An Introduction to the Volume Conjecture and its generalizations, I

Hitoshi Murakami

Tohoku University ©

Workshop on Volume Conjecture and Related Topics in Knot Theory Indian Institute of Science Education and Research, Pune 19th December, 2018
(1) colored Jones polynomial
(2) Examples of the colored Jones polynomials
(3) Volume conjecture
(4) Volume conjecture for the figure-eight knot
(5) VC is proved for ...

Kauffman bracket

Kauffman bracket

Kauffman bracket $\langle D\rangle$ for a knot diagram D is defined as

Kauffman bracket

Kauffman bracket $\langle D\rangle$ for a knot diagram D is defined as

- $\langle\nu\rangle=A\langle \rangle\langle \rangle+A^{-1}\langle\backsim\rangle$,
- $\langle\circlearrowleft \sqcup D\rangle=\left(-A^{2}-A^{-2}\right)\langle D\rangle$,
- $\langle\bigcirc\rangle=1$.

Here \sqcup denotes the disjoint union.

Kauffman bracket

Kauffman bracket $\langle D\rangle$ for a knot diagram D is defined as

- $\langle\nu\rangle=A\langle \rangle\langle \rangle+A^{-1}\langle\backsim\rangle$,
- $\langle\circlearrowleft \sqcup D\rangle=\left(-A^{2}-A^{-2}\right)\langle D\rangle$,
- $\langle\bigcirc\rangle=1$.

Here \sqcup denotes the disjoint union.

Kauffman bracket of the trefoil

Kauffman bracket of the trefoil

Kauffman bracket of the trefoil

Kauffman bracket of the trefoil

Kauffman bracket of the trefoil

Kauffman bracket of the trefoil

Jones polynomial

Jones polynomial

Definition (writhe)
\vec{D} : oriented knot diagram.

- $w(\vec{D}):=\sharp^{K} /<-\#^{K} / \nearrow$

Jones polynomial

Definition (writhe)
\vec{D} : oriented knot diagram.

- $w(\vec{D}):=\sharp^{K} / \overline{-\psi^{K}} \lambda$

Definition

Jones polynomial

Definition (writhe)

\vec{D} : oriented knot diagram.

- $w(\vec{D}):=\#^{K} / \nearrow-\#^{K} \nearrow \nearrow$

Definition

- K: oriented knot presented by \vec{D}.
- $D: \vec{D}$ without orientation.

$$
V(K ; q):=\left.\left(-A^{3}\right)^{-w(\vec{D})}\langle D\rangle\right|_{q:=A^{-4}} .
$$

$V(K ; q)$ is a knot invariant, called the Jones polynomial.

Example of the Jones polynomials

Example of the Jones polynomials

Example of the Jones polynomials

Example of the Jones polynomials

$$
\Rightarrow J\left(\sim^{\prime} ; q\right)=-\left.A^{9}\left(A^{7}-A^{3}-A^{-5}\right)\right|_{q:=A^{-4}}=-q^{-4}+q^{-3}+q^{-1} .
$$

Jones-Wenzl idempotent

Jones-Wenzl idempotent

$\bigcirc \frac{2}{\square}:=\left\lvert\,-\frac{1}{\left(-A^{2}-A^{2}\right)}\right.$

Jones-Wenzl idempotent

(2) $:=$

Jones-Wenzl idempotent

- $I_{2}:=| |-\frac{1}{\left(-A^{2}-A^{2}\right)} \bigcup_{\square}^{\square} \Rightarrow \frac{1_{2}}{\square}=\frac{12}{\square}$

Definition (Jones-Wenzl idempotent)

$\stackrel{\mid k}{k}:={ }^{k-1 \mid}\left|1-\left(\frac{\Delta_{k-2}}{\Delta_{k-1}}\right)_{\substack{k-1 \mid \\ k-2}}^{\substack{k-1}}\right| 1$
with $\Delta_{k}:=(-1)^{k} \frac{A^{2(k+1)}-A^{-2(k+1)}}{A^{2}-A^{-2}}=\langle\Uparrow\rangle$.

Jones-Wenzl idempotent

- $\hbar_{2}:=| |-\frac{1}{\left(-A^{2}-A^{2}\right)} \bigcup_{\square}^{\square} \Rightarrow \frac{1_{2}}{\square}=\frac{\downarrow_{2}}{\square}$

Definition (Jones-Wenzl idempotent)

$$
\left.\left|k:=\left|\left.\right|_{\mid} ^{k-1 \mid}\right|\right|_{1}^{\Delta_{k-2}} \Delta_{k-1}\right)_{\substack{k-2 \mid-1}}^{\substack{k-1 \mid}} \mid
$$

Jones-Wenzl idempotent

- $\hbar_{2}:=\left\lvert\,-\frac{1}{\left(-A^{2}-A^{2}\right)} \bigcap \Rightarrow \frac{1_{2}}{\square}=\frac{12}{\square}\right.$

Definition (Jones-Wenzl idempotent)

$$
\left.\left|k:=\left|\left.\right|_{\mid} ^{k-1 \mid}\right|\right|_{1}^{\Delta_{k-2}} \Delta_{k-1}\right)_{\substack{k-2 \mid-1}}^{\substack{k-1 \mid}} \mid
$$

with $\Delta_{k}:=(-1)^{k} \frac{A^{2(k+1)}-A^{-2(k+1)}}{A^{2}-A^{-2}}=\langle\Uparrow\rangle$.

