s/(2,C), Vi) invariant is called the N-dimensional colored
Jones polynomial Jy(L; g).
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Quantum (g, V) invariant

@ g: a Lie algebra,
@ V: its representation
=
an enhanced Yang—Baxter operator (R, y1, a, b) with a parameter g.

=
quantum (g, V) invariant with a parameter q.

Definition
The quantum (s/(2,C), Vi) invariant is called the N-dimensional colored
Jones polynomial Jy(L; g).

e Vj: N-dimensional irreducible representation of s/(2,C).
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Quantum (g, V) invariant

@ g: a Lie algebra,
@ V: its representation
=
an enhanced Yang—Baxter operator (R, y1, a, b) with a parameter g.

=
quantum (g, V) invariant with a parameter q.

Definition
The quantum (s/(2,C), Vi) invariant is called the N-dimensional colored
Jones polynomial Jy(L; g).

e Vj: N-dimensional irreducible representation of s/(2,C).

e Jx(L;q) is the ordinary Jones polynomial.
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Quantum (g, V) invariant

@ g: a Lie algebra,
@ V: its representation
=
an enhanced Yang—Baxter operator (R, y1, a, b) with a parameter g.

=
quantum (g, V) invariant with a parameter q.

Definition
The quantum (s/(2,C), Vi) invariant is called the N-dimensional colored
Jones polynomial Jy(L; g).

e Vj: N-dimensional irreducible representation of s/(2,C).

e Jx(L;q) is the ordinary Jones polynomial.
e Jy(unknot; q) = 1.
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Link invariant from a Yang—Baxter operator

Definition of the colored Jones polynomial, |
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Link invariant from a Yang—Baxter operator

Definition of the colored Jones polynomial, |

o V:=CN,
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Link invariant from a Yang—Baxter operator

Definition of the colored Jones polynomial, |

o V:=CN
N—1

° R(ex ® e) Z Rk,e, ® e and p(e)) Z ,uje,
i,j=0
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Link invariant from a Yang—Baxter operator

Definition of the colored Jones polynomial, |

o V:=CN
N-1
° R(ex ® e) Z Rk,e, ® e and p(e)) Z,uje,
ij=0
i "“”("S"*”é 5 (PN —1— K}
° = Li+mOk j—m7 - .
K ot TS A m PN — 1 — j}!

><q( ~(N-1)/2) (j—(N-1)/2) - ~m(i~j)/2=m(m+1)/4
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Link invariant from a Yang—Baxter operator

Definition of the colored Jones polynomial, |

o V :=CN
N—1
° R(ex ® e) Z Rk,e, ® e and p(e)) Z,uje,
ij=0
min(N—1—i,j)
i YN —1— k}!
(-] RU = 5/,’ mék i—m { .
K mzo SIS A m PN — 1 — j}!

><q( ~(N-1)/2) (j—(N-1)/2) - ~m(i~j)/2=m(m+1)/4

min(N—1—ij)
~1yi . {k}{N -1 -1}
° (R = n;) OOk em T T TN — 1 — 7)1

« qf(if(Nfl)/2) (jf(Nfl)/2)fm(ifj)/2+m(m+1)/4,
with {m} := ¢™2 — ¢=™/2 and {m}! := {1}{2}--- {m}.
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Link invariant from a Yang—Baxter operator

Definition of the colored Jones polynomial, |

o V :=CN
N—1
° R(ex ® e) Z Rk,e, ® e and p(e)) Z,uje,
ij=0
min(N—1—i,j)
i YN —1— k}!
(-] RU = 5/,’ mék i—m { .
K mzo SIS A m PN — 1 — j}!

><q( ~(N-1)/2) (j—(N-1)/2) - ~m(i~j)/2=m(m+1)/4

min(N—1—ij)
~1yi . {k}{N -1 -1}
° (R = n;) im0k em T T N — 1 — 7)1

—(i-(v-1)/2) (j—(N-1)/2) —m(i=j)/2tm(m+1)/4

X q
with {m} = qm/2 — q—m/2 and {m}| = {]_}{2} . {m}
o i = 5y sqB-N2,
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Link invariant from a Yang—Baxter operator

Definition of the colored Jones polynomial, Il
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Link invariant from a Yang—Baxter operator

Definition of the colored Jones polynomial, Il

=
(R, 1, q(N2_1)/4, 1) gives an enhanced Yang—Baxter operator.
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Link invariant from a Yang—Baxter operator

Definition of the colored Jones polynomial, Il

=
(R, 1, gqN*~1)/4 1) gives an enhanced Yang—Baxter operator.

Definition
In(L; q) = T(R,y,,q(Nz_l)/“,l)(K) X %: colored Jones polynomial. J
Note: T(R,u,q(szl)/“’l)(O) = Trl(:u) = ql_N + q3_N + -+ qN_l = {{I]\_I}} '
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Example of calculation

An example of calculation
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Example of calculation

An example of calculation

M0 = T ey 1)
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Example of calculation

An example of calculation W
1
IN(L; @) = Tig, qua-nya (L) X {N}
To calculate Jy(L; g) we leave the left-most strand without closing.
This gives a linear map
L ||| = [op ] ©: CN — CN, which is a scalar
multiple by Schur’s lemma.
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Example of calculation

An example of calculation

JN(L; Q) = T(R,#,q(N2—1)/4,1)(L) X

{1
{N}

To calculate Jy(L; g) we leave the left-most strand without closing.

