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Motivation from fibered hyperbolic 3—-manifolds.
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Motivation: Pseudo-Anosov homeomorphisms 2/17

F: S5 — S pseudo-Anosov on S, a closed surface of genus g > 2:
e T invariant, transverse measured foliations ]:Si onS
e F stretches/contracts the measures

e A= )\F)= Ii_>m v/ length(F"(«))
n—o0
= dilatation of F
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H'(M)
S — M = Mg - S? fibration o .
o = (10)« =PD[S] € H}(M) integral. o
ug € C C HY(M), an (open) cone 1!

on a fibered face of || - || r—ball,

Theorem [Thurston,Fried]
For all integral v € C =

3 fibration S, — M - S with u = (1,)« =PD[S,] s.t.
o (e,u) = x(5u) = —||u|r and
e ¢y M S, and first return F,: S, — S, is pseudo-Anosov.
3! $: C — R continuous, convex, homogeneous of degree —1 such
that for all integral u € C
e log(A(Fy)) = $(u) seeatso [Oertel, Long-Oertel, Matsumoto, McMullen]
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Corollary Suppose K C C is compact and _Hl_(M_)
{Un}zozl - R+K

all up, primitive integral, u, — oco.

Then g, = genus(S,,) — oo and
()] (5]
— <log(A(Fu,)) < —
2 (A(Fun)) = 5

n n
for some 0 < ¢y < ¢1 < 00.[Penner,McMullen] ’

Theorem [Farb-L-Margalit] All pseudo-Anosov F: Sz — S, with
log(A(F)) < c/g are monodromies of fibrations of one of a finite list of
fibered, finite volume hyperbolic 3-manifolds, Dehn filled along the
boundary of the fiber.

See also [Agol].
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7T1M = 7T15 XF, Z.

In fact, M is determined up to homeomorphism by
F. € Out(m1(S)) [Dehn-Nielsen-Baer].

¢ € Out(m1(S)) is represented by a pseudo-Anosov F if and only if
¢ has no nontrivial periodic conjugacy classes if and only if
m1S g Z is word-hyperbolic. [Thurston]

A(F) = growth rate of word length in 71 S under iteration of F,.

Integral u € Hom(m; M, R) = H}(M) is induced by a fibration over
St if and only if ker(u) is finitely generated [Stallings]
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Theorem [Bestvina-Feign, Brinkmann, Bestvina-Handel] Let
¢ € Out(Fp) be

e Atoroidal: no nontrivial periodic conjugacy classes, and

e Fully irreducible: no nontrivial periodic free factors.
Then
e G = Gy = Fy x4 Z is word-hyperbolic, and

e ¢ is represented by an irreducible train track map.

Example: - Agraph I', mI = Fy,
-f:T—-Tahe and f,=¢
~f(VT) C VT

- "¢ is an immersion for all

n > 1 and for all edges e

Many other examples [Clay-Pettet] - irreducible transition matrix...
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a id d
U\ :
c
b C
‘\—f/a 2 @
d b

Transition matrix and Perron-Frobenius eigenvalue/eigenvector

0 001 .2265
1 000 .0939
A(f) = 1100 | AR 24142 VR 307
2211 .5469

~» metric graph (I', dy), f ~f,: (I',dy) — (T, dy), affine-stretch by
A on all edges.
A=) =A(9) = ILm \/length(f"(«)) = stretch factor.

depends only on ¢ = f., not on f, &, or metric.
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Idea: Dynamics on branched surfaces in 3—-manifolds [Williams,
Christy,...,Benedetti-Petronio,...,Brinkmann-Schleimer,. .|

Generalizations: Outside 3—-manifolds [Gautero,Wang,...|

¢) € OUt(FN) ~ (X¢7¢7"4)

e X, is a polyhedral 2—complex, K(G,1) for G = Fy x4 Z.

e 1) is a semi-flow on Xj.