colored Jones polynomial

colored Jones polynomial

: knot diagram.

colored Jones polynomial

colored Jones polynomial

\square
$\Rightarrow{ }^{k}$ D : diagram obtained from D by replacing the string with the

Jones-Wenzl idempotent
Definition (N-colored Jones polynomial)
$J_{N}(K ; q):=\left((-1)^{N-1} A^{N^{2}-1}\right)^{-w(\vec{D})}\langle{ }^{N-1} \underbrace{}_{q:=A^{4}}$.

colored Jones polynomial

\square
$\Rightarrow{ }^{k}\left[\begin{array}{c}\text { D }\end{array}\right.$: diagram obtained from D by replacing the string with the

Jones-Wenzl idempotent
Definition (N-colored Jones polynomial)
$J_{N}(K ; q):=\left((-1)^{N-1} A^{N^{2}-1}\right)^{-w(\vec{D})}\langle{ }^{N-1} \underbrace{}_{q:=A^{4}}$.
$J_{2}(K ; q)=V\left(K ; q^{-1}\right)$.

colored Jones polynomials of ()$^{\circ}$

colored Jones polynomials of \because

$$
\begin{aligned}
J_{2}(民 ; q)= & q^{1}+q^{3}-q^{4}, \\
J_{3}(\Omega ; q)= & q^{2}+q^{5}-q^{7}+q^{8}-q^{9}-q^{10}+q^{11} \\
J_{4}(\because ; q)= & q^{3}+q^{7}-q^{10}+q^{11}-q^{13}-q^{14}+q^{15}-q^{17}+q^{19} \\
& +q^{20}-q^{21} \\
& \vdots \\
J_{N}(\Omega ; q)= & \frac{(-1)^{N-1} q^{3\left(N^{2}-1\right) / 2}}{q^{N / 2}-q^{-N / 2}} \\
& \times \sum_{k=0}^{N-1}(-1)^{k} q^{-3\left(k^{2}+k\right) / 2}\left(q^{(2 k+1) / 2}-q^{-(2 k+1) / 2}\right)
\end{aligned}
$$

(M. Rosso, V. Jones, H. Morton)

colored Jones polynomials of (B)

colored Jones polynomials of (8)

$$
\begin{aligned}
&\left.J_{2}(8)\right)= q^{2}-q+1-q^{-1}+q^{-2} \\
&\left.J_{3}(\AA)\right)= q^{6}-q^{5}-q^{4}+2 q^{3}-q^{2}-q+3-q^{-1}-q^{-2}+2 q^{-3}-q^{-4} \\
&-q^{-5}+q^{-6}, \\
&\left.J_{4}(\S)\right)= q^{12}-q^{11}-q^{10}+2 q^{8}-2 q^{6}+3 q^{4}-3 q^{2}+3-3 q^{-2}+3 q^{-4} \\
&-2 q^{-6}+2 q^{-8}-q^{-10}-q^{-11}+q^{-12} \\
& \vdots \\
&\left.J_{N}(8) ; q\right)= \sum_{j=0}^{N-1} \prod_{k=1}^{j}\left(q^{(N-k) / 2}-q^{-(N-k) / 2}\right)\left(q^{(N+k) / 2}-q^{-(N+k) / 2}\right) .
\end{aligned}
$$

(K. Habiro, T. Lê)

Colored Jones polynomial at N th root of unity,

Colored Jones polynomial at Nth root of unity,

Colored Jones polynomial at N th root of unity,

$J_{N}(\Omega ; q)$
$=\frac{(-1)^{N-1} q^{3\left(N^{2}-1\right) / 2}}{q^{N / 2}-q^{-N / 2}} \sum_{k=0}^{N-1}(-1)^{k} q^{-3\left(k^{2}+k\right) / 2}\left(q^{(2 k+1) / 2}-q^{-(2 k+1) / 2}\right)$

Colored Jones polynomial at Nth root of unity, (B)

Colored Jones polynomial at Nth root of unity, (8)

Colored Jones polynomial at N th root of unity,

Graph of

Colored Jones polynomial at N th root of unity,

Graph of

Graph of $\left.\left.\frac{1}{N} \log \right\rvert\, J_{N}($ (8) $; \exp (2 \pi \sqrt{-1} / N)) \right\rvert\,$.

$\left.J_{N}(8) ; q\right)$
$=\sum_{j=0}^{N-1} \prod_{k=1}^{j}\left(q^{(N-k) / 2}-q^{-(N-k) / 2}\right)\left(q^{(N+k) / 2}-q^{-(N+k) / 2}\right)$.
What is the difference between \hat{O} and

Volume conjecture

Conjecture (Volume Conjecture, R. Kashaev (1997),
J. Murakami+H.M. (2001))

K: knot

$$
2 \pi \lim _{N \rightarrow \infty} \frac{\log \left|J_{N}(K ; \exp (2 \pi \sqrt{-1} / N))\right|}{N}=\operatorname{Vol}\left(S^{3} \backslash K\right) .
$$

Volume conjecture

Conjecture (Volume Conjecture, R. Kashaev (1997),
J. Murakami+H.M. (2001))

K: knot

$$
2 \pi \lim _{N \rightarrow \infty} \frac{\log \left|J_{N}(K ; \exp (2 \pi \sqrt{-1} / N))\right|}{N}=\operatorname{Vol}\left(S^{3} \backslash K\right) .
$$

