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Outline 1/17

FN a free group of rank N, φ ∈ Out(FN)

⇒ G = Gφ = FN oφ Z u0−→ Z

⇒ for u “close” to u0 in PH1(G ;R) = PHom(G ,R),

ker(u) ∼= FN(u), N(u) ∈ Z+ and G = ker(u) oφu Z

[Neumann,Geoghegan-Mihalik-Sapir-Wise]

Goal: Describe geometric, topological, and dynamical

relationships between φu and φ

Motivation from fibered hyperbolic 3–manifolds.
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Motivation: Pseudo-Anosov homeomorphisms 2/17

F : S → S pseudo-Anosov on S , a closed surface of genus g ≥ 2:

• ∃ invariant, transverse measured foliations F±S on S

• F stretches/contracts the measures

• λ = λ(F ) = lim
n→∞

n
√
length(F n(α))

independent of α and metric

(
λ 0

0 λ−1

)

F

= dilatation of F
F
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Motivation: The mapping torus 3/17

• M = MF = S × [0, 1]/(x , 1) ∼ (F (x), 0)

∼= H3/Γ [Thurston]

⇒ S −→ M
η0−→ S1 fibration

• u0 = (η0)∗ ∈ Hom(π1M,R) = H1(M)
integral... u0 =PD[S ]

• Suspension flow ψs : M → M, 1st return = F : S → S

• F foliation by fibers ⇒ e = e(TF) ∈ H2(M) Euler class

• O = {γ ⊂ M | γ closed orbit of singularity of F±S }

⇒ PD(e) =
1

2

∑
γ∈O

(2− deg(γ))γ ∈ H1(M)

M

Fψ

b
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← γ →

deg(γ) = 3
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Motivation: Thurston and Fried 4/17

S −→ M = MF
η0−→ S1 fibration

u0 = (η0)∗ =PD[S ] ∈ H1(M) integral.

u0 ∈ C ⊂ H1(M), an (open) cone

on a fibered face of || · ||T–ball,

Theorem [Thurston,Fried]

For all integral u ∈ C ⇒

∃ fibration Su −→ M
ηu−→ S1 with u = (ηu)∗ =PD[Su] s.t.

• 〈e, u〉 = χ(Su) = −||u||T and
• ψ t Su and first return Fu : Su → Su is pseudo-Anosov.

∃! H : C → R continuous, convex, homogeneous of degree −1 such
that for all integral u ∈ C
• log(λ(Fu)) = H(u) see also [Oertel, Long-Oertel, Matsumoto, McMullen]

H1(M)

u0u0u0
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ηu−→ S1 with u = (ηu)∗ =PD[Su] s.t.

• 〈e, u〉 = χ(Su) = −||u||T and
• ψ t Su and first return Fu : Su → Su is pseudo-Anosov.

∃! H : C → R continuous, convex, homogeneous of degree −1 such
that for all integral u ∈ C
• log(λ(Fu)) = H(u) see also [Oertel, Long-Oertel, Matsumoto, McMullen]
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Motivation: Dilatation asymptotics 5/17

Corollary

Suppose K ⊂ C is compact and

{un}∞n=1 ⊂ R+K

all un primitive integral, un →∞.

Then gn = genus(Sun)→∞ and
c0

gn
≤ log(λ(Fun)) ≤ c1

gn
for some 0 < c0 < c1 <∞.[Penner,McMullen]

Theorem [Farb-L-Margalit] All pseudo-Anosov F : Sg → Sg with

log(λ(F )) ≤ c/g are monodromies of fibrations of one of a finite list of

fibered, finite volume hyperbolic 3–manifolds, Dehn filled along the

boundary of the fiber.

See also [Agol].
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Transition: Group theory 6/17

π1M = π1S oF∗ Z.

In fact, M is determined up to homeomorphism by
F∗ ∈ Out(π1(S)) [Dehn-Nielsen-Baer].

φ ∈ Out(π1(S)) is represented by a pseudo-Anosov F if and only if
φ has no nontrivial periodic conjugacy classes if and only if
π1S oφ Z is word-hyperbolic. [Thurston]

λ(F ) = growth rate of word length in π1S under iteration of F∗.

Integral u ∈ Hom(π1M,R) = H1(M) is induced by a fibration over
S1 if and only if ker(u) is finitely generated [Stallings]
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Atoroidal and fully irreducible 7/17

Theorem [Bestvina-Feign, Brinkmann, Bestvina-Handel]

Let
φ ∈ Out(FN) be

• Atoroidal: no nontrivial periodic conjugacy classes, and

• Fully irreducible: no nontrivial periodic free factors.
Then

• G = Gφ = FN oφ Z is word-hyperbolic, and

• φ is represented by an irreducible train track map.

Example:

Γ
a

b
c

d

id

f

d

a

b

a
b

a
d b

a
c

- A graph Γ, π1Γ ∼= FN ,

- f : Γ→ Γ a h.e. and f∗ = φ

- f (VΓ) ⊂ VΓ

- f n|e is an immersion for all

n ≥ 1 and for all edges e

- irreducible transition matrix...
Many other examples [Clay-Pettet]
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Transition matrix and Perron-Frobenius eigenvalue/eigenvector

A(f ) =


0 0 0 1
1 0 0 0
1 1 0 0
2 2 1 1

 , λ ≈ 2.4142, v ≈


.2265
.0939
.1327
.5469


 metric graph (Γ, dv), f ' fv : (Γ, dv)→ (Γ, dv), affine-stretch by
λ on all edges.

