Kauffman brackets on surfaces

Francis Bonahon

University of Southern California

Geometric Topology in New York, August 2013
Joint work with Helen Wong
Joint work with Helen Wong

here with Grace Tsapsie Hibbard, born March 22, 2013
$S = \text{closed oriented surface of genus } g \geq 0$

group homomorphism $\rho : \pi_1(S) \to \text{SL}_2(\mathbb{C})$
$S = \text{closed oriented surface of genus } g \geq 0$

group homomorphism $\rho : \pi_1(S) \to \text{SL}_2(\mathbb{C})$
A group homomorphism $\rho : \pi_1(S) \to \text{SL}_2(\mathbb{C})$ defines its **character**

$\mathcal{K}_\rho : \{\text{closed curves in } S\} \to \mathbb{C}$

$K \mapsto \text{Tr} \rho(K)$
A group homomorphism $\rho: \pi_1(S) \to \text{SL}_2(\mathbb{C})$ defines its \textit{character}

$$K = \bigcup_{i=1}^{n} K_i \quad \mapsto \quad (-1)^n \prod_{i=1}^{n} \text{Tr} \, \rho(K_i)$$
Theorem (Helling 1967)

A function $\mathcal{K} : \{\text{closed multicurves in } S\} \longrightarrow \mathbb{C}$ is the character of a group homomorphism $\rho : \pi_1(S) \rightarrow \text{SL}_2(\mathbb{C})$ if and only if:
Theorem (Helling 1967)

A function $\mathcal{K}: \{\text{closed multicurves in } S\} \rightarrow \mathbb{C}$ is the character of a group homomorphism $\rho : \pi_1(S) \rightarrow \mathrm{SL}_2(\mathbb{C})$ if and only if:

- (Homotopy Invariance) $\mathcal{K}(K)$ depends only on the homotopy class of K.

\[\text{Diagram with multicurves and homotopy classes}\]
Theorem (Helling 1967)

A function $\mathcal{K}: \{\text{closed multicurves in } S\} \to \mathbb{C}$ is the character of a group homomorphism $\rho: \pi_1(S) \to \text{SL}_2(\mathbb{C})$ if and only if:

- (Homotopy Invariance) $\mathcal{K}(K)$ depends only on the homotopy class of K
- (Superposition Rule) $\mathcal{K}(K_1 \cup K_2) = \mathcal{K}(K_1)\mathcal{K}(K_2)$
A function $\mathcal{K}: \{\text{closed multicurves in } S\} \rightarrow \mathbb{C}$ is the character of a group homomorphism $\rho: \pi_1(S) \rightarrow \text{SL}_2(\mathbb{C})$ if and only if:

- **(Homotopy Invariance)** $\mathcal{K}(K)$ depends only on the homotopy class of K
- **(Superposition Rule)** $\mathcal{K}(K_1 \cup K_2) = \mathcal{K}(K_1)\mathcal{K}(K_2)$
- **(Skein Relation)** $\mathcal{K}(K_1) = -\mathcal{K}(K_0) - \mathcal{K}(K_\infty)$ if K_1, K_0, K_∞ are the same everywhere, except in a small box where $K_1 = \begin{array}{c} \times \end{array}$, $K_0 = \begin{array}{c} \otimes \end{array}$ and $K_\infty = \begin{array}{c} \otimes \end{array}$
Theorem (Helling 1967)

A function $\mathcal{K} : \{\text{closed multicurves in } S\} \rightarrow \mathbb{C}$ is the character of a group homomorphism $\rho : \pi_1(S) \rightarrow \text{SL}_2(\mathbb{C})$ if and only if:

- **(Homotopy Invariance)** $\mathcal{K}(K)$ depends only on the homotopy class of K

- **(Superposition Rule)** $\mathcal{K}(K_1 \cup K_2) = \mathcal{K}(K_1) \mathcal{K}(K_2)$

- **(Skein Relation)** $\mathcal{K}(K_1) = -\mathcal{K}(K_0) - \mathcal{K}(K_\infty)$ if K_1, K_0, K_∞ are the same everywhere, except in a small box where $K_1 = \times\times, K_0 = \bigcirc\bigcirc$ and $K_\infty = \bigcirc\bigcirc$