This gives a linear map
LB = [ep ] ©: CN — CN, which is a scalar
multiple by Schur’s lemma.

We fix a basis {ep, e1,...,ey_1} of CV.
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Example of calculation

An example of calculation

JN(L; Q) = T(R,#,q(N2—1)/4,1)(L) X

{1
{N}

To calculate Jy(L; g) we leave the left-most strand without closing.

This gives a linear map
L || = [ep ] ©: CN — CN, which is a scalar
multiple by Schur’s lemma.

We fix a basis {ep, e1,...,en_1} of CN. The linear map is a scalar
multiple and so e; is multiplied by S for any i.
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Example of calculation

An example of calculation W
1
IN(L; @) = Tig, qua-nya (L) X {N}
To calculate Jy(L; g) we leave the left-most strand without closing.
This gives a linear map
L ]| = [ op ] ©: CN — CN, which is a scalar
multiple by Schur’s lemma.

We fix a basis {ep, e1,...,en_1} of CN. The linear map is a scalar
multiple and so ¢; is multiplied by S for any /. Since

T qit-se (L) = g @M/ T (o)
N-1

— g wAV-1)/4 Z S q(2i=N+1)/2
i=0

_ -1l ¢

= q ,

{1}
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Example of calculation

An example of calculation W
1
IN(L; @) = Tig, qua-nya (L) X {N}
To calculate Jy(L; g) we leave the left-most strand without closing.
This gives a linear map
L ]| = [ op ] ©: CN — CN, which is a scalar
multiple by Schur’s lemma.

We fix a basis {ep, e1,...,en_1} of CN. The linear map is a scalar
multiple and so ¢; is multiplied by S for any /. Since

T qit-se (L) = g @M/ T (o)
N-1

— g wAV-1)/4 Z S q(2i=N+1)/2

i=0
_ w11V g
- q 9
{1}

we have Jy(L; q) = g~ w(B(N*-1)/4g,
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How to label arcs (due to T. Le)
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Example of calculation

How to label arcs (due to T. Le)

i i
V\/:i+j:k+l,lzi,k§j,\/V:i+j:k+l,lgi,k2j.
hS v
kool kol
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Example of calculation

How to label arcs (due to T. Le)

i Lo

V\/:i-l-j:k-l—l,lzi,kgj, \/V:i-l-j:k-l—l,lgi,kzj.
hS v

kol ko1

4
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Example of calculation

How to label arcs (due to T. Le)

1

k1
N-1

f
4

L

J
V\/:i-l-j:k-l—l,lzi,kgj, \/V:i-l-j:k-l—l,lgi,kzj.
hS v

k1

Label the incoming arc with N — 1.
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Example of calculation

How to label arcs (due to T. Le)

1

k1
N-1

]
J

L

J
V\/:i-l-j:k-l—l,lzi,kgj, \/V:i-l-j:k—l—l,lgi,kzj.
hS v

k1

The last one should be N — 1 by Schur's
lemma. The next one should also be N —1,
since itis > N — 1.
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Example of calculation

How to label arcs (due to T. Le)

i i
V\/:i-l-j:k-l—l,lzi,kgj,\/V:i-l-j:k-l—l,lgi,ij.
hS v
ko1 kol
N-1
i

N{
)
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Example of calculation

How to label arcs (due to T. Le)

i i
V\/:i+j:k+l,lzi,k§j,\/V:i+j:k+l,lgi,k2j.
hS v
ko1 kol

N-1

i

This is also i, since the sum of the labels
of the incoming arcs equals the sum of the

N-1
QJ labels of the outgoing arcs.
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Example of calculation

How to label arcs (due to T. Le)

1

k1
N-1

i

Y

Hitoshi Murakami (Tohoku University

L

k1

Choose j.

5) Volume Conjecture, Il

J
V\/:i-l-j:k-l—l,lzi,kgj, \/V:i-l-j:k-l—l,lgi,kzj.
hS v
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Example of calculation

How to label arcs (due to T. Le)

1

k1
N-1

i

q

Hitoshi Murakami (Tohoku University

k1

Choose k.