Definition (Simplicial volume (Gromov norm))

$$
\operatorname{Vol}\left(S^{3} \backslash K\right):=\sum_{H_{i} \text { :hyperbolic piece }} \text { Hyperbolic Volume of } H_{i} \text {. }
$$

Volume conjecture

Conjecture (Volume Conjecture, R. Kashaev (1997),
J. Murakami+H.M. (2001))

K: knot

$$
2 \pi \lim _{N \rightarrow \infty} \frac{\log \left|J_{N}(K ; \exp (2 \pi \sqrt{-1} / N))\right|}{N}=\operatorname{Vol}\left(S^{3} \backslash K\right) .
$$

Definition (Simplicial volume (Gromov norm))

$$
\operatorname{Vol}\left(S^{3} \backslash K\right):=\sum_{H_{i}: \text { hyperbolic piece }} \text { Hyperbolic Volume of } H_{i}
$$

Definition (Jaco-Shalen-Johannson decomposition)
$S^{3} \backslash K$ can be uniquely decomposed as

$$
S^{3} \backslash K=\left(\bigsqcup H_{i}\right) \sqcup\left(\bigsqcup E_{j}\right)
$$

with H_{i} hyperbolic and E_{j} Seifert-fibered.

Example of JSJ decomposition

Example of JSJ decomposition

Example of JSJ decomposition

hyperbolic

Example of JSJ decomposition

hyperbolic
Seifert fibered

Example of JSJ decomposition

Colored Jones polynomial of (B)

Proof of the VC for 8 is given by T. Ekholm in 1999.

Colored Jones polynomial of (B)

Proof of the VC for 8 is given by T. Ekholm in 1999.
Theorem (K. Habiro, T. Lê)

$$
J_{N}(\text { (6) } ; q)=\sum_{j=0}^{N-1} \prod_{k=1}^{j}\left(q^{(N-k) / 2}-q^{-(N-k) / 2}\right)\left(q^{(N+k) / 2}-q^{-(N+k) / 2}\right)
$$

Colored Jones polynomial of (8)

Proof of the VC for is given by T. Ekholm in 1999.
Theorem (K. Habiro, T. Lê)

$$
\left.J_{N}(8) ; q\right)=\sum_{j=0}^{N-1} \prod_{k=1}^{j}\left(q^{(N-k) / 2}-q^{-(N-k) / 2}\right)\left(q^{(N+k) / 2}-q^{-(N+k) / 2}\right)
$$

$q \mapsto \exp (2 \pi \sqrt{-1} / N)$

$$
\left.J_{N}(\S) ; \exp (2 \pi \sqrt{-1} / N)\right)=\sum_{j=0}^{N-1} \prod_{k=1}^{j} f(N ; k)
$$

with $f(N ; k):=4 \sin ^{2}(k \pi / N)$.

Find the maximum of the summands

Find the maximum of the summands

$J_{N}\left(母 ; e^{2 \pi \sqrt{-1} / N}\right)=\sum_{j=0}^{N-1} \prod_{k=1}^{j} f(N ; k)$ with $f(N ; k):=4 \sin ^{2}(k \pi / N)$.

Find the maximum of the summands
$J_{N}\left(\S ; e^{2 \pi \sqrt{-1} / N}\right)=\sum_{j=0}^{N-1} \prod_{k=1}^{j} f(N ; k)$ with $f(N ; k):=4 \sin ^{2}(k \pi / N)$.
Graph of $f(N ; k)$

Find the maximum of the summands
$\left.J_{N}(\S) ; e^{2 \pi \sqrt{-1} / N}\right)=\sum_{j=0}^{N-1} \prod_{k=1}^{j} f(N ; k)$ with $f(N ; k):=4 \sin ^{2}(k \pi / N)$.

Put $g(N ; j):=\prod_{k=1}^{j} f(N ; k)$.

Find the maximum of the summands
$\left.J_{N}(\S) ; e^{2 \pi \sqrt{-1} / N}\right)=\sum_{j=0}^{N-1} \prod_{k=1}^{j} f(N ; k)$ with $f(N ; k):=4 \sin ^{2}(k \pi / N)$.

Put $g(N ; j):=\prod_{k=1}^{j} f(N ; k)$.

j	0	\cdots	$N / 6$	\cdots	$5 N / 6$	\cdots	1

Find the maximum of the summands
$\left.J_{N}(\S) ; e^{2 \pi \sqrt{-1} / N}\right)=\sum_{j=0}^{N-1} \prod_{k=1}^{j} f(N ; k)$ with $f(N ; k):=4 \sin ^{2}(k \pi / N)$.

Put $g(N ; j):=\prod_{k=1}^{j} f(N ; k)$.

j	0	\cdots	$N / 6$	\cdots	$5 N / 6$	\cdots	1
$f(N ; k)$		<1	1	>1	1	<1	

Find the maximum of the summands
$\left.J_{N}(\mathrm{~S}) ; \mathrm{e}^{2 \pi \sqrt{-1} / N}\right)=\sum_{j=0}^{N-1} \prod_{k=1}^{j} f(N ; k)$ with $f(N ; k):=4 \sin ^{2}(k \pi / N)$.

Put $g(N ; j):=\prod_{k=1}^{j} f(N ; k)$.

j	0	\cdots	$N / 6$	\cdots	$5 N / 6$	\cdots	1
$f(N ; k)$		<1	1	>1	1	<1	
$g(N ; j)$	1	\searrow		\nearrow	maximum	\searrow	

Limit of the sum is the limit of the maximum

Limit of the sum is the limit of the maximum

- Maximum of $\{g(N ; j)\}_{0 \leq j \leq N-1}$ is $g(N ; 5 N / 6)$.