The Skein Relation just rephrases the classical trace relation of $\text{SL}_2(\mathbb{C})$:

$$\text{Tr } M \text{ Tr } N = \text{Tr } MN + \text{Tr } MN^{-1}, \quad \forall M, N \in \text{SL}_2(\mathbb{C})$$
Definition

An $\text{SL}_2(\mathbb{C})$–character is a function

$$\mathcal{K}: \{\text{closed multicurves in } S\} \to \mathbb{C}$$

such that:

- (Homotopy Invariance) $\mathcal{K}(K)$ depends only on the homotopy class of K
- (Superposition Rule) $\mathcal{K}(K_1 \cup K_2) = \mathcal{K}(K_1)\mathcal{K}(K_2)$ for any multicurves K_1 and K_2
- (Skein Relation) $\mathcal{K}(K_1) = -\mathcal{K}(K_0) - \mathcal{K}(K_{\infty})$ if K_1, K_0, K_{∞} are the same everywhere, except in a small box where $K_1 = \begin{array}{c} \times \end{array}$, $K_0 = \begin{array}{c} \times \end{array}$ and $K_{\infty} = \begin{array}{c} \circ \circ \end{array}$
Definition

For \(q = e^{2 \pi \mathrm{i} \hbar} \in \mathbb{C} - \{0\} \), a **Kauffman q–bracket** is a function

\[K : \{\text{framed links in } S \times [0,1]\} \rightarrow \text{End}(E) \]

for a finite-dimensional vector space \(E \), such that:

- **(Isotopy Invariance)** \(K(K) \) depends only on the isotopy class of \(K \) in \(S \times [0,1] \)

- **(Superposition Rule)** \(K(K_1 \cup K_2) = K(K_1) \circ K(K_2) \) whenever \(K = K_1 \cup K_2 \) with \(K_1 \subset S \times [0,1/2] \) and \(K_2 \subset S \times [1/2,1] \)

- **(Skein Relation)** \(K(K_1) = q^{1/2}K(K_0) + q^{-1/2}K(K_\infty) \) if \(K_1, K_0, K_\infty \) are the same everywhere, except in a small box where \(K_1 = \bigotimes, K_0 = \bigotimes \) and \(K_\infty = \bigotimes \)
Definition
For $q = e^{2\pi i \hbar} \in \mathbb{C} - \{0\}$, a Kauffman q–bracket is a function

$$\mathcal{K} : \{\text{framed links in } S \times [0, 1]\} \to \text{End}(E)$$

for a finite-dimensional vector space E, such that:

- (Isotopy Invariance) $\mathcal{K}(K)$ depends only on the isotopy class of K in $S \times [0,1]$

- (Superposition Rule) $\mathcal{K}(K_1 \cup K_2) = \mathcal{K}(K_1) \circ \mathcal{K}(K_2)$ whenever $K = K_1 \cup K_2$ with $K_1 \subset S \times [0, \frac{1}{2}]$ and $K_2 \subset S \times [\frac{1}{2}, 1]$

- (Skein Relation) $\mathcal{K}(K_1) = q^{\frac{1}{2}} \mathcal{K}(K_0) + q^{-\frac{1}{2}} \mathcal{K}(K_\infty)$ if K_1, K_0, K_∞ are the same everywhere, except in a small box where $K_1 = \bigotimes$, $K_0 = \bigotimes$ and $K_\infty = \bigotimes$
For $q = e^{2\pi i \hbar} \in \mathbb{C} - \{0\}$, a Kauffman q–bracket is a function

$$K: \{\text{framed links in } S \times [0,1]\} \longrightarrow \text{End}(E)$$

for a finite-dimensional vector space E, such that:

- (Isotopy Invariance) $K(K)$ depends only on the isotopy class of K in $S \times [0,1]$

- (Superposition Rule) $K(K_1 \cup K_2) = K(K_1) \circ K(K_2)$ whenever $K = K_1 \cup K_2$ with $K_1 \subset S \times [0, \frac{1}{2}]$ and $K_2 \subset S \times [\frac{1}{2}, 1]$