5) Volume Conjecture, Il

IISER, Pune, 20th December, 2018

J ! J
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Example of calculation

How to label arcs (due to T. Le)

i i
V\/:i-l-j:k-l—l,lzi,kgj,\/V:i-l-j:k—l—l,lgi,ij.
hS v
ko1 kol

N-1

The sum of the labels of the incoming arcs
equals the sum of the labels of the outgoing
arcs.
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Example of calculation

How to label arcs (due to T. Le)

i i
;y/ﬁ+j:k+LI2LkSL\y<ﬁ+j:k+hlghk2j
hS v
ko1 kol
N-1

It should be i 4+ j — k by the same reason.
itj—k>iand N—1<N—-1+j—k
= j=k.
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Example of calculation

How to label arcs (due to T. Le)

i i
V\/:i-l-j:k-l—l,lzi,kgj,\/V:i-l-j:k-l—l,lgi,ij.
hS v
ko1 kol

N-1
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Example of calculation

How to label arcs (due to T. Le)
i i

V\/:i+j:k+l,lzi,k§j, \/V:i+j:k+l,lgi,k2j.
hS v
ko1 kol

N-1

JN(@ :q)

N 11 N 1, pi,N—1 ij
ZR,N1 Nl,JRN 1,(R ):JNJN/

B Wy (N LN 1}
Z b ({J}') I T —;

« q(fH —2ij—2j24+3N+6Ni+2Nj—3N?) /4
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A better way of labeling
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A better way of labeling

It is sometimes useful to regard a knot as the clo- \
sure of a (1, 1)-tangle:

[
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A better way of labeling

It is sometimes useful to regard a knot as the clo- \
sure of a (1, 1)-tangle: [

In this case we also need the following rules.
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A better way of labeling

It is sometimes useful to regard a knot as the clo- \
sure of a (1, 1)-tangle: [

(\) Put u at each local minimum where the arc goes from left to right,

In this case we also need the following rules.
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A better way of labeling
It is sometimes useful to regard a knot as the clo- H\

sure of a (1, 1)-tangle: [

(\) Put u at each local minimum where the arc goes from left to right,
(~) Put p~! at each local maximum where the arc goes from left to right.

In this case we also need the following rules.
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A better way of labeling

It is sometimes useful to regard a knot as the clo- H\
sure of a (1, 1)-tangle: [

(\) Put u at each local minimum where the arc goes from left to right,
(~) Put p~! at each local maximum where the arc goes from left to right.

In this case we also need the following rules.

If we put O at the top and the bottom, the other
labelings become
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A better way of labeling

It is sometimes useful to regard a knot as the clo- H\
sure of a (1, 1)-tangle: [

(\) Put u at each local minimum where the arc goes from left to right,
(~) Put p~! at each local maximum where the arc goes from left to right.

In this case we also need the following rules.

If we put O at the top and the bottom, the other ;
labelings become
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The colored Jones polynomial of &

Hitoshi Murakami (Tohoku University Volume Conjecture, |l IISER, Pune, 20th December, 2018 16 / 30



The colored Jones polynomial of &

JN(@ ;q)
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The colored Jones polynomial of &

W& :q)
= YRR R RS (i

0<i<N—1,0<j<N—1
0<i+j<N—1
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Example of calculation

The colored Jones polynomial of &

W)
— Z Rl ,0 (R 1)I+J o RO i+j (R—l)_é), ( —1)[ /’JJ
0<i<N—1,0<j<N—1
0<i+j<N—1
_ Z (— 1)i {i+ N —1}! (Nf1)i/2+(Nf1)j/27i2/4+j2/4—3i/4+3j/4
ocien o ien (MUpIN—1—i -7
0<i+j<N-1

IISER, Pune, 20th December, 2018 16 / 30
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Example of calculation

The colored Jones polynomial of &

W& :q)
= Z RIO(R )I+J0

0<i<N—1,0<j<N—1
0<i+j<N—1

RO (R ()i

_ Z (— 1),'{ }I?}JIF{J/%/I{Nli 1} }' (Nf1)i/2+(N71)j/27i2/4+j2/473i/4+3j/4
J —1—i—j

0<i<N—1,0<j<N—1
0<i+j<N 1

AU

{N - 1}' 2/4 4 i —Ni—ik/2—i
_I+J Z{ k}l k [z (Z( 1) {it{k —i}! ik —im? H /2> '

Volume Conjecture, |l IISER, Pune, 20th December, 2018 16 / 30
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The colored Jones polynomial of &

JN(@ )|
= > Ry (RTH, o REH (RTYS ()i i)

0<i<N—1,0<j<N—1
0<i+j<N—1

_ Z (— 1)i {i+j{N -1} (Nf1)i/2+(N71)j/27i2/4+j2/473i/4+3j/4
0<i<N—-1,0<;j<N-1 { }I{J}I{N_l_l_']}'
_0‘<i+j’</v‘1

{N — 1} 2/4 4 i {k} —Ni—ik/2—i
_I+J Z{ k}l k [z (Z( 1) {it{k —i}! ik —im? H /2> '

Using the formula fozo(—l)’q’i/z{ },{{i}' = ngl(l — qUtkt1)/2-g),
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Example of calculation

The colored Jones polynomial of &

WM& a)
D R (R R (RT55 (nh)in]

0<i<N—1,0<j<N—1

0<i+j<N—1
= > (Y U JIMN = I (n-1)if24(N-1)j/2-P /4 43 /4+3]/4
0<i<N—1,0<j<N—1 {i }I{J}I{N_l_I_J}'
0<i+j<N 1
{N —1}! k2/4+Nk/2+k/4 i {k}! —Ni—ik/2—i/2
1 .