Limit of the sum is the limit of the maximum

- Maximum of $\{g(N ; j)\}_{0 \leq j \leq N-1}$ is $g(N ; 5 N / 6)$.
- $J_{N}($ § $; \exp (2 \pi \sqrt{-1} / N))=\sum_{j=0}^{N-1} g(N ; j)$ and $g(N ; j)>0$.

Limit of the sum is the limit of the maximum

- Maximum of $\{g(N ; j)\}_{0 \leq j \leq N-1}$ is $g(N ; 5 N / 6)$.
- $J_{N}($ § $; \exp (2 \pi \sqrt{-1} / N))=\sum_{j=0}^{N-1} g(N ; j)$ and $g(N ; j)>0$.
\Downarrow

Limit of the sum is the limit of the maximum

- Maximum of $\{g(N ; j)\}_{0 \leq j \leq N-1}$ is $g(N ; 5 N / 6)$.
- $J_{N}($ § $; \exp (2 \pi \sqrt{-1} / N))=\sum_{j=0}^{N-1} g(N ; j)$ and $g(N ; j)>0$.
\Downarrow

$$
\left.g(N ; 5 N / 6) \leq J_{N}(\S) ; \exp (2 \pi \sqrt{-1} / N)\right) \leq N \times g(N ; 5 N / 6)
$$

Limit of the sum is the limit of the maximum

- Maximum of $\{g(N ; j)\}_{0 \leq j \leq N-1}$ is $g(N ; 5 N / 6)$.
- $J_{N}($ § $; \exp (2 \pi \sqrt{-1} / N))=\sum_{j=0}^{N-1} g(N ; j)$ and $g(N ; j)>0$.
\Downarrow

$$
\begin{gathered}
g(N ; 5 N / 6) \leq J_{N}(6 ; \exp (2 \pi \sqrt{-1} / N)) \leq N \times g(N ; 5 N / 6) \\
\Downarrow \\
\frac{\log g(N ; 5 N / 6)}{N} \leq \frac{\log J_{N}}{N} \leq \frac{\log N}{N}+\frac{\log g(N ; 5 N / 6)}{N}
\end{gathered}
$$

Limit of the sum is the limit of the maximum

- Maximum of $\{g(N ; j)\}_{0 \leq j \leq N-1}$ is $g(N ; 5 N / 6)$.
- $\left.J_{N}(\S) ; \exp (2 \pi \sqrt{-1} / N)\right)=\sum_{j=0}^{N-1} g(N ; j)$ and $g(N ; j)>0$.
\Downarrow

$$
\begin{gathered}
\left.g(N ; 5 N / 6) \leq J_{N}(\S) ; \exp (2 \pi \sqrt{-1} / N)\right) \leq N \times g(N ; 5 N / 6) \\
\frac{\log g(N ; 5 N / 6)}{N} \leq \frac{\log J_{N}}{N} \leq \frac{\log N}{N}+\frac{\log g(N ; 5 N / 6)}{N} \\
\Downarrow \\
\lim _{N \rightarrow \infty} \frac{\log g(N ; 5 N / 6)}{N} \leq \lim _{N \rightarrow \infty} \frac{\log J_{N}}{N} \leq \lim _{N \rightarrow \infty} \frac{\log N}{N}+\lim _{N \rightarrow \infty} \frac{\log g(N ; 5 N / 6)}{N}
\end{gathered}
$$

Limit of the sum is the limit of the maximum

- Maximum of $\{g(N ; j)\}_{0 \leq j \leq N-1}$ is $g(N ; 5 N / 6)$.
- $\left.J_{N}(\S) ; \exp (2 \pi \sqrt{-1} / N)\right)=\sum_{j=0}^{N-1} g(N ; j)$ and $g(N ; j)>0$.
\Downarrow

$$
\begin{gathered}
\left.g(N ; 5 N / 6) \leq J_{N}(8) ; \exp (2 \pi \sqrt{-1} / N)\right) \leq N \times g(N ; 5 N / 6) \\
\frac{\log g(N ; 5 N / 6)}{N} \leq \frac{\log J_{N}}{N} \leq \frac{\log N}{N}+\frac{\log g(N ; 5 N / 6)}{N} \\
\lim _{N \rightarrow \infty} \frac{\log g(N ; 5 N / 6)}{N} \leq \lim _{N \rightarrow \infty} \frac{\log J_{N}}{N} \leq \lim _{N \rightarrow \infty} \frac{\log N}{N}+\lim _{N \rightarrow \infty} \frac{\log g(N ; 5 N / 6)}{N} \\
\Downarrow \\
\lim _{N \rightarrow \infty} \frac{\log J_{N}}{N}=\lim _{N \rightarrow \infty} \frac{\log g(N ; 5 N / 6)}{N}
\end{gathered}
$$

Calculation of the limit of the maximum

Calculation of the limit of the maximum

$$
\lim _{N \rightarrow \infty} \frac{\log J_{N}(\delta ; \exp (2 \pi \sqrt{-1} / N))}{N}=\lim _{N \rightarrow \infty} \frac{\log g(N ; 5 N / 6)}{N}
$$

Calculation of the limit of the maximum

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{\left.\log J_{N}(\bigotimes) ; \exp (2 \pi \sqrt{-1} / N)\right)}{N}=\lim _{N \rightarrow \infty} \frac{\log g(N ; 5 N / 6)}{N} \\
= & \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{5 N / 6} \log f(N ; k)
\end{aligned}
$$