- (Skein Relation) $K(K_1) = q^{\frac{1}{2}} K(K_0) + q^{-\frac{1}{2}} K(K_\infty)$ if K_1, K_0, K_∞ are the same everywhere, except in a small box where $K_1 = \bigotimes$, $K_0 = \bigotimes$ and $K_\infty = \bigotimes$
Definition

For \(q = e^{2\pi i\hbar} \in \mathbb{C} - \{0\} \), a Kauffman q–bracket is a function

\[\mathcal{K}: \{ \text{framed links in } S \times [0,1] \} \rightarrow \text{End}(E) \]

for a finite-dimensional vector space \(E \), such that:

- (Isotopy Invariance) \(\mathcal{K}(K) \) depends only on the isotopy class of \(K \) in \(S \times [0,1] \)

- (Superposition Rule) \(\mathcal{K}(K_1 \cup K_2) = \mathcal{K}(K_1) \circ \mathcal{K}(K_2) \) whenever \(K = K_1 \cup K_2 \) with \(K_1 \subset S \times [0, \frac{1}{2}] \) and \(K_2 \subset S \times [\frac{1}{2}, 1] \)

- (Skein Relation) \(\mathcal{K}(K_1) = q^{\frac{1}{2}} \mathcal{K}(K_0) + q^{-\frac{1}{2}} \mathcal{K}(K_\infty) \) if \(K_1, K_0, K_\infty \) are the same everywhere, except in a small box where \(K_1 = \includegraphics[width=0.2\textwidth]{k1.png}, K_0 = \includegraphics[width=0.2\textwidth]{k0.png} \) and \(K_\infty = \includegraphics[width=0.2\textwidth]{kinfinity.png} \)
Kauffman brackets on surfaces

Kauffman brackets

Definition

For \(q = e^{2\pi i \hbar} \in \mathbb{C} - \{0\} \), a Kauffman \(q \)-bracket is a function
\[
K : \{ \text{framed links in } S \times [0, 1] \} \longrightarrow \text{End}(E) \cong M_n(\mathbb{C})
\]
for a finite-dimensional vector space \(E \), such that:

- (Isotopy Invariance) \(K(K) \) depends only on the isotopy class of \(K \) in \(S \times [0, 1] \)

- (Superposition Rule) \(K(K_1 \cup K_2) = K(K_1) \circ K(K_2) \) whenever \(K = K_1 \cup K_2 \) with \(K_1 \subset S \times [0, \frac{1}{2}] \) and \(K_2 \subset S \times [\frac{1}{2}, 1] \)

- (Skein Relation) \(K(K_1) = q^{\frac{1}{2}}K(K_0) + q^{-\frac{1}{2}}K(K_\infty) \) if \(K_1, K_0, K_\infty \) are the same everywhere, except in a small box where \(K_1 = \begin{tikzpicture} \draw[fill=green!50!white] (0,0) circle (0.2); \draw[fill=red!50!white] (0,0) circle (0.2); \end{tikzpicture} \), \(K_0 = \begin{tikzpicture} \draw[fill=green!50!white] (0,0) circle (0.2); \draw[fill=red!50!white] (0.2,0) circle (0.2); \end{tikzpicture} \) and \(K_\infty = \begin{tikzpicture} \draw[fill=green!50!white] (0,0) circle (0.2); \draw[fill=red!50!white] (0.2,0) circle (0.2); \end{tikzpicture} \)
Definition

For $q = e^{2\pi i \hbar} \in \mathbb{C} - \{0\}$, a *Kauffman q–bracket* is a function

\[\mathcal{K} : \{ \text{framed links in } S \times [0, 1] \} \longrightarrow \text{End}(E) \cong M_n(\mathbb{C}) \]

for a finite-dimensional vector space E, such that:

- **(Isotopy Invariance)** $\mathcal{K}(K)$ depends only on the isotopy class of K in $S \times [0, 1]$

- **(Superposition Rule)** $\mathcal{K}(K_1 \cup K_2) = \mathcal{K}(K_1) \circ \mathcal{K}(K_2)$ whenever $K = K_1 \cup K_2$ with $K_1 \subset S \times [0, \frac{1}{2}]$ and $K_2 \subset S \times [\frac{1}{2}, 1]$

