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SLj(C)—characters

S = closed oriented surface of genus g > 0

A group homomorphism p: m1(S) — SLy(C) defines its character

K, : {closed multicurves in S} — C

K=JK — (=1)" ] Tr o(Ki)
i=1 j
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SLy(C)—characters

Theorem (Helling 1967)
A function KC: {closed multicurves in S} — C is the character of
a group homomorphism p: m1(S) — SLo(C) if and only if:
» (Homotopy Invariance) KC(K) depends only on the homotopy
class of K
» (Superposition Rule) K(K1 U Kz) = K(K1)K(K2)
» (Skein Relation) K(K1) = —K(Ko) — K(Kx) if K1, Ko, Keo
are the same everywhere, except in a small box where
X KO—XandK —><

The Skein Relation just rephrases the classical trace relation of SL(C):
TrM Tr N =Tr MN +Tr MN~1, VM, N € SLy(C)
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SLy(C)—characters

Definition
An SLy(C)—character is a function
K: {closed multicurves in S} — C
such that:
» (Homotopy Invariance) K(K) depends only on the homotopy
class of K
» (Superposition Rule) K(K1 U Ky) = K(K1)K(K2) for any
multicurves K1 and K>
> (Skem Relation) IC(Kl) = —IC(K()) — ’C(KOO) if K1, Ko, Kso
are the same everywhere, except in a small box where
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Kauffman brackets

Definition
For g = ™" ¢ C — {0}, a Kauffman q—bracket is a function
KC: {framed links in S x [0,1]} — End(E)
for a finite-dimensional vector space E, such that:
» (Isotopy Invariance) K(K) depends only on the isotopy class
of K in § x [0,1]
» (Superposition Rule) KK(K1 U K) = K(K1) o K(K2) whenever
K = Ki UKo with K1 C S x[0,4] and K» C S x [3,1]
> (Skein Relation) K(K1) = q2K(Ko) + q 2K(Ks) if K1, Ko,
Ko are the same everywhere except in a small box where
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Kauffman brackets

Historic examples

1. When S = the sphere and End(E) = End(C) = C, the only
example is the classical Kauffman bracket (= Jones polynomial)

KC: {framed links in R®} — C

2. Witten's interpretation (1987) of the Jones polynomial in the
framework of a topological quantum field theory, mathematicalized
by Reshetikhin-Turaev, provides a Kauffman g—bracket

Kwrr: {framed links in S x [0, 1]} — End(E)
for every g that is an N-root of unity with N odd.

The skein relation appears as a consequence of a property of the
quantum trace in the quantum group Uy(slp)

Goal of this talk: Construct other examples of Kauffman brackets
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Kauffman brackets

Conceptual motivation

When g =1 and q% = —1, an irreducible Kauffman 1-bracket is
the same thing as an SLy(C)—character, namely as a point of the
character variety

Rsr,(c)(S) = {homomorphisms p: 71(S) — SL2(C)} /SL2(C)

Turaev (1987), Frohman, Bullock, Kania-Bartoszynska, Przytycki,
Sikora (around 2000): Interpretation of a Kauffman g—bracket as a
“point” in a quantization of the character variety Rgp,(c)(S),
namely as a quantum SLy(C)—character.

From quantum to classical (Bonahon-Wong): When g" = 1 with
N odd, every irreducible Kauffman g—bracket determines a
character IC, € Rgr,(c)(S), called the classical shadow of the
Kauffman bracket.

Today, from classical to quantum: Realize every character
Ky € Rsr,(c)(S) as the classical shadow of a Kauffman g-bracket.
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Construction of SLy(C)—characters

How to construct a group homomorphism p: 7m1(S) — SLy(C)?

Pick a triangulation [ of S, with vertex set Vr

Assign a weight x; € C — {0} to each edge e; of
This defines a pleated surface with shear-bend coordinates x;, and
with monodromy p: m1(S — Vr) — PSLy(C) = SLy(C)/ £ Id

1
which, after choices of square roots x,-2 and of a spin structure,
defines a homomorphism p: m1(S — Vr) — SLy(C)

Main Point: The construction is classical and, for a curve
K C S —Vr, gives a very explicit formula for Tr p(K)
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Construction of SLy(C)—characters

Problem: This defines an SLy(C)—character on the punctured

surface S — Vr, not necessarily on the closed surface S

€
€. 2

Trp(K) = Tr p(K')?