Calculation of the limit of the maximum

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{\left.\log J_{N}(\S) ; \exp (2 \pi \sqrt{-1} / N)\right)}{N}=\lim _{N \rightarrow \infty} \frac{\log g(N ; 5 N / 6)}{N} \\
= & \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{5 N / 6} \log f(N ; k)=2 \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{5 N / 6} \log (2 \sin (k \pi / N))
\end{aligned}
$$

Calculation of the limit of the maximum

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{\left.\log J_{N}(8) ; \exp (2 \pi \sqrt{-1} / N)\right)}{N}=\lim _{N \rightarrow \infty} \frac{\log g(N ; 5 N / 6)}{N} \\
= & \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{5 N / 6} \log f(N ; k)=2 \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{5 N / 6} \log (2 \sin (k \pi / N)) \\
= & \frac{2}{\pi} \int_{0}^{5 \pi / 6} \log (2 \sin x) d x
\end{aligned}
$$

Calculation of the limit of the maximum

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{\left.\log J_{N}(\S) ; \exp (2 \pi \sqrt{-1} / N)\right)}{N}=\lim _{N \rightarrow \infty} \frac{\log g(N ; 5 N / 6)}{N} \\
= & \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{5 N / 6} \log f(N ; k)=2 \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{5 N / 6} \log (2 \sin (k \pi / N)) \\
= & \frac{2}{\pi} \int_{0}^{5 \pi / 6} \log (2 \sin x) d x=-\frac{2}{\pi} \Lambda(5 \pi / 6)
\end{aligned}
$$

Calculation of the limit of the maximum

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{\left.\log J_{N}(8) ; \exp (2 \pi \sqrt{-1} / N)\right)}{N}=\lim _{N \rightarrow \infty} \frac{\log g(N ; 5 N / 6)}{N} \\
= & \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{5 N / 6} \log f(N ; k)=2 \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{5 N / 6} \log (2 \sin (k \pi / N)) \\
= & \frac{2}{\pi} \int_{0}^{5 \pi / 6} \log (2 \sin x) d x=-\frac{2}{\pi} \Lambda(5 \pi / 6)=0.323066 \ldots,
\end{aligned}
$$

Calculation of the limit of the maximum

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{\left.\log J_{N}(\S) ; \exp (2 \pi \sqrt{-1} / N)\right)}{N}=\lim _{N \rightarrow \infty} \frac{\log g(N ; 5 N / 6)}{N} \\
= & \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{5 N / 6} \log f(N ; k)=2 \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{5 N / 6} \log (2 \sin (k \pi / N)) \\
= & \frac{2}{\pi} \int_{0}^{5 \pi / 6} \log (2 \sin x) d x=-\frac{2}{\pi} \Lambda(5 \pi / 6)=0.323066 \ldots,
\end{aligned}
$$

where $\Lambda(\theta):=-\int_{0}^{\theta} \log |2 \sin x| d x$ is the Lobachevsky function.

Calculation of the limit of the maximum

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{\left.\log J_{N}(8) ; \exp (2 \pi \sqrt{-1} / N)\right)}{N}=\lim _{N \rightarrow \infty} \frac{\log g(N ; 5 N / 6)}{N} \\
= & \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{5 N / 6} \log f(N ; k)=2 \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^{5 N / 6} \log (2 \sin (k \pi / N)) \\
= & \frac{2}{\pi} \int_{0}^{5 \pi / 6} \log (2 \sin x) d x=-\frac{2}{\pi} \Lambda(5 \pi / 6)=0.323066 \ldots,
\end{aligned}
$$

where $\Lambda(\theta):=-\int_{0}^{\theta} \log |2 \sin x| d x$ is the Lobachevsky function. What is $\Lambda(5 \pi / 6)$?

Lobachevsky function $\Lambda(\theta)$

Lobachevsky function $\Lambda(\theta)$
 Some properties of $\Lambda(\theta):=-\int_{0}^{\theta} \log |2 \sin x| d x$.

Lobachevsky function $\Lambda(\theta)$

Some properties of $\Lambda(\theta):=-\int_{0}^{\theta} \log |2 \sin x| d x$.

- Λ is an odd function and has period π.

Lobachevsky function $\Lambda(\theta)$

Some properties of $\Lambda(\theta):=-\int_{0}^{\theta} \log |2 \sin x| d x$.

- Λ is an odd function and has period π.
- $\Lambda(2 \theta)=2 \Lambda(\theta)+2 \Lambda(\theta+\pi / 2)$.
$\left(\Lambda(n \theta)=n \sum_{k=1}^{n-1} \Lambda(\theta+k \pi / n)\right.$ in general. $)$

Lobachevsky function $\Lambda(\theta)$

Some properties of $\Lambda(\theta):=-\int_{0}^{\theta} \log |2 \sin x| d x$.

- Λ is an odd function and has period π.
- $\Lambda(2 \theta)=2 \Lambda(\theta)+2 \Lambda(\theta+\pi / 2)$.
$\left(\Lambda(n \theta)=n \sum_{k=1}^{n-1} \Lambda(\theta+k \pi / n)\right.$ in general. $)$
The first property is easy.

Lobachevsky function $\Lambda(\theta)$

Some properties of $\Lambda(\theta):=-\int_{0}^{\theta} \log |2 \sin x| d x$.