- **(Skein Relation)** $\mathcal{K}(K_1) = q^{\frac{1}{2}} \mathcal{K}(K_0) + q^{-\frac{1}{2}} \mathcal{K}(K_\infty)$ if K_1, K_0, K_∞ are the same everywhere, except in a small box where $K_1 = \begin{array}{c} \includegraphics[width=0.1\textwidth]{k1.png} \end{array}$, $K_0 = \begin{array}{c} \includegraphics[width=0.1\textwidth]{k0.png} \end{array}$ and $K_\infty = \begin{array}{c} \includegraphics[width=0.1\textwidth]{kinfinity.png} \end{array}$
Definition

For \(q = e^{2\pi i \hbar} \in \mathbb{C} - \{0\} \), a **Kauffman q–bracket** is a function

\[
\mathcal{K} : \{\text{framed links in } S \times [0, 1]\} \longrightarrow \text{End}(E) \cong M_n(\mathbb{C})
\]

for a finite-dimensional vector space \(E \), such that:

- **(Isotopy Invariance)** \(\mathcal{K}(K) \) depends only on the isotopy class of \(K \) in \(S \times [0, 1] \)

- **(Superposition Rule)** \(\mathcal{K}(K_1 \cup K_2) = \mathcal{K}(K_1) \circ \mathcal{K}(K_2) \) whenever \(K = K_1 \cup K_2 \) with \(K_1 \subset S \times [0, \frac{1}{2}] \) and \(K_2 \subset S \times [\frac{1}{2}, 1] \)

- **(Skein Relation)** \(\mathcal{K}(K_1) = q^\frac{1}{2} \mathcal{K}(K_0) + q^{-\frac{1}{2}} \mathcal{K}(K_\infty) \) if \(K_1, K_0, K_\infty \) are the same everywhere, except in a small box where

\[
K_1 = \overline{\otimes}, \; K_0 = \otimes \otimes \; \text{ and } \; K_\infty = \otimes \otimes
\]
1. When $S = \text{the sphere}$ and $\text{End}(E) = \text{End}(\mathbb{C}) = \mathbb{C}$, the only example is the classical Kauffman bracket (\cong Jones polynomial)

\[\mathcal{K}: \{\text{framed links in } \mathbb{R}^3\} \rightarrow \mathbb{C} \]
1. When $S = \text{the sphere}$ and $\text{End}(E) = \text{End}(\mathbb{C}) = \mathbb{C}$, the only example is the classical Kauffman bracket (\cong Jones polynomial)

 $$K : \{\text{framed links in } \mathbb{R}^3\} \longrightarrow \mathbb{C}$$

2. Witten’s interpretation (1987) of the Jones polynomial in the framework of a topological quantum field theory, mathematicalized by Reshetikhin–Turaev, provides a Kauffman q–bracket

 $$K_{\text{WRT}} : \{\text{framed links in } S \times [0, 1]\} \longrightarrow \text{End}(E)$$

 for every q that is an N–root of unity with N odd.
1. When $S =$ the sphere and $\text{End}(E) = \text{End}(\mathbb{C}) = \mathbb{C}$, the only example is the classical Kauffman bracket (\cong Jones polynomial)

$$\mathcal{K}: \{\text{framed links in } \mathbb{R}^3\} \rightarrow \mathbb{C}$$

2. Witten’s interpretation (1987) of the Jones polynomial in the framework of a topological quantum field theory, mathematicalized by Reshetikhin-Turaev, provides a Kauffman q–bracket

$$\mathcal{K}_{\text{WRT}}: \{\text{framed links in } S \times [0, 1]\} \rightarrow \text{End}(E)$$

for every q that is an N–root of unity with N odd.

The skein relation appears as a consequence of a property of the quantum trace in the quantum group $U_q(\mathfrak{sl}_2)$.
1. When $S =$ the sphere and $\text{End}(E) = \text{End}(\mathbb{C}) = \mathbb{C}$, the only example is the classical Kauffman bracket (\cong Jones polynomial)

$$K : \{\text{framed links in } \mathbb{R}^3\} \longrightarrow \mathbb{C}$$

2. Witten’s interpretation (1987) of the Jones polynomial in the framework of a topological quantum field theory, mathematicalized by Reshetikhin-Turaev, provides a Kauffman q–bracket

$$K_{\text{WRT}} : \{\text{framed links in } S \times [0, 1]\} \longrightarrow \text{End}(E)$$

for every q that is an N–root of unity with N odd.