—wz{ i Z( ) ik
Using the formula fozo(—l)’q’i/z{ },{{i}' = ngl(l — qUtkt1)/2-g),

we have the following formula (K. Habiro and T. L&).

{N + k}!
W& :q) = {N} Z W1k
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Quantum factorial at the N-th root of unity
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Quantum factorial at the N-th root of unity

q = (n = exp(2mV/=1/N)
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Quantum factorial at the N-th root of unity

q = (n = exp(2mV/=1/N)
=
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Quantum factorial at the N-th root of unity
q = (n = exp(2mV/=1/N)
{KY{N — k — 1}!

=
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Quantum factorial at the N-th root of unity
q = (n = exp(2mV/=1/N)
{KY{N — k — 1}!
= =+ (a power of () x (1 —(n)(1 — C,QV) e (1— C,’\‘,)
x(1=Cn)A =G (1=¢y

=
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‘Proof’ of the VC

Quantum factorial at the N-th root of unity

q = (n = exp(2my/—1/N)
{KY{N — k — 1}
= =+ (a power of () x (1= ¢w)(L —CF) -+~ (1 — CX)
X (L=Cw)(=CGR) - (L =¢y5)
+(a power of ¢n) X (1= ¢w)(1—CR) -+ (1= CR)
(L= -y ) (=™

=
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Quantum factorial at the N-th root of unity

q = (n = exp(2my/—1/N)

=

{KY{N — k — 1}!
= & (a power of (y) x (1 —¢n)(1 = CRy) -+ (1 —CR)

X (L= )= GR)-- (1= ¢y )
=+ (a IOOWGr of ¢n) x (1= Cw)(1 = GR) -~ (1= CR)
x(L=¢u =y )=y
= + (a power of ¢y) x 2N~Lsin(z/N)sin(2r/N) - - -sin((N — 1)7/N)

Hitoshi Murakami (Tohoku University £3) Volume Conjecture, Il IISER, Pune, 20th December, 2018 17 / 30



Quantum factorial at the N-th root of unity

q = (n = exp(2my/—1/N)
7 KN — k— 1)

= =+ (a power of (n) x (1= Cn)(L—CR) -+ (1= CR)
X (L= =CR) @ =¢y
(a Power of () x (1= ¢u)(1 = CR) -+ (1= Cx)
(1=¢y HA=¢V ) (=™
(
(

a power of () x 2N=tsin(w/N)sin(27/N) - --sin((N — 1)7/N)

+
X
+
+

a power of () x N
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Quantum factorial at the N-th root of unity
q = (n = exp(2my/—1/N)
7 KN — k— 1)

= =+ (a power of () x (1 —(n)(1 — C,z\,) e (1— C,’f,)

X (1= ¢u)(1=¢R)--(1—¢y )
= = (a power of {n) x (1 —(n)(1—CR) -+ (1= ¢x)
X (=G =¢y) (1= G
— + (a power of ¢y) x 2V L sin(n/N)sin(27/N) - - -sin((N — 1)7/N)
=+ (a power of () x N

o (Cnir = (L1 =Cn) - (L= CR), (v = (1= Cw) -~ (L= Gy 7).
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Quantum factorial at the N-th root of unity
q = (n = exp(2my/—1/N)
7 KN — k— 1)

= =+ (a power of () x (1 —(n)(1 — C,z\,) e (1— C,’f,)

X (1= ¢u)(1=¢R)--(1—¢y )
= = (a power of {n) x (1 —(n)(1—CR) -+ (1= ¢x)
X (=G =¢y) (1= G
— + (a power of ¢y) x 2V L sin(n/N)sin(27/N) - - -sin((N — 1)7/N)
=+ (a power of () x N

o (Cnir = (L1 =Cn) - (L= CR), (v = (1= Cw) -~ (L= Gy 7).
o (Cn)i+(Cn) k- = £(a power of {y) x N.
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Quantum factorial at the N-th root of unity
q = (n = exp(2my/—1/N)
7 KN — k— 1)

= =+ (a power of () x (1 —(n)(1 — C,z\,) e (1— C,’f,)

X (1= ¢u)(1=¢R)--(1—¢y )
= = (a power of {n) x (1 —(n)(1—CR) -+ (1= ¢x)
X (=G =¢y) (1= G
— + (a power of ¢y) x 2V L sin(n/N)sin(27/N) - - -sin((N — 1)7/N)
=+ (a power of () x N

o (Cnir = (L1 =Cn) - (L= CR), (v = (1= Cw) -~ (L= Gy 7).
o (Cn)i+(Cn) k- = £(a power of {y) x N.

e {k}!= +(a power of {n) x (Cn)k+
{N —1— k}! = +£(a power of {n) x (Cn)x—
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‘Proof’ of the VC

R-matrix as a product of quantum factorial
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‘Proof’ of the VC

R-matrix as a product of quantum factorial

(PN —1— k}!
{ip{m{N —1—j}!

