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Kauffman brackets on surfaces

SL2(C)–characters

S = closed oriented surface of genus g > 0

A group homomorphism ρ : π1(S) → SL2(C) defines its character

Kρ : {closed multicurves in S} −→ C

K =

n
⋃

i=1

Ki 7−→ (−1)n
n
∏

i=1

Tr ρ(Ki )



4/28

Kauffman brackets on surfaces

SL2(C)–characters

Theorem (Helling 1967)

A function K : {closed multicurves in S} −→ C is the character of
a group homomorphism ρ : π1(S) → SL2(C) if and only if:
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SL2(C)–characters

Theorem (Helling 1967)

A function K : {closed multicurves in S} −→ C is the character of
a group homomorphism ρ : π1(S) → SL2(C) if and only if:

◮ (Homotopy Invariance) K(K ) depends only on the homotopy
class of K

◮ (Superposition Rule) K(K1 ∪ K2) = K(K1)K(K2)

◮ (Skein Relation) K(K1) = −K(K0) −K(K∞) if K1, K0, K∞

are the same everywhere, except in a small box where

K1 = , K0 = and K∞ =

The Skein Relation just rephrases the classical trace relation of SL2(C):
TrM TrN = TrMN + TrMN−1, ∀M , N ∈ SL2(C)
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SL2(C)–characters

Definition
An SL2(C)–character is a function

K : {closed multicurves in S} −→ C

such that:

◮ (Homotopy Invariance) K(K ) depends only on the homotopy
class of K

◮ (Superposition Rule) K(K1 ∪ K2) = K(K1)K(K2) for any
multicurves K1 and K2

◮ (Skein Relation) K(K1) = −K(K0) −K(K∞) if K1, K0, K∞

are the same everywhere, except in a small box where

K1 = , K0 = and K∞ =
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Kauffman brackets

Definition
For q = e2πi~ ∈ C − {0}, a Kauffman q–bracket is a function

K : {framed links in S × [0, 1]} −→ End(E )

for a finite-dimensional vector space E, such that:

◮ (Isotopy Invariance) K(K ) depends only on the isotopy class
of K in S × [0, 1]

◮ (Superposition Rule) K(K1 ∪ K2) = K(K1) ◦ K(K2) whenever
K = K1 ∪ K2 with K1 ⊂ S × [0, 1

2 ] and K2 ⊂ S × [12 , 1]

◮ (Skein Relation) K(K1) = q
1
2K(K0) + q− 1

2K(K∞) if K1, K0,
K∞ are the same everywhere, except in a small box where

K1 = , K0 = and K∞ =
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Kauffman brackets

Historic examples

1. When S = the sphere and End(E ) = End(C) = C, the only
example is the classical Kauffman bracket (∼= Jones polynomial)

K : {framed links in R
3} −→ C

2. Witten’s interpretation (1987) of the Jones polynomial in the
framework of a topological quantum field theory, mathematicalized
by Reshetikhin-Turaev, provides a Kauffman q–bracket

KWRT : {framed links in S × [0, 1]} −→ End(E )

for every q that is an N–root of unity with N odd.

The skein relation appears as a consequence of a property of the
quantum trace in the quantum group Uq(sl2)

Goal of this talk: Construct other examples of Kauffman brackets
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Conceptual motivation

When q = 1 and q
1
2 = −1, an irreducible Kauffman 1–bracket is

the same thing as an SL2(C)–character, namely as a point of the
character variety

RSL2(C)(S) = {homomorphisms ρ : π1(S) → SL2(C)}//SL2(C)
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Kauffman brackets

Conceptual motivation

When q = 1 and q
1
2 = −1, an irreducible Kauffman 1–bracket is

the same thing as an SL2(C)–character, namely as a point of the
character variety

RSL2(C)(S) = {homomorphisms ρ : π1(S) → SL2(C)}//SL2(C)

Turaev (1987), Frohman, Bullock, Kania-Bartoszýnska, Przytycki,
Sikora (around 2000): Interpretation of a Kauffman q–bracket as a
“point” in a quantization of the character variety RSL2(C)(S),
namely as a quantum SL2(C)–character.

From quantum to classical (Bonahon-Wong): When qN = 1 with
N odd, every irreducible Kauffman q–bracket determines a
character Kρ ∈ RSL2(C)(S), called the classical shadow of the
Kauffman bracket.

Today, from classical to quantum: Realize every character
Kρ ∈ RSL2(C)(S) as the classical shadow of a Kauffman q–bracket.
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Construction of SL2(C)–characters

How to construct a group homomorphism ρ : π1(S) → SL2(C)?