Fact
The edge weights x; define an SLy(C)—character on the closed

surface S if and only if, for every vertex,
11 1
x2x? ... x?=-1
it i it

1+ Xip + Xjy Xiy + Xjg Xpp Xiy + -+ A Xiy Xip - X, = 0



Kauffman brackets on surfaces

Construction of SLy(C)—characters

Summary Recipe to construct SLy(C)—characters:



Kauffman brackets on surfaces

Construction of SLy(C)—characters

Summary Recipe to construct SLy(C)—characters:

1
1. Choose a weight x> € C — {0} for each edge e; of the
triangulation I



Kauffman brackets on surfaces

Construction of SLy(C)—characters

Summary Recipe to construct SLy(C)—characters:

1
1. Choose a weight x> € C — {0} for each edge e; of the
triangulation I

2. This defines an SLy(C)—character for the punctured surface
S — Vr by an explicit formula
141
Ky(K) ==+ Z (0 or l)xifzxij;2 CX 2
4k



Kauffman brackets on surfaces

Construction of SLy(C)—characters

Summary Recipe to construct SLy(C)—characters:

1
1. Choose a weight x> € C — {0} for each edge e; of the
triangulation I

2. This defines an SLy(C)—character for the punctured surface
S — Vr by an explicit formula
141
Ky(K) ==+ Z (0 or l)xifzxijz[2 CX 2
4k

3. This character induces a character for the closed surface S if

and only if
11 1
x2x2...x? =—1
i1 in

1+ Xiy + Xiy Xiy + Xiy Xiy Xig + -4 Xiy Xjy «++ Xj,_1 = 0
for each vertex
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Construction of Kauffman brackets

Fix g € C with gV =1, N odd

Want to construct a Kauffman g-bracket
KC: {framed links in S x [0,1]} — End(E)

namely such that:

» (Isotopy Invariance) K(K) depends only on the isotopy class
of Kin S x [0,1]

» (Superposition Rule) (K1 U Kz) = K(K1) o K(K2) whenever
K = KUKz with K1 C S x [0,3] and K, C S x [3,1]

> (Skein Relation) K(K1) = q2K(Ko) + g 2K(Kse) if K1, Ko,
K are the same everywhere except in a small box where

\\ Ko—i/\andK —><




Kauffman brackets on surfaces

Construction of Kauffman brackets

Summary: Recipe to construct SLy(C)—characters

1
1. Choose a weight x? € C — {0} for each edge e; of the
triangulation I

2. This defines an SLo(C)—character for the punctured surface
S — Vr by an explicit formula

141 1
Ko(K) ==+ Z (0 or 1)x,.f2x,.j2[2 ...x,.jn[2
EETEREE
3. This character induces a character for the closed surface S if

and only if
11 1
{ x?x? ... x? =—1

i1 Vi in
1+ Xjy + Xiy Xiy + Xig Xip Xiy + =+ 4 Xy Xip - X = 0

for each vertex
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1
Step 1. Choose an invertible operator (= matrix) X? € End(E) for
each edge e; of the triangulation I', for an appropriate finite-dimensional
vector space E and in such a way that

11 11
X? ij = qXJ.2 X? whenever
. . . €i &
This is the same thing as a representation of the Chekhov-Fock algebra

of the triangulation I' (= quantum Teichmiiller space of the punctured
surface S — Vr)
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Construction of Kauffman brackets

1
Step 1. Choose an invertible operator (= matrix) X? € End(E) for
each edge e; of the triangulation I', for an appropriate finite-dimensional
vector space E and in such a way that

1 1 1 1
%3 _ AX2X32
X XJ = qXJ. X? whenever

This is the same thing as a representation of theé Che%hov—Fock algebra
of the triangulation I' (= quantum Teichmiiller space of the punctured
surface S — Vr)

Proposition (FB + Xiaobo Liu, 2007, relatively easy)

If gV = 1 with N odd, smallest dimensional choices of such operators
X,.% € End(E) are classified by

Nz
Nl

> edge weights x; € C* such that X> = x? Idg

1

11 1 .
» choices of N—-roots for numbers x? x; ... x; € C* associated to the
vertices
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Step 2.
Theorem (FB + Helen Wong, 2011)
1

Given operators X € End(E) associated to the edges of the
triangulation ' as in Step 1, there is an explicit formula

141 1
KK)= 3 (or 4N X, 2%, 2. X"
that defines a Kauffman g—bracket

K: {framed links in (S —Vr) x [0,1]} — End(E)
for the punctured surface S — Vr
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Theorem (FB + Helen Wong, 2011)
1

Given operators X € End(E) associated to the edges of the
triangulation ' as in Step 1, there is an explicit formula
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KK)= 3 (or 4N X, 2%, 2. X"
4t
that defines a Kauffman g—bracket
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for the punctured surface S — Vr
Remark Much harder. Need to worry about the order in which to

1
multiply the operators X? € End(E), which requires the

introduction of correction factors q|:I related to the classical
Kauffman bracket in R3.
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Construction of Kauffman brackets

Step 2.
Theorem (FB + Helen Wong, 2011)
1

Given operators X € End(E) associated to the edges of the
triangulation ' as in Step 1, there is an explicit formula

141 1
KK)= 3 (or 4N X, 2%, 2. X"
that defines a Kauffman g—bracket
K: {framed links in (S —Vr) x [0,1]} — End(E)
for the punctured surface S — Vr

Remark Much harder. Need to worry about the order in which to

1
multiply the operators X? € End(E), which requires the

introduction of correction factors q|:I related to the classical
Kauffman bracket in R3.