The skein relation appears as a consequence of a property of the quantum trace in the quantum group $U_q(\mathfrak{sl}_2)$

Goal of this talk: Construct other examples of Kauffman brackets
Kauffman brackets on surfaces

Kauffman brackets

Conceptual motivation

When $q = 1$ and $q^{\frac{1}{2}} = -1$, an irreducible Kauffman 1–bracket is the same thing as an $\text{SL}_2(\mathbb{C})$–character, namely as a point of the character variety

$$\mathcal{R}_{\text{SL}_2(\mathbb{C})}(S) = \{\text{homomorphisms } \rho: \pi_1(S) \to \text{SL}_2(\mathbb{C})\} / / \text{SL}_2(\mathbb{C})$$
When $q = 1$ and $q^{\frac{1}{2}} = -1$, an irreducible Kauffman 1–bracket is the same thing as an $SL_2(\mathbb{C})$–character, namely as a point of the **character variety**

$$\mathcal{R}_{SL_2(\mathbb{C})}(S) = \{\text{homomorphisms } \rho: \pi_1(S) \to SL_2(\mathbb{C})\} // SL_2(\mathbb{C})$$

Turaev (1987), Frohman, Bullock, Kania-Bartoszynska, Przytycki, Sikora (around 2000): Interpretation of a Kauffman q–bracket as a "point" in a quantization of the character variety $\mathcal{R}_{SL_2(\mathbb{C})}(S)$, namely as a quantum $SL_2(\mathbb{C})$–character.
When \(q = 1 \) and \(q^{\frac{1}{2}} = -1 \), an irreducible Kauffman 1–bracket is the same thing as an \(\text{SL}_2(\mathbb{C}) \)–character, namely as a point of the character variety

\[
\mathcal{R}_{\text{SL}_2(\mathbb{C})}(S) = \{\text{homomorphisms } \rho : \pi_1(S) \to \text{SL}_2(\mathbb{C})\} // \text{SL}_2(\mathbb{C})
\]

Turaev (1987), Frohman, Bullock, Kania-Bartoszynska, Przytycki, Sikora (around 2000): Interpretation of a Kauffman \(q \)–bracket as a “point” in a quantization of the character variety \(\mathcal{R}_{\text{SL}_2(\mathbb{C})}(S) \), namely as a quantum \(\text{SL}_2(\mathbb{C}) \)–character.

From quantum to classical (Bonahon-Wong): When \(q^N = 1 \) with \(N \) odd, every irreducible Kauffman \(q \)–bracket determines a character \(\mathcal{K}_\rho \in \mathcal{R}_{\text{SL}_2(\mathbb{C})}(S) \), called the classical shadow of the Kauffman bracket.
When \(q = 1 \) and \(q^{1/2} = -1 \), an irreducible Kauffman 1–bracket is the same thing as an \(\text{SL}_2(\mathbb{C}) \)–character, namely as a point of the character variety

\[
R_{\text{SL}_2(\mathbb{C})}(S) = \{ \text{homomorphisms } \rho : \pi_1(S) \to \text{SL}_2(\mathbb{C}) \} / / \text{SL}_2(\mathbb{C})
\]

Turaev (1987), Frohman, Bullock, Kania-Bartoszynska, Przytycki, Sikora (around 2000): Interpretation of a Kauffman \(q \)–bracket as a “point” in a quantization of the character variety \(R_{\text{SL}_2(\mathbb{C})}(S) \), namely as a quantum \(\text{SL}_2(\mathbb{C}) \)–character.

From quantum to classical (Bonahon-Wong): When \(q^N = 1 \) with \(N \) odd, every irreducible Kauffman \(q \)–bracket determines a character \(\mathcal{K}_\rho \in R_{\text{SL}_2(\mathbb{C})}(S) \), called the classical shadow of the Kauffman bracket.