- Λ is an odd function and has period π.
- $\Lambda(2 \theta)=2 \Lambda(\theta)+2 \Lambda(\theta+\pi / 2)$.
$\left(\Lambda(n \theta)=n \sum_{k=1}^{n-1} \Lambda(\theta+k \pi / n)\right.$ in general. $)$
The first property is easy.
To prove the second, we use the double angle formula of sine:

Lobachevsky function $\Lambda(\theta)$

Some properties of $\Lambda(\theta):=-\int_{0}^{\theta} \log |2 \sin x| d x$.

- Λ is an odd function and has period π.
- $\Lambda(2 \theta)=2 \Lambda(\theta)+2 \Lambda(\theta+\pi / 2)$.
$\left(\Lambda(n \theta)=n \sum_{k=1}^{n-1} \Lambda(\theta+k \pi / n)\right.$ in general. $)$
The first property is easy.
To prove the second, we use the double angle formula of sine:

$$
\sin (2 x)=2 \sin x \cos x
$$

Lobachevsky function $\Lambda(\theta)$

Some properties of $\Lambda(\theta):=-\int_{0}^{\theta} \log |2 \sin x| d x$.

- Λ is an odd function and has period π.
- $\Lambda(2 \theta)=2 \Lambda(\theta)+2 \Lambda(\theta+\pi / 2)$.
$\left(\Lambda(n \theta)=n \sum_{k=1}^{n-1} \Lambda(\theta+k \pi / n)\right.$ in general. $)$
The first property is easy.
To prove the second, we use the double angle formula of sine:

$$
\begin{gathered}
\sin (2 x)=2 \sin x \cos x . \\
\Rightarrow \quad \log |2 \sin (2 x)|=\log |2 \sin x|+\log |2 \sin (x+\pi / 2)| .
\end{gathered}
$$

Lobachevsky function $\Lambda(\theta)$

Some properties of $\Lambda(\theta):=-\int_{0}^{\theta} \log |2 \sin x| d x$.

- Λ is an odd function and has period π.
- $\Lambda(2 \theta)=2 \Lambda(\theta)+2 \Lambda(\theta+\pi / 2)$.
$\left(\Lambda(n \theta)=n \sum_{k=1}^{n-1} \Lambda(\theta+k \pi / n)\right.$ in general. $)$
The first property is easy.
To prove the second, we use the double angle formula of sine:

$$
\begin{gathered}
\sin (2 x)=2 \sin x \cos x \\
\Rightarrow \quad \log |2 \sin (2 x)|=\log |2 \sin x|+\log |2 \sin (x+\pi / 2)|
\end{gathered}
$$

So we have

$$
\Lambda(5 \pi / 6)=-\Lambda(\pi / 6)
$$

$$
\Lambda(\pi / 3)=2 \Lambda(\pi / 6)+2 \wedge(2 \pi / 3)=2 \Lambda(\pi / 6)-2 \Lambda(\pi / 3)
$$

Lobachevsky function $\Lambda(\theta)$

Some properties of $\Lambda(\theta):=-\int_{0}^{\theta} \log |2 \sin x| d x$.

- Λ is an odd function and has period π.
- $\Lambda(2 \theta)=2 \Lambda(\theta)+2 \Lambda(\theta+\pi / 2)$.
$\left(\Lambda(n \theta)=n \sum_{k=1}^{n-1} \Lambda(\theta+k \pi / n)\right.$ in general. $)$
The first property is easy.
To prove the second, we use the double angle formula of sine:

$$
\begin{gathered}
\sin (2 x)=2 \sin x \cos x \\
\Rightarrow \quad \log |2 \sin (2 x)|=\log |2 \sin x|+\log |2 \sin (x+\pi / 2)| .
\end{gathered}
$$

So we have

$$
\Lambda(5 \pi / 6)=-\Lambda(\pi / 6)
$$

$$
\Lambda(\pi / 3)=2 \wedge(\pi / 6)+2 \wedge(2 \pi / 3)=2 \wedge(\pi / 6)-2 \wedge(\pi / 3)
$$

\Rightarrow

$$
\Lambda(5 \pi / 6)=-\frac{3}{2} \Lambda(\pi / 3)
$$

Lobachevsky function $\Lambda(\theta)$

Some properties of $\Lambda(\theta):=-\int_{0}^{\theta} \log |2 \sin x| d x$.

- Λ is an odd function and has period π.
- $\Lambda(2 \theta)=2 \Lambda(\theta)+2 \Lambda(\theta+\pi / 2)$.
$\left(\Lambda(n \theta)=n \sum_{k=1}^{n-1} \Lambda(\theta+k \pi / n)\right.$ in general. $)$
The first property is easy.
To prove the second, we use the double angle formula of sine:

$$
\begin{gathered}
\sin (2 x)=2 \sin x \cos x . \\
\Rightarrow \quad \log |2 \sin (2 x)|=\log |2 \sin x|+\log |2 \sin (x+\pi / 2)| .
\end{gathered}
$$

So we have

$$
\Lambda(5 \pi / 6)=-\Lambda(\pi / 6)
$$

$$
\Lambda(\pi / 3)=2 \wedge(\pi / 6)+2 \wedge(2 \pi / 3)=2 \wedge(\pi / 6)-2 \wedge(\pi / 3)
$$

\Rightarrow
$\Lambda(5 \pi / 6)=-\frac{3}{2} \Lambda(\pi / 3)$.
$\left.\Rightarrow \quad 2 \pi \lim _{N \rightarrow \infty} \log J_{N}(8) ; \exp (2 \pi \sqrt{-1} / N)\right) / N=6 \Lambda(\pi / 3)$

Decomposition of $S^{3} \backslash 8$ into two tetrahedra

Decomposition of $S^{3} \backslash()$ into two tetrahedra

What is $6 \Lambda(\pi / 3)$?