Rlijl — Z +(a power of (y) X O1,i+mOk j—m
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‘Proof’ of the VC

R-matrix as a product of quantum factorial

{I3{N —1— Kk}
{iP{my{N -1 j}!
N g +(a power of () x N?
= ;5I,I+m5ku—m (CN) m+ (Cn) i+ (S ) i+ (CN)j— (Cn)i-

Rlijl — Z +(a power of (y) X O1,i+mOk j—m
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‘Proof’ of the VC

R-matrix as a product of quantum factorial

(VN — 1 — k)
{(Y{m{N—1—j}!
B ' . +(a power of (y) x N?
= 2 ismtiom (e G )y (C)r
i ' . +(a power of (y) x N2
(R = g‘s”’mék#m (SN ) (Cn)i- (Cn) k= (S ) j+ (S )+

Rlijl — Z +(a power of (y) X O1,i+mOk j—m
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‘Proof’ of the VC

R-matrix as a product of quantum factorial

(PN —1— Kk}
{(Y{m{N—1—j}!
B . . +(a power of (y) x N?
— ;5I,l+m5kd—m () ()i ()i (Sn)— ()
i ' . +(a power of (y) x N2
(R = g‘s”’mdk’”’” (SN ) (Cn)i- (Cn) k= (S ) j+ (S )+

=

| - +(a power of (y) x N*2
In(K; Cn) = | b%: (i H (CN)er(CN)ii(CN)ki(CN)J']F(CN)/]F)
abellings crossings
ij k1

Rlijl — Z +(a power of (y) X O1,i+mOk j—m

on arcs
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‘Proof’ of the VC

Approximation of the quantum factorial

k
log(Cn )k = _ log(1 — Ciy)

j=1
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‘Proof’ of the VC

Approximation of the quantum factorial

k
log(Cn )k = _ log(1 — Ciy)

j=1
k

= Z log(1 — exp(2mv/—1j/N))
j=1
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‘Proof’ of the VC

Approximation of the quantum factorial

k
log(Cn )k = _ log(1 — Ciy)

j=1
k
= Z log(1 — exp(2mv/—1j/N))
j=1
(x :=Jj/N)
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‘Proof’ of the VC

Approximation of the quantum factorial

k
log(Cn )k = _ log(1 — Ciy)

j=1
k
= Z log(1 — exp(2mv/—1j/N))
j=1
(x :==Jj/N)
k/N
N /0 log(1 — exp(2mv/—1x)) dx

Here =~ means a very rough approximation.
N—oo
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‘Proof’ of the VC

Approximation of the quantum factorial

k
log(Cn )k = _ log(1 — Ciy)

j=1
k
= Z log(1 — exp(2mv/—1j/N))
j=1
(x :==Jj/N)
k/N
N /0 log(1 — exp(2mv/—1x)) dx

(v := exp(2mv/—1x))

Here =~ means a very rough approximation.
N—oo
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‘Proof’ of the VC

Approximation of the quantum factorial

k
log(Cn )k = _ log(1 — Ciy)

j=1
k
= Z log(1 — exp(2mv/—1j/N))
j=1
(x :==Jj/N)
k/N
N /0 log(1 — exp(2mv/—1x)) dx

(v = exp(sz )
exp(2mv/—1k/N) |0g(1— )

27T\ﬁ / y a.

Here =~ means a very rough approximation.
N—oo
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‘Proof’ of the VC

Approximation of the quantum factorial by dilogarithm
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Approximation of the quantum factorial by dilogarithm

o Dilogarithm Lia(z) := — [ B0 gy — 3200 27,
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Approximation of the quantum factorial by dilogarithm

o Dilogarithm Lia(z) := — [ B0 gy — 3200 27,

(Recall: Liy(z) == —log(1—2)=> Z—nn.)
n=1
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‘Proof’ of the VC

Approximation of the quantum factorial by dilogarithm

. . . L z log(1— _ o Z"
o Dilogarithm Lix(2) := — [, w dy =321 %.
Zn
o Li = —log(l—2z) = —.
(Recall: Li1(z) og(1 — 2) 2::1 -)

Vol(tetrahedron parametrized by z) = Im Lia(z)— log|z| arg(1 — z).
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‘Proof’ of the VC

Approximation of the quantum factorial by dilogarithm

z log(1 z"
o Dilogarithm Lix(2) := — [, g(y 2 dy =321 %
Zn
Recall: Liz(z) == —log(1 —2)=>_ =
(Recal: Lin(2) = —log(1 —2) = Y- =)

Vol(tetrahedron parametrized by z) = Im Lia(z)— log|z| arg(1 — z).
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‘Proof’ of the VC

Approximation of the quantum factorial by dilogarithm

z log(1 z"
o Dilogarithm Lix(2) := — [, g(y 2 dy => 021 %
zn
Recall: Li = —log(l—2z) = —.
(Recall: Li(2) 1=~ log(1 ) = 3= %)

Vol(tetrahedron parametrized by z) = Im Lia(z)— log|z| arg(1 — z).

o log(Cw)ir & 5= [Lia(1) — Lia(CR)].
N

o (Wi & e [—5 = Lialch)].
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‘Proof’ of the VC

Approximation of the quantum factorial by dilogarithm
o Dilogarithm Lip(z) := — [ 2602 gy = 370 | 2.