Today, from classical to quantum: Realize every character \(\mathcal{K}_\rho \in R_{\text{SL}_2(\mathbb{C})}(S) \) as the classical shadow of a Kauffman \(q \)–bracket.
How to construct a group homomorphism $\rho: \pi_1(S) \to \text{SL}_2(\mathbb{C})$?
How to construct a group homomorphism $\rho: \pi_1(S) \to \text{SL}_2(\mathbb{C})$?

Pick a triangulation Γ of S, with vertex set V_Γ.

![Triangulation Diagram]
How to construct a group homomorphism $\rho: \pi_1(S) \to \text{SL}_2(\mathbb{C})$?

Pick a triangulation Γ of S, with vertex set V_Γ

Assign a weight $x_i \in \mathbb{C} - \{0\}$ to each edge e_i of Γ
How to construct a group homomorphism $\rho: \pi_1(S) \to \text{SL}_2(\mathbb{C})$?

Pick a triangulation Γ of S, with vertex set V_Γ

Assign a weight $x_i \in \mathbb{C} - \{0\}$ to each edge e_i of Γ

This defines a pleated surface with shear-bend coordinates x_i, and with monodromy $\rho: \pi_1(S - V_\Gamma) \to \text{PSL}_2(\mathbb{C}) = \text{SL}_2(\mathbb{C})/\pm \text{Id}$
How to construct a group homomorphism $\rho: \pi_1(S) \to \text{SL}_2(\mathbb{C})$?

Pick a triangulation Γ of S, with vertex set V_{Γ}

Assign a weight $x_i \in \mathbb{C} - \{0\}$ to each edge e_i of Γ

This defines a pleated surface with shear-bend coordinates x_i, and with monodromy $\rho: \pi_1(S - V_{\Gamma}) \to \text{PSL}_2(\mathbb{C}) = \text{SL}_2(\mathbb{C})/ \pm \text{Id}$

which, after choices of square roots $x_i^{\frac{1}{2}}$ and of a spin structure, defines a homomorphism $\rho: \pi_1(S - V_{\Gamma}) \to \text{SL}_2(\mathbb{C})$
How to construct a group homomorphism $\rho: \pi_1(S) \to \text{SL}_2(\mathbb{C})$?

Pick a triangulation Γ of S, with vertex set \mathcal{V}_Γ

Assign a weight $x_i \in \mathbb{C} - \{0\}$ to each edge e_i of Γ

This defines a pleated surface with shear-bend coordinates x_i, and with monodromy $\rho: \pi_1(S - \mathcal{V}_\Gamma) \to \text{PSL}_2(\mathbb{C}) = \text{SL}_2(\mathbb{C})/\pm \text{Id}$

which, after choices of square roots $x_i^{\frac{1}{2}}$ and of a spin structure, defines a homomorphism $\rho: \pi_1(S - \mathcal{V}_\Gamma) \to \text{SL}_2(\mathbb{C})$

Main Point: The construction is classical and, for a curve $K \subset S - \mathcal{V}_\Gamma$, gives a very explicit formula for $\text{Tr} \rho(K)$
More precisely, if K crosses the edges $e_{i_1}, e_{i_2}, \ldots, e_{i_n}$,

$$\text{Tr } \rho(K) = \pm \text{Tr } \left[M_1 \begin{pmatrix} x_{i_1}^{\frac{1}{2}} & 0 \\ 0 & x_{i_1}^{-\frac{1}{2}} \end{pmatrix} M_2 \begin{pmatrix} x_{i_2}^{\frac{1}{2}} & 0 \\ 0 & x_{i_2}^{-\frac{1}{2}} \end{pmatrix} \cdots M_n \begin{pmatrix} x_{i_n}^{\frac{1}{2}} & 0 \\ 0 & x_{i_n}^{-\frac{1}{2}} \end{pmatrix} \right]$$

where

$$M_k = \begin{cases} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} & \text{if} \\
\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} & \text{if} \end{cases}$$
More precisely, if K crosses the edges $e_{i_1}, e_{i_2}, \ldots, e_{i_n}$,