Decomposition of $S^{3} \backslash()$ into two tetrahedra

What is $6 \Lambda(\pi / 3)$?
Theorem (W. Thurston)

We can regard both pieces in the right hand side as regular ideal hyperbolic tetrahedra.

Decomposition of $S^{3} \backslash($ into two tetrahedra

What is $6 \Lambda(\pi / 3)$?

Theorem (W. Thurston)

We can regard both pieces in the right hand side as regular ideal hyperbolic tetrahedra.
$\Rightarrow S^{3} \backslash($ possesses a complete hyperbolic structure.

Ideal hyperbolic tetrahedron

Ideal hyperbolic tetrahedron

- $\mathbb{H}^{3}:=\{(x, y, t) \mid t>0\}$: with hyperbolic metric $d s:=\frac{\sqrt{d x^{2}+d y^{2}+d t^{2}}}{t}$.

Ideal hyperbolic tetrahedron

- $\mathbb{H}^{3}:=\{(x, y, t) \mid t>0\}:$ with hyperbolic metric $d s:=\frac{\sqrt{d x^{2}+d y^{2}+d t^{2}}}{t}$.
- Ideal hyperbolic tetrahedron: tetrahedron with geodesic faces with four vertices in the boundary at infinity.

Ideal hyperbolic tetrahedron

- $\mathbb{H}^{3}:=\{(x, y, t) \mid t>0\}$: with hyperbolic metric $d s:=\frac{\sqrt{d x^{2}+d y^{2}+d t^{2}}}{t}$.
- Ideal hyperbolic tetrahedron: tetrahedron with geodesic faces with four vertices in the boundary at infinity.
- We may assume
- One vertex is at ∞.
- The other three are on $x y$-plane.

Ideal hyperbolic tetrahedron

- $\mathbb{H}^{3}:=\{(x, y, t) \mid t>0\}$: with hyperbolic metric $d s:=\frac{\sqrt{d x^{2}+d y^{2}+d t^{2}}}{t}$.
- Ideal hyperbolic tetrahedron: tetrahedron with geodesic faces with four vertices in the boundary at infinity.
- We may assume
- One vertex is at ∞.
- The other three are on $x y$-plane.

Tdeal hyperbolic
tetrahedron

Ideal hyperbolic tetrahedron

- $\mathbb{H}^{3}:=\{(x, y, t) \mid t>0\}$: with hyperbolic metric $d s:=\frac{\sqrt{d x^{2}+d y^{2}+d t^{2}}}{t}$.
- Ideal hyperbolic tetrahedron: tetrahedron with geodesic faces with four vertices in the boundary at infinity.
- We may assume
- One vertex is at ∞.
- The other three are on $x y$-plane.

Tdeal hyperbolic tetrahedron
$\Delta(\alpha, \beta, \gamma)$

Ideal hyperbolic tetrahedron

- $\mathbb{H}^{3}:=\{(x, y, t) \mid t>0\}:$ with hyperbolic metric $d s:=\frac{\sqrt{d x^{2}+d y^{2}+d t^{2}}}{t}$.
- Ideal hyperbolic tetrahedron: tetrahedron with geodesic faces with four vertices in the boundary at infinity.
- We may assume
- One vertex is at ∞.
- The other three are on $x y$-plane.

Tdeal hyperbolic tetrahedron Top view
$\Delta(\alpha, \beta, \gamma)$

$\operatorname{Vol}(\Delta(\alpha, \beta, \gamma))=\Lambda(\alpha)+\Lambda(\beta)+\Lambda(\gamma)$.

Proof of VC - conclusion

Proof of VC - conclusion

$$
2 \pi \lim _{N \rightarrow \infty} \frac{\left.\log J_{N}(\S) ; \exp (2 \pi \sqrt{-1} / N)\right)}{N}
$$

Proof of VC - conclusion

$$
\begin{aligned}
& 2 \pi \lim _{N \rightarrow \infty} \frac{\left.\log J_{N}(8) ; \exp (2 \pi \sqrt{-1} / N)\right)}{N} \\
= & 6 \Lambda(\pi / 3)
\end{aligned}
$$

Proof of VC - conclusion

$$
\begin{aligned}
& 2 \pi \lim _{N \rightarrow \infty} \frac{\left.\log J_{N}(8) ; \exp (2 \pi \sqrt{-1} / N)\right)}{N} \\
= & 6 \Lambda(\pi / 3) \\
= & 2 \text { Vol(regular ideal hyperbolic tetrahedron) }
\end{aligned}
$$

Proof of VC - conclusion

$$
\begin{aligned}
& 2 \pi \lim _{N \rightarrow \infty} \frac{\log J_{N}(\S ; \exp (2 \pi \sqrt{-1} / N))}{N} \\
= & 6 \Lambda(\pi / 3) \\
= & 2 \operatorname{Vol}(\text { regular ideal hyperbolic tetrahedron }) \\
= & \operatorname{Vol}\left(S^{3} \backslash()\right) .
\end{aligned}
$$

Proof of VC - conclusion

$$
\begin{aligned}
& 2 \pi \lim _{N \rightarrow \infty} \frac{\log J_{N}(\S ; \exp (2 \pi \sqrt{-1} / N))}{N} \\
= & 6 \wedge(\pi / 3) \\
= & 2 \operatorname{Vol}(\text { regular ideal hyperbolic tetrahedron }) \\
= & \operatorname{Vol}\left(S^{3} \backslash()\right) .
\end{aligned}
$$

This amazing fact was first observed by R. Kashaev and proved by T. Ekholm.

