Snowflake Subgroups of CAT(0) Groups

Noel Brady and Max Forester

Department of Mathematics University of Oklahoma

Geometric Topology in New York, August 15, 2013.

N. Brady, M. Forester (U of Oklahoma)

Snowflake < CAT(0)

Outline

- Curvature in Group Theory
 - Coarse Negative Curvature
 - Comparison Geometry
 - Properties of NPC groups
 - Dehn Functions
- Subgroups of NPC Groups
 - Distortion
 - Dehn Functions
 - Bieri Trick

- Main Theorem
- Main Theorem
- Building Blocks
- The CAT(0) Group
- The Snowflake Subgroup

- Questions
 - Questions

Coarse Negative Curvature

- Thin triangles.
- δ -hyperbolic metric space.
- Gromov hyperbolic group. Examples.
- Does not depend on finite generating set.

CAT(k) inequalities and spaces

- Model spaces. \mathbb{E}^2 and \mathbb{H}^2 .
- Comparison triangles.
- CAT(0) and CAT(-1) inequalities.
- A geodesic metric space is CAT(0) (resp. CAT(-1)) if every geodesic triangle in the space satisfies the CAT(0) (resp. CAT(-1)) inequality.
- G is said to be a CAT(k) group if it acts geometrically on a CAT(k) space.
- Examples: *F_n*, π₁(*M*) for *M* a closed, non-positively curved *n*-manifold, hyperbolic knot groups, ...

Properties of NPC groups

- Finitely presented
- Solvable word problem
- Dehn function bounded above by a quadratic function
- Solvable conjugacy problem
- \mathbb{Z} subgroups are undistorted.
- Convex subgroups (quasi-convex in case of Gromov hyperbolic groups) of NPC groups will again be NPC.

۰.

A word about distorted subspaces of \mathbb{H}^3 .

Dehn Functions

Dehn Functions

- Finite presentation $\langle X | R \rangle$
- Cayley graph, and Cayley 2-complex
- Word w ∈ F(X) which represents 1 in G corresponds to a loop in Cayley graph
- Area of a loop
- Dehn Function

$$\delta_{\langle X|R\rangle}(n) = \max\{\operatorname{Area}(w) \mid w =_{\mathsf{G}} \mathsf{1}, \, |w|_X \leq n\}$$

 Particular Dehn function depends on presentation, but the coarse equivalence class of Dehn functions is independent of presentation.

N. Brady, M. Forester (U of Oklahoma)

Distortion of Subgroups

- M^3 (closed) hyperbolic 3-manifold fibering over S^1 .
- $F_n \rtimes \mathbb{Z}$ examples.
- Many examples of highly distorted finitely generated subgroups of NPC groups.
- Fewer examples of highly distorted finitely presented subgroups of NPC groups.
- Even fewer examples of highly distorted finitely presented non-free subgroups of NPC groups.

Dehn Functions

Dehn Functions of Subgroups: What's known

- Bieri Doubling Trick Examples. [Baumslag-Bridson-Miller-Short.] 1997]
 - subgroups of CAT(0) groups which have exponential Dehn function.
 - subgroups of CAT(0) groups which have polynomial Dehn function of any given degree.
- Kernels of right-angled Artin groups (RAAGs). Polynomial Dehn functions up to n^4 . [B, Dison, mid 2000's]
- Finitely presented, non-hyperbolic, subgroup of a hyperbolic group. [B, 1999], [Gersten-Short, 2002]
- Groups with distinct homological and homotopical Dehn functions. [Abrams-B-Dani-Young, 2012]

Bieri Trick

The Bieri Doubling Trick

- [Stallings, 1963] F.p. group with non-f.g. integral H₃.
- [Bieri, 1976] Stallings $< F_2^3$, and generalization.
- [Baumslag-Bridson-Miller-Short, 1997] The Bieri trick and geometric applications.
- The Doubling Trick. The double $(N \rtimes \mathbb{Z}) *_N (N \rtimes \mathbb{Z})$ of the group $N \rtimes \mathbb{Z}$ over the fiber N is contained inside of $(N \rtimes \mathbb{Z}) \times F_2$.

$$\langle N, (tu), (tv) \rangle \ < \ \langle N, t \rangle \ \times \ \langle u, v \rangle$$

• **Example.** If M^3 is a closed hyperbolic 3-manifold which fibers over S^1 with fiber Σ^2 , then the double aroup

$$\pi_1(M^3) *_{\pi_1(\Sigma^2)} \pi_1(M^3) < \pi_1(M^3 \times (S^1 \vee S^1))$$

Main Theorem.

Which power functions can appear as Dehn functions of subgroups of CAT(0) groups?

Thm. [B-Forester] The set

 $\{\alpha \in [2,\infty) \mid x^{\alpha} \text{ is a Dehn function of a subgroup of a CAT(0) group}\}$

is dense in $[2,\infty)$.

Properties of the Building Blocks

Building blocks are special free-by-cyclic groups.

$$m{B} \ = \ m{F_2}
times_arphi \mathbb{Z} \ = \ ig\langle m{x}, m{y} ig
angle
times_arphi ig\langle t ig
angle$$

where

- (1) φ is Anosov, palindromic; and
- **2** $B = \pi_1(K)$ where K is a NPC 2-complex admitting an isometry $\sigma : K \to K$ satisfying

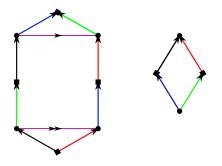
•
$$\sigma^2 = \mathbb{I}_K$$

• $\sigma_*(x) = x^{-1}, \, \sigma_*(y) = y^{-1}, \, \text{and} \, \sigma_*(t) = t.$

An Explicit Building Block

$$\varphi: F_{\{x,y\}} \to F_{\{x,y\}}$$
 defined by $\varphi(x) = xyx$ and $\varphi(y) = x$.