$$\text{Tr } \rho(K) = \pm \text{Tr} \left[M_1 \left(\begin{array}{cc} x_{i_1}^{\frac{1}{2}} & 0 \\ 0 & x_{i_1}^{-\frac{1}{2}} \end{array} \right) M_2 \left(\begin{array}{cc} x_{i_2}^{\frac{1}{2}} & 0 \\ 0 & x_{i_2}^{-\frac{1}{2}} \end{array} \right) \ldots M_n \left(\begin{array}{cc} x_{i_n}^{\frac{1}{2}} & 0 \\ 0 & x_{i_n}^{-\frac{1}{2}} \end{array} \right) \right]$$

$$= \pm \sum_{\pm \pm \ldots \pm} (0 \text{ or } 1) x_{i_1}^{\pm \frac{1}{2}} x_{i_2}^{\pm \frac{1}{2}} \ldots x_{i_n}^{\pm \frac{1}{2}}$$

where

$$M_k = \begin{cases} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} & \text{if} \\ \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} & \text{if} \end{cases}$$
Problem: This defines an $\text{SL}_2(\mathbb{C})$–character on the punctured surface $S - \mathcal{V}_\Gamma$, not necessarily on the closed surface S.
Problem: This defines an $SL_2(\mathbb{C})$–character on the punctured surface $S - \mathcal{V}_\Gamma$, not necessarily on the closed surface S.
Problem: This defines an $\mathrm{SL}_2(\mathbb{C})$–character on the punctured surface $S - \mathcal{V}_\Gamma$, not necessarily on the closed surface S

\[
\text{Tr} \, \rho(K) = \text{Tr} \, \rho(K')?
\]
Problem: This defines an $\text{SL}_2(\mathbb{C})$–character on the punctured surface $S - \mathcal{V}_\Gamma$, not necessarily on the closed surface S.

Fact

The edge weights x_i define an $\text{SL}_2(\mathbb{C})$–character on the closed surface S if and only if, for every vertex,

$$
\begin{align*}
\frac{1}{2} x_{i_1} \frac{1}{2} x_{i_1} \cdots \frac{1}{2} x_{i_1} &= -1 \\
1 + x_{i_1} + x_{i_1} x_{i_2} + x_{i_1} x_{i_2} x_{i_3} + \cdots + x_{i_1} x_{i_2} \cdots x_{i_{n-1}} &= 0
\end{align*}
$$
Summary Recipe to construct $SL_2(\mathbb{C})$–characters:
Summary Recipe to construct $\text{SL}_2(\mathbb{C})$–characters:

1. Choose a weight $x_i^{\frac{1}{2}} \in \mathbb{C} - \{0\}$ for each edge e_i of the triangulation Γ
Summary Recipe to construct $SL_2(\mathbb{C})$–characters:

1. Choose a weight $x_i^{\frac{1}{2}} \in \mathbb{C} - \{0\}$ for each edge e_i of the triangulation Γ

2. This defines an $SL_2(\mathbb{C})$–character for the punctured surface $S - \mathcal{V}_\Gamma$ by an explicit formula

\[K_{\rho}(K) = \pm \sum_{\pm\pm\ldots\pm} (0 \text{ or } 1) x_{i_1}^{\pm\frac{1}{2}} x_{i_2}^{\pm\frac{1}{2}} \ldots x_{i_n}^{\pm\frac{1}{2}} \]
Summary Recipe to construct $\text{SL}_2(\mathbb{C})$–characters:

1. Choose a weight $\frac{1}{2} x_i \in \mathbb{C} - \{0\}$ for each edge e_i of the triangulation Γ

2. This defines an $\text{SL}_2(\mathbb{C})$–character for the punctured surface $S - \mathcal{V}_\Gamma$ by an explicit formula

$$K_\rho(K) = \pm \sum_{\pm \pm \cdots \pm} (0 \text{ or } 1) x_{i_1}^{\pm \frac{1}{2}} x_{i_2}^{\pm \frac{1}{2}} \cdots x_{i_n}^{\pm \frac{1}{2}}$$