Pick a triangulation Γ of S , with vertex set VΓ

Assign a weight xi ∈ C − {0} to each edge ei of Γ

This defines a pleated surface with shear-bend coordinates xi , and
with monodromy ρ : π1(S − VΓ) → PSL2(C) = SL2(C)/ ± Id

which, after choices of square roots x
1
2
i and of a spin structure,

defines a homomorphism ρ : π1(S − VΓ) → SL2(C)

Main Point: The construction is classical and, for a curve
K ⊂ S − VΓ, gives a very explicit formula for Tr ρ(K )
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Construction of SL2(C)–characters

More precisely, if K crosses the edges ei1 , ei2 , . . . , ein ,

Tr ρ(K ) = ± Tr

[

M1

(

x
1
2

i1
0

0 x
−

1
2

i1

)

M2

(

x
1
2

i2
0

0 x
−

1
2

i2

)

. . .Mn

(

x
1
2

in
0

0 x
−

1
2

in

)]

where

Mk =



























(

1 1

0 1

)

if

(

1 0

1 1

)

if
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More precisely, if K crosses the edges ei1 , ei2 , . . . , ein ,

Tr ρ(K ) = ± Tr

[

M1

(

x
1
2

i1
0

0 x
−

1
2

i1

)

M2

(

x
1
2

i2
0

0 x
−

1
2

i2

)

. . .Mn

(

x
1
2

in
0

0 x
−

1
2

in

)]

= ±
∑

±±···±

(0 or 1) x
±

1
2

i1
x
±

1
2

i2
. . . x

±
1
2

in

where

Mk =



























(

1 1

0 1

)

if

(

1 0

1 1

)

if
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Problem: This defines an SL2(C)–character on the punctured
surface S − VΓ, not necessarily on the closed surface S
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K

K ′
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Construction of SL2(C)–characters

Problem: This defines an SL2(C)–character on the punctured
surface S − VΓ, not necessarily on the closed surface S

ei1

ei2ei3

ein

ein−1

K

K ′

Tr ρ(K ) = Tr ρ(K ′)?

Fact
The edge weights xi define an SL2(C)–character on the closed
surface S if and only if, for every vertex,















x
1
2
i1
x

1
2
i1

. . . x
1
2
i1

= −1

1 + xi1 + xi1xi2 + xi1xi2xi3 + · · · + xi1xi2 . . . xin−1 = 0
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Summary Recipe to construct SL2(C)–characters:

1. Choose a weight x
1
2
i ∈ C − {0} for each edge ei of the

triangulation Γ

2. This defines an SL2(C)–character for the punctured surface
S − VΓ by an explicit formula
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1
2
i ∈ C − {0} for each edge ei of the

triangulation Γ

2. This defines an SL2(C)–character for the punctured surface
S − VΓ by an explicit formula

Kρ(K ) = ±
∑

±±···±

(0 or 1) x
± 1

2
i1

x
± 1

2
i2

. . . x
± 1

2
in

3. This character induces a character for the closed surface S if
and only if
{

x
1
2
i1
x

1
2
i2

. . . x
1
2
in

= −1
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for each vertex
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Construction of Kauffman brackets

Fix q ∈ C with qN = 1, N odd

Want to construct a Kauffman q–bracket

K : {framed links in S × [0, 1]} −→ End(E )

namely such that:

◮ (Isotopy Invariance) K(K ) depends only on the isotopy class
of K in S × [0, 1]

◮ (Superposition Rule) K(K1 ∪ K2) = K(K1) ◦ K(K2) whenever
K = K1 ∪ K2 with K1 ⊂ S × [0, 1

2 ] and K2 ⊂ S × [12 , 1]

◮ (Skein Relation) K(K1) = q
1
2K(K0) + q− 1

2K(K∞) if K1, K0,
K∞ are the same everywhere, except in a small box where

K1 = , K0 = and K∞ =
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Construction of Kauffman brackets

Summary: Recipe to construct SL2(C)–characters
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1
2
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Construction of Kauffman brackets

Step 1. Choose an invertible operator (= matrix) X
1
2

i ∈ End(E ) for
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i whenever
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This is the same thing as a representation of the Chekhov-Fock algebra
of the triangulation Γ (= quantum Teichmüller space of the punctured
surface S − VΓ)

Proposition (FB + Xiaobo Liu, 2007, relatively easy)
If qN = 1 with N odd, smallest dimensional choices of such operators

X
1
2

i ∈ End(E ) are classified by

◮ edge weights xi ∈ C∗ such that X
N
2

i = x
1
2

i IdE

◮ choices of N–roots for numbers x
1
2

i1
x

1
2

i2
. . . x

1
2

in
∈ C∗ associated to the

vertices
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Remark Much harder. Need to worry about the order in which to

multiply the operators X
1
2
i ∈ End(E ), which requires the

introduction of correction factors q related to the classical
Kauffman bracket in R

3.