- $F_2 \rtimes \mathbb{Z}$ is π_1 of a punctured torus bundle.
- Matrix \longrightarrow ideal triangulation \longrightarrow spine [Hatcher-Floyd, 1982].
- Spine has a piecewise Euclidean CAT(0) structure [Tom Brady, 1995].
- Isometry σ is given by reflection in vertical axes through 2-cells.



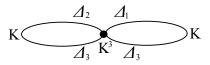
The CAT(0) Group: Geometry

The map

$$\Sigma: \mathcal{K}^2 \to \mathcal{K}^2: (\mathcal{p}_1, \mathcal{p}_2) \mapsto (\sigma(\mathcal{p}_2), \sigma(\mathcal{p}_1))$$

is an isometry, and so its fixed set is a locally convex subspace of K^2 . This is just the set $\{(p, \sigma(p)) | p \in K\}$ which we denote by Δ_K .

- There are three copies of Δ_{κ} in K^3 (corresponding to the three copies $K^2 \subset K^3$).
- Graph of spaces:



 This is a NPC 6-complex, with fundamental group a CAT(0) group G.

The CAT(0) Group: Graph of Groups Structure

We have building blocks $B_i = \langle x_i, y_i \rangle \rtimes_{\varphi} \langle t_i \rangle$ and diagonal subgroups (from properties of σ):

$$\begin{aligned} \Delta_1 &= \langle x_1^{-1} x_2, y_1^{-1} y_2, t_1 t_2 \rangle = H_1 \rtimes \langle t_1 t_2 \rangle \\ \Delta_2 &= \langle x_2^{-1} x_3, y_2^{-1} y_3, t_2 t_3 \rangle = H_2 \rtimes \langle t_2 t_3 \rangle \\ \Delta_3 &= \langle x_1^{-1} x_3, y_1^{-1} y_3, t_1 t_3 \rangle = H_3 \rtimes \langle t_1 t_3 \rangle \end{aligned}$$

$$\mathbf{G} = \langle \mathbf{B}_1 \times \mathbf{B}_2 \times \mathbf{B}_3, \mathbf{u}, \mathbf{v} \, | \, \mathbf{u} \Delta_3 \mathbf{u}^{-1} = \Delta_1, \mathbf{v} \Delta_3 \mathbf{v}^{-1} = \Delta_2 \rangle$$

Use Teitze moves to rewrite this as

$$G \;=\; \langle \textbf{B}_1 \times \textbf{B}_2 \times \textbf{B}_3, \textbf{e}, f \, | \, \textbf{e} \Delta_3 \textbf{e}^{-1} = \Delta_1, f \Delta_3 f^{-1} = \Delta_2 \rangle$$

where $e = (t_1 t_2)u$ and $f = (t_2 t_3)v$. We have added in the φ -twisting; compare Bieri trick.

N. Brady, M. Forester (U of Oklahoma)

The Snowflake Subgroup

The Snowflake Subgroup

- The H_i = Δ_i ∩ F₂³ are diagonal copies of the free group of rank 2 in F₂³. So H₁ = ⟨x₁⁻¹x₂, y₁⁻¹y₂⟩ etc.
- Define the snowflake subgroup to be

$$H = \langle \mathbf{x}_1, \mathbf{y}_1, \mathbf{x}_2, \mathbf{y}_2, \mathbf{x}_3, \mathbf{y}_3, \mathbf{e}, f \rangle < \mathbf{G}$$

• By a result of [Bass, 1993] the snowflake group has the following graph of groups description:

$$H = \langle F_{\{x_1, y_1\}} \times F_{\{x_2, y_2\}} \times F_{\{x_3, y_3\}}, e, f \mid eH_3e^{-1} = H_1, fH_3f^{-1} = H_2 \rangle$$

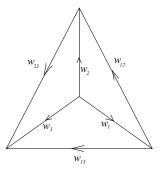
where conjugation by *e* and *f* involve an application of φ .

Key relations in the vertex group $(F_2)^3$

If
$$w(p,q) \in F_{\{p,q\}}$$
 is a palindrome, then the relations
 $w(x_1^{-1}x_2, y_1^{-1}y_2)w(x_2^{-1}x_3, y_2^{-1}y_3) = w(x_1^{-1}x_3, y_1^{-1}y_3)$

and

$$w(x_2^{-1}x_3, y_2^{-1}y_3)w(x_1^{-1}x_2, y_1^{-1}y_2) = w(x_1^{-1}x_3, y_1^{-1}y_3)$$
hold in $F_{\{x_1, y_1\}} \times F_{\{x_2, y_2\}} \times F_{\{x_3, y_3\}}$ and have quadratic area.



N. Brady, M. Forester (U of Oklahoma)

The Snowflake Subgroup

Snowflake Diagrams

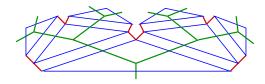


Figure: Half of Snowflake Diagram and Dual Tree

- |∂| is a multiple of the number of edges in the dual tree; that is, a multiple of 2ⁿ
- The area is the square of the diameter; that is $|Area| \ge \lambda^{2n}$
- Thus $|\operatorname{Area}| \ge (2^{\log_2(\lambda)})^{2n} \simeq |\partial|^{2\log_2(\lambda)}$.
- This provides lower bound of $x^{2\log_2(\lambda)}$ for the Dehn function.

Questions/Projects

- Is there a special cubical version of this construction (for the ambient CAT(0) group)? Interesting Dehn functions for subgroups of RAAGs.
- Are there CAT(0) groups containing finitely presented subgroups with Dehn function greater than exponential?

on 💿 🔹 💿