λ = λ(f ) = λ(φ) = lim
n→∞

n
√
length(f n(α)) = stretch factor.

depends only on φ = f∗, not on f , α, or metric.
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A model for free-by-cyclic group 9/17

Idea: Dynamics on branched surfaces in 3–manifolds

[Williams,
Christy,...,Benedetti-Petronio,...,Brinkmann-Schleimer,..]

Generalizations: Outside 3–manifolds [Gautero,Wang,...]

φ ∈ Out(FN)  (Xφ, ψ,A)

• Xφ is a polyhedral 2–complex, K (G , 1) for G = FN oφ Z.

• ψ is a semi-flow on Xφ.

• A = {[z ] ∈ H1(Xφ) | z ∈ Z 1(Xφ) positive, cellular }, open cone.

• u0 ∈ Hom(G ,R) = H1(Xφ), u0(x , n) = n ⇒ u0 ∈ A.
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“Fibrations”, sections, and “Euler class” 10/17

Theorem. Fix φ ∈ Out(FN) let (Xφ, ψ,A) be as above. Then for
all u ∈ A primitive integral there exists ηu : Xφ → S1 with
(ηu)∗ = u satisfying:

(1.) Γu = η−1
u (∗) ⊂ Xφ is a graph for any ∗ ∈ S1;

(2.) Γu ↪→ Xφ induces an isomorphism π1(Γu) ∼= ker(u);

(3.) Γu t ψ, 1st return fu : Γu → Γu has (fu)∗ = φu ∈ Out(ker(u));

(4.) χ(Γu) = 〈ε, u〉, where

ε =
1

2

∑
e∈E(Xφ)

(2− deg(e)) e ∈ H1(Xφ)

(1–3): Slightly different construction, but similar ideas as in
[Gautero,Wang]. (4): linearity of u 7→ χ(ker(u)) follows from
Alexander norm [McMullen, Button, Dunfield]
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Theorem [Dowdall-Kapovich-L] 11/17

Given φ ∈ Out(FN) represented by an irreducible train track map
and (Xφ, ψ,A) as above,

∃! H : A → R continuous, convex,
homogeneous of degree −1 such that for all u ∈ A ⇒:

(1.) fu : Γu → Γu is an irreducible train track map representing
φu = (fu)∗ ∈ Out(ker(u));

(2.) log(λ(fu)) = log(λ(φu)) = H(u);

(3.) If φ is fully irreducible and atoroidal, then φu is fully
irreducible and atoroidal,
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Theorem [Dowdall-Kapovich-L] – Remarks 12/17

φ ∈ Out(FN) fully irreducible, atoroidal, then for u ∈ A primitive
integral, fu : Γu → Γu satisfies:

• fu is an irreducible train track map,
• φu = (fu)∗ is fully irreducible and atoroidal,
• log(λ(fu)) = log(λ(φu)) = H(u),

Remarks:

1. φ atoroidal implies all φu atoroidal by
[Brinkmann,Bestvina-Feighn].

2. If we only assume φ is fully irreducible, then in general φu
will not be fully irreducible... 3–manifolds.
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2. If we only assume φ is fully irreducible, then in general φu
will not be fully irreducible... 3–manifolds.
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Corollary With the setup as above suppose K ⊂ A is compact and

{un}∞n=1 ⊂ R+K

all un primitive integral, un →∞.

Then N(n) = rk(ker(un))→∞ and
c0

N(n)
≤ log(λ(φun)) ≤ c1

N(n)

Theorem [Algom-Kfir–Rafi] All irreducible φ ∈ Out(FN) with

log(λ(φ)) ≤ c/N (over all N ≥ 2) are monodromies of “surgeries”
on the mapping torus of one of a finite set of graph maps.
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f : Γ→ Γ an irreducible train track
representative for φ ∈ Out(FN).

Build Mf = Γ× [0, 1]/(x , 1) ∼ (f (x), 0)→ S1 and semi-flow ψ...

Difficult to perturb Mf → S1

“nicely” since fibers are not
transverse to 1–cells.

Take a quotient Mf → Xφ so
ψ|Γ descends to a “Stallings
folding line”, c.f. [Bestvina-Feighn,Francaviglia-Martino]

a b c d

d a b a b a d b a c

Cell structure w/ “vertical” and “skew”
1–cells, “trapazoid” 2–cells.
η : Xφ → S1 can be perturbed to fu : Xφ → S1.
for u ∈ A
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fu an irreducible train track map?...

Lemma For every edge e of Γ, the characteristic map
σ : [0, 1]→ e and the semi-flow ψ determine a map

[0, 1]× [0,∞)→ Xφ

by
(x , t) 7→ ψt(σ(x)).

This map is locally injective.

e
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Idea of outline of ideas...16/17

〈ε, u〉 = χ(Γu):

〈ε, u〉 = “Intersection number” of Γu

with ε = 1
2

∑
e∈E(Xφ)(2− deg(e)) e

−1/2

−3/2

Existence of H:

• Argue as Fried does (Abramov’s Theorem + variational
principal), jumping through hoops...

φu = (fu)∗ fully irreducible:

• Use characterization of full irreducibility for irreducible train
track maps of Kapovich, prove that this is inherited by fu from f .
Similar ideas from lemma.
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Work in progress (w/ Dowdall and Kapovich)

I McMullen polynomial (c.f. Teichmüller polynomial of
McMullen) —independently by Algom-Kfir, Hironaka, Rafi

I Geometric structures related to dynamics (think: McMullen
Teichmüller foliation)

I Twisted measured R–trees

I ...
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The end

THANKS!