FB + Qingtao Chen, 2013 More conceptual approach based on the
representation theory of the quantum group Ug(sly)
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Kauffman brackets on surfaces

Construction of Kauffman brackets

Summary: Recipe to construct SLy(C)—characters

1
1. Choose a weight x? € C — {0} for each edge e; of the
triangulation I

2. This defines an SLo(C)—character for the punctured surface
S — Vr by an explicit formula
141 1
Ko(K) ==+ Z (0 or 1)x,.j1[2x,.j2 ...x,-f2 v
3. This character induces a character for the closed surface S if
and only if
11 1
{ x?x? ... x? =—1

i1 Vi in
1+ Xjy + Xiy Xiy + Xig Xip Xiy + =+ 4 Xy Xip - X = 0

for each vertex
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operators X2 € End(E) such that Xf = xf Idg

= = n+2

X2X2 ... X2 =—q"% 1de
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Construction of Kauffman brackets

Summary: Recipe to construct SLy(C)—characters

1

1. Choose a weight x? € C — {0} for each edge e; of the
triangulation I

2. This defines an SLo(C)—character for the punctured surface
S — Vr by an explicit formula

141 1
Ko(K) ==+ Z (0 or 1)x,.j1[2x,.j2...x-i2 v

In

3. This character induces a character for the closed surface S if
and only if
11 1
xZx2 ... xp =—1 v
12 In
1+ Xjy + Xiy Xiy + Xig Xip Xiy + =+ 4 X Xip - X = 0

for each vertex
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Construction of Kauffman brackets

Step 3b. For a vertex v = € of the triangulation I for

1
the operators X,-j2 € End(E) associated to the edges, consider

14X, +0° Xy Xiy + P X X X+ - 4" 1 X X, ... X

in—1
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Step 3b. For a vertex v = € of the triangulation I for

1
the operators X* € End(E) associated to the edges, set

F, = ker (l—l—qX,-l+q2X;1X;2+q3X,-1X,-2X,-3+ .. +qn_1Xi1Xi2 . X,-nil)
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Construction of Kauffman brackets

Step 3b. For a vertex v = € of the triangulation I for

1
the operators X* € End(E) associated to the edges, set
F, = ker (l—l—qX,-l+q2X;1X;2+q3X,-1X,-2X,-3+ .. +qn_1Xi1Xi2 . X,-nil)
and

F = ﬂ F,CE

vertices v



Kauffman brackets on surfaces

Construction of Kauffman brackets

Theorem

1. The linear subspace F C E is invariant under the image of the
Kauffman bracket

IC: {framed links in (S — Vr) x [0,1]} — End(E)
constructed in Step 2
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Construction of Kauffman brackets

Theorem

1. The linear subspace F C E is invariant under the image of the
Kauffman bracket

IC: {framed links in (S —Vr) x [0,1]} — End(E)
constructed in Step 2 (but not invariant under the X;!!)
2. IfK, K'c(S—Vr) x|o, 1] are isotopic in S x [0, 1], then
K(K)jr = K(K')

Corollary
K induces a Kauffman g—bracket

KC: {framed links in S x [0,1]} — End(F)
for the closed surface S
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dimF >N ifg=1
1 ifg=0
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Theorem N3ED  ifg>2
dimF >N ifg=1
1 ifg=0

Theorem

Up to isomorphism, the Kauffman bracket
KC: {framed links in S x [0,1]} — End(F)

depends only on the (classical) SL(C)—character K, € Rgr,(c)(S)
associated to the same edge weights x; € C*. In particular, it is
independent of the triangulation I
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Construction of Kauffman brackets

Theorem N3ED  ifg>2
dimF >N ifg=1
1 ifg=0

with equality for generic (all?) IC, € Rgr,(c)(S)
Theorem
Up to isomorphism, the Kauffman bracket

KC: {framed links in S x [0,1]} — End(F)

depends only on the (classical) SL(C)—character K, € Rgr,(c)(S)
associated to the same edge weights x; € C*. In particular, it is
independent of the triangulation I
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Construction of Kauffman brackets