FB + Qingtao Chen, 2013 More conceptual approach based on the
representation theory of the quantum group Uq(sl2)
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Construction of Kauffman brackets

Problem: This defines a Kauffman bracket

K : {framed links in (S − VΓ) × [0, 1]} −→ End(E )

on the punctured surface S − VΓ, not necessarily on the closed
surface S

ei1

ei2ei3

ein

ein−1

K

K ′

K(K ) = K(K ′)?
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In Step 1, we associated to the edges of the triangulation Γ

operators X
1
2
i ∈ End(E ) such that X

N
2

i = x
1
2
i IdE

Step 3a. If x
1
2
i1
x

1
2
i2

. . . x
1
2
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= −1 at a vertex, the corresponding

operators X
1
2
i ∈ End(E ) can be chosen so that

X
1
2
i1

X
1
2
i2

. . . X
1
2
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= −q
n+2
4 IdE
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Step 3b. For a vertex v =

ei1

ei2ei3

ein

ein−1

of the triangulation Γ for

the operators X
1
2
ij
∈ End(E ) associated to the edges, set

Fv = ker
(

1+qXi1+q2Xi1Xi2+q3Xi1Xi2Xi3+ · · · +qn−1Xi1Xi2 . . . Xin−1

)

and
F =

⋂

vertices v

Fv ⊂ E
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Construction of Kauffman brackets

Theorem

1. The linear subspace F ⊂ E is invariant under the image of the
Kauffman bracket

K : {framed links in (S − VΓ) × [0, 1]} −→ End(E )

constructed in Step 2 (but not invariant under the Xi !!)

2. If K , K ′ ⊂ (S − VΓ) × [0, 1] are isotopic in S × [0, 1], then
K(K )|F = K(K ′)|F ei1

ei2ei3

ein

ein−1

K

K ′Corollary

K induces a Kauffman q–bracket

K̄ : {framed links in S × [0, 1]} −→ End(F )

for the closed surface S
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


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with equality for generic (all?) Kρ ∈ RSL2(C)(S)

Theorem
Up to isomorphism, the Kauffman bracket
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∗. In particular, it is
independent of the triangulation Γ
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From quantum to classical: the classical shadow

Theorem (Bonahon-Wong, 2012)

When qN = 1 with N odd, every irreducible Kauffman q–bracket

K : {framed links in S × [0, 1]} −→ End(E )

determines a classical character Kρ ∈ RSL2(C)(S)
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Construction of Kauffman brackets

From quantum to classical: the classical shadow

Theorem (Bonahon-Wong, 2012)

When qN = 1 with N odd, every irreducible Kauffman q–bracket

K : {framed links in S × [0, 1]} −→ End(E )

determines a classical character Kρ ∈ RSL2(C)(S)

Kρ : {closed multicurves in S} −→ C

by the property that

TN

(

K(K )
)

= Kρ(K ) IdE ∈ End(E )

for every knot K ⊂ S × [0, 1] whose projection to S has no
crossing and whose framing is vertical.

Here, TN(x) is the (normalized) N–th Chebyshev polynomial of
the first type defined by 2 cos Nθ = TN(2 cos θ)

This is not the (normalized) N–th Chebyshev polynomial of the second

type SN(x) is defined by sin Nθ = SN(2 cos θ) sin θ which usually occurs

in the representation theory of SL2 and Uq(sl2)
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Miraculous cancelations

For the Kauffman q–bracket that we constructed,

K(K ) =
∑

±±···±

(0 or ± q )X
± 1

2
i1

X
± 1

2
i2

. . . X
± 1

2
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where the matrices X
1
2
i ∈ End(E ) are such that
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1
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i X

1
2
j = q X

1
2
j X

1
2
i and X

N
2

i = xi IdE
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At most 2n terms.
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Construction of Kauffman brackets

Miraculous cancelations

Corollary

The classical shadow of the Kauffman q–bracket K that we
constructed is the character Kρ ∈ RSL2(C)(S) associated to the
same edge weights xi as K

Current proof of miraculous cancelations
Wishful thinking to guess
Brute force to check

Better conjecture/future proof
This should come from a deep fact in the representation theory of
Uq(sl2) when qN = 1
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