o A= {[z] € HY(Xy) | z € ZL(X,) positive, cellular }, open cone.
e up € Hom(G,R) = HY(X,), uo(x,n) = n = up € A.
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Theorem. Fix ¢ € Out(Fy) let (X4,,.A) be as above. Then for
all u € A primitive integral there exists 7,: X3 — S1 with
(ny)« = u satisfying:
(1.) Ty = ny1(¥) C Xy is a graph for any x € S;
(2.) Ty = X, induces an isomorphism 71 (I',) = ker(u);
(3.) Ty M, 15t return f,: Ty — Ty, has (fu)« = ¢y € Out(ker(u));
(4.) x(Ty) = (e, u), where
-1 - aeee e mex)
€= 5 eg(e))e 1( Xy

eES(Xd))

(1-3): Slightly different construction, but similar ideas as in
[Gautero,Wang]. (4): linearity of v+ x(ker(u)) follows from
Alexander norm [McMullen, Button, Dunfield]
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(1.) f,: Ty, — T, is an irreducible train track map representing

oy = (fu)« € Out(ker(u));
(2.) log(A(fu)) = log(A(du)) = H(u);

(3.) If ¢ is fully irreducible and atoroidal, then ¢, is fully
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Theorem [Dowdall-Kapovich-L] — Remarks 12/17

¢ € Out(Fy) fully irreducible, atoroidal, then for u € A primitive
integral, f,: I, — I, satisfies:

e f, is an irreducible train track map,

e ¢, = (f,)« is fully irreducible and atoroidal,

o log(A(f)) = log(A(¢u)) = $H(u),



Theorem [Dowdall-Kapovich-L] — Remarks 12/17

¢ € Out(Fy) fully irreducible, atoroidal, then for u € A primitive
integral, f,: I, — I, satisfies:

e f, is an irreducible train track map,

o ¢, = (f,)« is fully irreducible and atoroidal,

o log(A(1)) = log(A(¢u)) = $H(u),

Remarks:



Theorem [Dowdall-Kapovich-L] — Remarks 12/17

¢ € Out(Fy) fully irreducible, atoroidal, then for u € A primitive
integral, f,: I, — I, satisfies:

e f, is an irreducible train track map,

e ¢, = (f,)« is fully irreducible and atoroidal,
o log(A(fy)) = log(A(¢u)) = H(u),

Remarks:

1. ¢ atoroidal implies all ¢, atoroidal by
[Brinkmann,Bestvina-Feighn].



Theorem [Dowdall-Kapovich-L] — Remarks 12/17

¢ € Out(Fy) fully irreducible, atoroidal, then for u € A primitive
integral, f,: I, — I, satisfies:
e f, is an irreducible train track map,
e ¢, = (f,)« is fully irreducible and atoroidal,
o log(A(fy)) = log(A(¢u)) = H(u),
Remarks:
1. ¢ atoroidal implies all ¢, atoroidal by
[Brinkmann,Bestvina-Feighn].

2. If we only assume ¢ is fully irreducible, then in general ¢,
will not be fully irreducible... 3—manifolds.
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Corollary With the setup as above suppose K C A is compact and
{un}pzi CRyK

all u, primitive integral, u, — co.

Then N(n) = rk(ker(up)) — oo and

Wi < 080u)) <

(4]
N(n)

Theorem [Algom-Kfir—Rafi] All irreducible ¢ € Out(Fy) with

log(A(¢)) < ¢/N (over all N > 2) are monodromies of “surgeries”
on the mapping torus of one of a finite set of graph maps.
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(e, u) = x(T'w):
(€, u) = “Intersection number” of ', >
with € = 3 ZeeS(X¢)(2 —deg(e)) e

Existence of $:

e Argue as Fried does (Abramov’s Theorem + variational
principal), jumping through hoops...

¢y = (fy)« fully irreducible:

e Use characterization of full irreducibility for irreducible train
track maps of Kapovich, prove that this is inherited by f, from f.
Similar ideas from lemma.
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Work in progress (w/ Dowdall and Kapovich)

» McMullen polynomial (c.f. Teichmiiller polynomial of
McMullen) —independently by Algom-Kfir, Hironaka, Rafi

» Geometric structures related to dynamics (think: McMullen
Teichmiiller foliation)
» Twisted measured R-trees

> ...



The end

THANKS!