From quantum to classical: the classical shadow

Theorem (Bonahon-Wong, 2012)

When gV = 1 with N odd, every irreducible Kauffman q—bracket
KC: {framed links in S x [0,1]} — End(E)

determines a classical character IC, € Rgr,(c)(S)
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K,: {closed multicurves in S} — C
by the property that
K(K) € End(E)
for every knot K C S x [0,1] whose projection to S has no
crossing and whose framing is vertical.
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the first type defined by 2 cos N = Tp(2 cos )
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Construction of Kauffman brackets

From quantum to classical: the classical shadow

Theorem (Bonahon-Wong, 2012)
When gV = 1 with N odd, every irreducible Kauffman q—bracket
K: {framed links in S x [0,1]} — End(E)
determines a classical character IC, € Rgr,(c)(S)
K,: {closed multicurves in S} — C
by the property that
Tn(K(K))= K,(K)Ide € End(E)
for every knot K C S x [0,1] whose projection to S has no
crossing and whose framing is vertical.

Here, Tn(x) is the (normalized) N—th Chebyshev polynomial of
the first type defined by 2 cos N = Tp(2 cos )

This is not the (normalized) N—th Chebyshev polynomial of the second
type Sn(x) is defined by sin N6 = Sy(2 cos8) sin 6 which usually occurs
in the representation theory of SLy and Ug(sl,)
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Construction of Kauffman brackets
M

iraculous cancelations

For the Kauffman g—bracket that we constructed,
K(K)y= > (0or £47 X,féxj% X

where the matrices X,-% € End(E) are such that

X,.%Xj% = qDXj%X,% and X,% = x; Idg
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Construction of Kauffman brackets

Miraculous cancelations

For the Kauffman g—bracket that we constructed,

141 1
KK)= Y (o £ X 2x ... X"
1
where the matrices X € End(E) are such that
1 1 1 1 N
2y2 _ L dy2y2 2
X?X? = ¢=IX2 X7 and X = x;1de
IR 2. SR +h
TN(IC(K)) = Z (polynomial in g )X,.1 X, X

—~N<k<N
About N terms.
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Construction of Kauffman brackets
Miraculous cancelations

For the Kauffman g—bracket that we constructed,
141 1
KK)= 3 (o £ X 2%, X"
ttt
1
where the matrices X? € End(E) are such that
1 1 1 1 N
w2 _ AL ly2y2 2 _
XfXj2 =q XJ?X,.2 and X;> = x; Idg
Miraculous cancelations when g" = 1!

N N
Th(K(K) == S (0or1)X; 2 X, 2...X;
+4-4

At most 2" terms.
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Construction of Kauffman brackets
Miraculous cancelations

For the Kauffman g—bracket that we constructed,
141 1
KK)= 3 (o £ X 2%, X"
ttt
1
where the matrices X? € End(E) are such that
1 1 1 1 N
w2 _ AL ly2y2 2 _
XfXj2 =q XJ?X,.2 and X;> = x; Idg
Miraculous cancelations when g" = 1!

N N N
Th(K(K) == S (0or )X, =X, 2...X, °
+4-4
L 1 1
=4 Z (0 or l)x,.leQX;_L2 ...x;_LQ Ide
ot

At most 2" terms.
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Construction of Kauffman brackets

Miraculous cancelations

For the Kauffman g—bracket that we constructed,

+3 . +3 +3
K(K)= > (0or £¢) X 2X2...X; 2
44
1
where the matrices X? € End(E) are such that
1 1 1 1 N
2y2 — S dy2y2 2 _
XfXj2 =q XJ?X,.2 and X;> = x; Idg
Miraculous cancelations when g" = 1!
N 4N N
Th(K(K) == S (0or )X, =X, 2...X, °
44
141 1
=+ Z (0 or l)x,.leQX;_L2 ...x;_LQ Ide = KC,(K) Ide
4t

At most 2" terms.
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Construction of Kauffman brackets
Miraculous cancelations

Corollary

The classical shadow of the Kauffman q—bracket K that we
constructed is the character KC, € Rgr,(c)(S) associated to the
same edge weights x; as IC
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M
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Corollary
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Construction of Kauffman brackets
M

iraculous cancelations

Corollary

The classical shadow of the Kauffman q—bracket K that we
constructed is the character KC, € Rgr,(c)(S) associated to the
same edge weights x; as IC

Current proof of miraculous cancelations
Wishful thinking to guess
Brute force to check

Better conjecture/future proof
This should come from a deep fact in the representation theory of
Uqy(slp) when gV =1
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