(Recall: Liy(z) == —log(1—2)=>_ =)
n=1
Vol(tetrahedron parametrized by z) = Im Lia(z)— log|z| arg(1 — z).

o [t )]
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‘Proof’ of the VC

Approximation of the colored Jones polynomial by Li,
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‘Proof’ of the VC

Approximation of the colored Jones polynomial by Li,

In(K; Cn) Mo

Z (polynomial of N)
labellings

Pl o1

3 {Liz(Cﬁ) + Lin(GE) + Lin(¢) + Lin(CEF) + Lin(¢F') + log terms} ,

crossings
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In(K; Cn) Mo

Z (polynomial of N)
labellings

Pl o1

3 {Liz(Cﬁ) + Lin(GE) + Lin(¢) + Lin(CEF) + Lin(¢F') + log terms} ,

crossings

where a log term comes from a power of (.
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‘Proof’ of the VC

Approximation of the colored Jones polynomial by Li,

In(K; Cn) Mo

Z (polynomial of N)
labellings

Pl o1

3 {Lig(Cﬁ) + Lin(GE) + Lin(¢) + Lin(CEF) + Lin(¢F') + log terms} ,

crossings

where a log term comes from a power of (. For example

¢k = exp ( N (2“7\,?1/()2) = exp [ N (logC/’f/)2] :

21/ —1

21/ —1
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‘Proof’ of the VC

Approximation of the colored Jones polynomial by integral
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‘Proof’ of the VC

Approximation of the colored Jones polynomial by integral

@ i1,...,Ic: labellings on arcs.
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‘Proof’ of the VC

Approximation of the colored Jones polynomial by integral

@ i1,...,Ic: labellings on arcs.
o V(Ch,... o) = |
3 {Lig(cm + Lin(CE) + Lin(CF) + Lin(CEX) + Lin(CE') + log terms}.

crossings

Hitoshi Murakami (Tohoku University £3) Volume Conjecture, Il IISER, Pune, 20th December, 2018 22 /30



‘Proof’ of the VC

Approximation of the colored Jones polynomial by integral

@ i1,...,Ic: labellings on arcs.
o V(Cyy---:CH) =
> {Lialh) + Lia(Gr) + Lia(GF) + Lia(G) + Lia(GF') + log terms |

crossings

. N ; i
In(K; Cn) ol Z (polynomial of N)exp mV( A ,\CI)]

i1;.00slc

(ignore polynomials since exp grows much bigger)

Hitoshi Murakami (Tohoku University £3) Volume Conjecture, Il IISER, Pune, 20th December, 2018 22 /30



‘Proof’ of the VC

Approximation of the colored Jones polynomial by integral

@ i1,...,Ic: labellings on arcs.
o V(Cyy---:CH) =
> {Lialh) + Lia(Gr) + Lia(GF) + Lia(G) + Lia(GF') + log terms |

crossings

In(K; Cn) ol Z (polynomial of N)exp [

i1;.00slc

N . .
—V(Ch, (
27T\/jl (N7 ’ N):|

(ignore polynomials since exp grows much bigger)

N : .
~ V(CR ... (k
A e [zﬂ V(G N)}

ilvmyic
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‘Proof’ of the VC

Approximation of the colored Jones polynomial by integral

@ i1,...,Ic: labellings on arcs.
o V(Cyy---:CH) =
> {Lialh) + Lia(Gr) + Lia(GF) + Lia(G) + Lia(GF') + log terms |

crossings

In(K; Cn) ol Z (polynomial of N)exp [

i1yeensic

N . .
—V(Ch, (
27T\/jl (N7 ’ N):|

(ignore polynomials since exp grows much bigger)

N : .
~ V(CR ... (k
A e [% V(G N)}

1ye-05lc

N%oo /Jl /C &P |:

V(zl,...,zc) dzy "'dzc:| )
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‘Proof’ of the VC

Approximation of the colored Jones polynomial by integral

@ i1,...,Ic: labellings on arcs.
o V(Cyy---:CH) =
> {Liz(C/'vn) + Lia(Cy") + Lia(C7) + Lia(Cy™) + Lia(¢F') + log terms}-

crossings

In(K; Cn) ol Z (polynomial of N)exp [

i1;.00slc

N . .
—V(Ch, (
27T\/jl (N7 ’ N):|

(ignore polynomials since exp grows much bigger)

N : .
~~ V(CR ... (k
A e [277 V(G ,Nﬂ

1yeenslc
R~ / / exp [NV(zl e Z )dzl---dz]
N—oo n 3 27T\/jl ) y<C cf»
where Ji, ..., Jc are some contours.
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Saddle Point Method
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‘Proof’ of the VC

Saddle Point Method
Theorem (Saddle Point Method)

Assume that
@ dh(z)/dz =0 and d? h(zy)/dz? # 0.
@ Im h(z) is constant for z in some neighborhood of z.

© Re h(z) takes its strict maximum along T at z.
Then

V27 exp(Nh(z0))
/rexp(Nh(z))dz Mol N NET e
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‘Proof’ of the VC

Saddle Point Method
Theorem (Saddle Point Method)
Assume that
@ dh(z)/dz =0 and d? h(zy)/dz> # 0.
@ Im h(z) is constant for z in some neighborhood of z.