Proof of VC - conclusion

$$
\begin{aligned}
& 2 \pi \lim _{N \rightarrow \infty} \frac{\left.\log J_{N}(\S) ; \exp (2 \pi \sqrt{-1} / N)\right)}{N} \\
= & 6 \Lambda(\pi / 3) \\
= & 2 \operatorname{Vol}(\text { regular ideal hyperbolic tetrahedron }) \\
= & \operatorname{Vol}\left(S^{3} \backslash \S\right) .
\end{aligned}
$$

This amazing fact was first observed by R. Kashaev and proved by T. Ekholm.

On the other hand the complement of \because is a Seifert fibered space, that is, it has a geometry of surface \times circle.

Proof of VC - conclusion

$$
\begin{aligned}
& 2 \pi \lim _{N \rightarrow \infty} \frac{\left.\log J_{N}(\S) ; \exp (2 \pi \sqrt{-1} / N)\right)}{N} \\
= & 6 \Lambda(\pi / 3) \\
= & 2 \operatorname{Vol}(\text { regular ideal hyperbolic tetrahedron }) \\
= & \operatorname{Vol}\left(S^{3} \backslash \S\right) .
\end{aligned}
$$

This amazing fact was first observed by R. Kashaev and proved by T. Ekholm.

On the other hand the complement of O is a Seifert fibered space, that is, it has a geometry of surface \times circle.
$\Rightarrow \operatorname{Vol}\left(S^{3} \backslash 民\right)=0$. In fact Kashaev and O. Tirkkonen proved that $2 \pi \lim _{N \rightarrow \infty} \frac{\log J_{N}(T(p, q) ; \exp (2 \pi \sqrt{-1} / N))}{N}=0$ for any torus $\operatorname{knot} T(p, q)$.

So far the Volume Conjecture is proved for

So far the Volume Conjecture is proved for

- (8) figure-eight knot (hyperbolic) (T. Ekholm (1999))

So far the Volume Conjecture is proved for

- (8) figure-eight knot (hyperbolic) (T. Ekholm (1999))
-

So far the Volume Conjecture is proved for

- (8) figure-eight knot (hyperbolic) (T. Ekholm (1999))
 torus knots (including $)_{\text {i }}$) (Seifert fibered) (R. Kashaev + O. Tirkkonen (2000)), iterated torus knots (Seifert fibered + Seifert fibered) (R. van der Veen (2008)),

So far the Volume Conjecture is proved for

- (8) figure-eight knot (hyperbolic) (T. Ekholm (1999))
 torus knots (including \&i) (Seifert fibered) (R. Kashaev + O. Tirkkonen (2000)), iterated torus knots (Seifert fibered + Seifert fibered) (R. van der Veen (2008)),

Whitehead doubles of torus knots of $(2,2 n+1)$ (Seifert fibered + hyperbolic) (H. Zheng (2007)),

So far the Volume Conjecture is proved for

- (8) figure-eight knot (hyperbolic) (T. Ekholm (1999))
 torus knots (including \&i) (Seifert fibered) (R. Kashaev + O. Tirkkonen (2000)),
 iterated torus knots (Seifert fibered + Seifert fibered) (R. van der Veen (2008)),

Whitehead doubles of torus knots of $(2,2 n+1)$ (Seifert fibered + hyperbolic) (H. Zheng (2007)),

$(2,2 m+1)$-cable of the figure-eight knot (hyperbolic + Seifert fibered) (T. Lê and A. Tran (2010)).

So far the Volume Conjecture is proved for

- (8) figure-eight knot (hyperbolic) (T. Ekholm (1999))
 torus knots (including \&) (Seifert fibered) (R. Kashaev + O. Tirkkonen (2000)),

iterated torus knots (Seifert fibered + Seifert fibered) (R. van der Veen (2008)),

Whitehead doubles of torus knots of $(2,2 n+1)$ (Seifert fibered + hyperbolic) (H. Zheng (2007)),

$(2,2 m+1)$-cable of the figure-eight knot (hyperbolic + Seifert fibered) (T. Lê and A. Tran (2010)).

52 knot (hyperbolic) (R. Kashaev and Y. Yokota, T. Ohtsuki)

So far the Volume Conjecture is proved for

- (8) figure-eight knot (hyperbolic) (T. Ekholm (1999))
 torus knots (including \&i) (Seifert fibered) (R. Kashaev + O. Tirkkonen (2000)),

iterated torus knots (Seifert fibered + Seifert fibered) (R. van der Veen (2008)),

Whitehead doubles of torus knots of $(2,2 n+1)$ (Seifert fibered + hyperbolic) (H. Zheng (2007)),

$(2,2 m+1)$-cable of the figure-eight knot (hyperbolic + Seifert fibered) (T. Lê and A. Tran (2010)).

52 knot (hyperbolic) (R. Kashaev and Y. Yokota, T. Ohtsuki)

hyperbolic knots with six crossings (T. Ohtsuki and Y. Yokota)