© Re h(z) takes its strict maximum along T at z.

Then
V2 Nh
/exp(Nh(z))dz ~ ™ exp (Nh(z0)) .
r N—o0 \/N —d? h(ZQ)/dZ2
R e

oNH(2) gy A / M)+ (- 2) [ o GNh(z) V2T
i oy n o0 /—NH"(z0)
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‘Proof’ of the VC

Saddle Point Method
Theorem (Saddle Point Method)
Assume that
@ dh(z)/dz =0 and d? h(zy)/dz> # 0.
@ Im h(z) is constant for z in some neighborhood of z.

© Re h(z) takes its strict maximum along T at z.

Then
V2 Nh
/exp(Nh(z))dz ~ ™ exp (Nh(z0)) .
r N—o0 \/N —d? h(ZQ)/dZ2
R e

/ oNH(2) gy A / M)+ (- 2) [ o GNh(z) V2T
i oy n o0 /—NH"(z0)

To apply the saddle point method we usually change the contour so that it
passes though the saddle point zy where h'(z) = 0.
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Application of the saddle point method
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Application of the saddle point method

Suppose

at (xi,...,Xc).
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Application of the saddle point method

Suppose
oV
a—Zk(xl,...,xc)zo (k=1,...,¢)

at (x1,...,%c). Then by the saddle point method
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Application of the saddle point method

Suppose
oV

8zk
at (x1,...,%c). Then by the saddle point method

—((x1,...,x)=0 (k=1,...,¢)

In(K; Cn) N§oo exp V(xt,...,xc)|

2\/_
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Application of the saddle point method

Suppose
ov

Dz

at (x1,...,%c). Then by the saddle point method

(X1,...,%)=0 (k=1,...,¢)

JN(K;CN) N§ V(le"'aXC) )

N
e S —
00 P 2/ —1

I K;
27y —1 lim OgJNI(V'CN): V(xq,...,xc)

N—oo
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Difficulties
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Difficulties

Difficulties so far:
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Difficulties

Difficulties so far:

@ Replacing the summation into an integral

3 e |5 ViG]

.05l

N
~ — = V(z,...,z.)dz - d
o~ /J /Jp [% V(a2 dey e
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Difficulties

Difficulties so far:

@ Replacing the summation into an integral

O P e ]

i1,...,ic
~ / / ex {N V(z zc) dz dz, }
NN ! ) P 5 \/7] 1,---5%c 1 c| -

@ How to apply the saddle point method. In particular, which saddle
point to choose. In general, we have many solutions to the system of
equations.

N
— V(z,...,z.)dz - d
o oo i mon ]

~

N
~ —V .
Nooo exp |:27T\/jl (Xl’ 7XC):|
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Decomposition into octahedra (by D. Thurston)
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Decomposition into octahedra (by D. Thurston)

Decompose the knot complement into (topological, truncated) tetrahedra.
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‘Proof’ of the VC

Decomposition into octahedra (by D. Thurston)

Decompose the knot complement into (topological, truncated) tetrahedra.

@ Around each crossing, put an octahedron:
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‘Proof’ of the VC

Decomposition into octahedra (by D. Thurston)

Decompose the knot complement into (topological, truncated) tetrahedra.

@ Around each crossing, put an octahedron:
i
K

k1

k

@ Decompose the octahedron into five tetrahedra:

B T

NV
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‘Proof’ of the VC

Decomposition into topological tetrahedra
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‘Proof’ of the VC

Decomposition into topological tetrahedra

@ Pull the vertices to the point at infinity:

; ; /j
NG
/

k o /
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‘Proof’ of the VC

Decomposition into topological tetrahedra

@ Pull the vertices to the point at infinity:

i : /j
/

k o /

e S3\ K is now decomposed into topological, truncated tetrahedra,
decorated with complex numbers (.
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‘Proof’ of the VC

Decomposition into hyperbolic tetrahedra
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‘Proof’ of the VC

Decomposition into hyperbolic tetrahedra

@ Each topological, truncated tetrahedron is decorated with a complex
number (.
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‘Proof’ of the VC

Decomposition into hyperbolic tetrahedra

@ Each topological, truncated tetrahedron is decorated with a complex
number (.

@ We want to regard it as a hyperbolic, ideal tetrahedron.
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Decomposition into hyperbolic tetrahedra
@ Each topological, truncated tetrahedron is decorated with a complex

number (k.
@ We want to regard it as a hyperbolic, ideal tetrahedron.

@ Recall that we have replaced a summation over iy into an integral
over zj.
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‘Proof’ of the VC

Decomposition into hyperbolic tetrahedra

@ Each topological, truncated tetrahedron is decorated with a complex
number (.

@ We want to regard it as a hyperbolic, ideal tetrahedron.

@ Recall that we have replaced a summation over iy into an integral
over zj.

@ Replace (5 with a complex variable z.
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‘Proof’ of the VC

Decomposition into hyperbolic tetrahedra

@ Each topological, truncated tetrahedron is decorated with a complex
number (.

@ We want to regard it as a hyperbolic, ideal tetrahedron.

@ Recall that we have replaced a summation over iy into an integral
over zj.

@ Replace (5 with a complex variable z.

@ Regard the tetrahedron decorated with zx as an hyperbolic, ideal
tetrahedron parametrized by z.
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‘Proof’ of the VC

Hyperbolic structure on the knot complement
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‘Proof’ of the VC

Hyperbolic structure on the knot complement

@ Now the knot complement is decomposed into ideal, hyperbolic
tetrahedra parametrized by z1, ..., z..
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Hyperbolic structure on the knot complement

@ Now the knot complement is decomposed into ideal, hyperbolic
tetrahedra parametrized by z1, ..., z..
@ Choose zi, ..., z: so that we can glue these tetrahedra well, that is,
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Hyperbolic structure on the knot complement

@ Now the knot complement is decomposed into ideal, hyperbolic
tetrahedra parametrized by z1, ..., z..
@ Choose zi, ..., z: so that we can glue these tetrahedra well, that is,
» around each edge, the sum of angles is 2,
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Hyperbolic structure on the knot complement

@ Now the knot complement is decomposed into ideal, hyperbolic
tetrahedra parametrized by z1, ..., z..

@ Choose zi, ..., z: so that we can glue these tetrahedra well, that is,
» around each edge, the sum of angles is 2,
> the triangles that appear in the boundary torus make the torus
Euclidean.
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Hyperbolic structure on the knot complement

@ Now the knot complement is decomposed into ideal, hyperbolic
tetrahedra parametrized by z1, ..., z..
@ Choose zi, ..., z: so that we can glue these tetrahedra well, that is,
» around each edge, the sum of angles is 2,
> the triangles that appear in the boundary torus make the torus
Euclidean.
@ These conditions are the same as the system of equations that we
used in the saddle point method!

v,
9z X1, - -

x)=0 (k=1,...,¢)
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Hyperbolic structure on the knot complement

@ Now the knot complement is decomposed into ideal, hyperbolic
tetrahedra parametrized by z1, ..., z..
@ Choose zi, ..., z: so that we can glue these tetrahedra well, that is,
» around each edge, the sum of angles is 2,
> the triangles that appear in the boundary torus make the torus
Euclidean.
@ These conditions are the same as the system of equations that we
used in the saddle point method!

oV
TZI((X:[,...,XC):O (k:1,...,C)
® = (x1,...,xc) gives the complete hyperbolic structure.
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Hyperbolic structure on the knot complement

@ Now the knot complement is decomposed into ideal, hyperbolic
tetrahedra parametrized by z1, ..., z..
@ Choose zi, ..., z: so that we can glue these tetrahedra well, that is,
» around each edge, the sum of angles is 2,
> the triangles that appear in the boundary torus make the torus
Euclidean.
@ These conditions are the same as the system of equations that we
used in the saddle point method!

oV
TZI((X:[,...,XC):O (k:1,...,C)
® = (x1,...,xc) gives the complete hyperbolic structure.
log Jy(K
@ Then, what does V(xi,...,x)(=27V—1 lim w)
N—o0 N

mean?
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‘Proof’ of the VC

Geometric meaning of the limit
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‘Proof’ of the VC

Geometric meaning of the limit

Recall: V(x1,...,xc) is the sum of Lix(xx) (and log), where xi defines an
ideal hyperbolic tetrahedron.
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‘Proof’ of the VC

Geometric meaning of the limit

Recall: V(x1,...,xc) is the sum of Lix(xx) (and log), where xi defines an
ideal hyperbolic tetrahedron. We use the following formula:

Vol(tetrahedron parametrized by z) = Im Lix(z)— log |z| arg(1 — z).
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Geometric meaning of the limit

Recall: V(x1,...,xc) is the sum of Lix(xx) (and log), where xi defines an
ideal hyperbolic tetrahedron. We use the following formula:

Vol(tetrahedron parametrized by z) = Im Lix(z)— log |z| arg(1 — z).

Therefore we finally have
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‘Proof’ of the VC

Geometric meaning of the limit

Recall: V(x1,...,xc) is the sum of Lix(xx) (and log), where xi defines an

ideal hyperbolic tetrahedron. We use the following formula:
Vol(tetrahedron parametrized by z) = Im Lix(z)— log |z| arg(1 — z).

Therefore we finally have

Im (%ﬁ lim 'OgJ’V(A;(C’V)) = Vol(S3\ K).

N—o0
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‘Proof’ of the VC

Geometric meaning of the limit

Recall: V(x1,...,xc) is the sum of Lix(xx) (and log), where xi defines an

ideal hyperbolic tetrahedron. We use the following formula:
Vol(tetrahedron parametrized by z) = Im Lix(z)— log |z| arg(1 — z).

Therefore we finally have

Im (%ﬁNle 'OgJ"’(A;(C’V)) = Vol(S3\ K).

21 lim = Vol(53\ K),

N—o0

log [Jn (K, Cn)l
N

which is the Volume Conjecture.
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