3. This character induces a character for the closed surface S if and only if

$$\begin{cases}
\frac{1}{2} x_{i_1} \cdot \frac{1}{2} x_{i_2} \cdots \frac{1}{2} x_{i_n} = -1 \\
1 + x_{i_1} + x_{i_1} x_{i_2} + x_{i_1} x_{i_2} x_{i_3} + \cdots + x_{i_1} x_{i_2} \cdots x_{i_{n-1}} = 0
\end{cases}$$

for each vertex
Fix $q \in \mathbb{C}$ with $q^N = 1$, N odd
Fix $q \in \mathbb{C}$ with $q^N = 1$, N odd

Want to construct a Kauffman q–bracket

$\mathcal{K}: \{\text{framed links in } S \times [0, 1]\} \longrightarrow \text{End}(E)$
Fix $q \in \mathbb{C}$ with $q^N = 1$, N odd

Want to construct a Kauffman q–bracket \mathcal{K}:

$$\mathcal{K} : \{\text{framed links in } S \times [0, 1]\} \rightarrow \text{End}(E)$$

namely such that:

- (Isotopy Invariance) $\mathcal{K}(K)$ depends only on the isotopy class of K in $S \times [0, 1]$

- (Superposition Rule) $\mathcal{K}(K_1 \cup K_2) = \mathcal{K}(K_1) \circ \mathcal{K}(K_2)$ whenever $K = K_1 \cup K_2$ with $K_1 \subset S \times [0, \frac{1}{2}]$ and $K_2 \subset S \times [\frac{1}{2}, 1]$)

- (Skein Relation) $\mathcal{K}(K_1) = q^{\frac{1}{2}} \mathcal{K}(K_0) + q^{-\frac{1}{2}} \mathcal{K}(K_\infty)$ if K_1, K_0, K_∞ are the same everywhere, except in a small box where $K_1 = \begin{tikzpicture}[baseline=-.5ex]
\draw (0,0) circle (.3);
\draw (0,.3) circle (.3);
\end{tikzpicture}$, $K_0 = \begin{tikzpicture}[baseline=-.5ex]
\draw (0,0) circle (.3);
\draw (0,.3) circle (.3);
\draw (0,0) -- (0,.3);
\end{tikzpicture}$ and $K_\infty = \begin{tikzpicture}[baseline=-.5ex]
\draw (0,0) circle (.3);
\draw (0,.3) circle (.3);
\draw (0,0) -- (0,.3);
\draw (0,0) -- (0.3,0);
\draw (0,0) -- (-0.3,0);
\end{tikzpicture}$
Summary: Recipe to construct $\text{SL}_2(\mathbb{C})$–characters

1. Choose a weight $x_{i}^{\frac{1}{2}} \in \mathbb{C} - \{0\}$ for each edge e_i of the triangulation Γ

2. This defines an $\text{SL}_2(\mathbb{C})$–character for the punctured surface $S - \mathcal{V}_\Gamma$ by an explicit formula

$$K_\rho(K) = \pm \sum_{\pm \pm \cdots \pm} (0 \text{ or } 1) x_{i_1}^{\pm \frac{1}{2}} x_{i_2}^{\pm \frac{1}{2}} \cdots x_{i_n}^{\pm \frac{1}{2}}$$

3. This character induces a character for the closed surface S if and only if

$$\left\{\begin{array}{l}
 x_{i_1}^{\frac{1}{2}} x_{i_2}^{\frac{1}{2}} \cdots x_{i_n}^{\frac{1}{2}} = -1 \\
 1 + x_{i_1} + x_{i_1} x_{i_2} + x_{i_1} x_{i_2} x_{i_3} + \cdots + x_{i_1} x_{i_2} \cdots x_{i_{n-1}} = 0
\end{array}\right.$$

for each vertex
Step 1. Choose an invertible operator (= matrix) $X_i^{1/2} \in \text{End}(E)$ for each edge e_i of the triangulation Γ,
Step 1. Choose an invertible operator (= matrix) $X_i^{\frac{1}{2}} \in \text{End}(E)$ for each edge e_i of the triangulation Γ, for an appropriate finite-dimensional vector space E.
Step 1. Choose an invertible operator (\(\equiv\) matrix) \(X_i^{1/2} \in \text{End}(E)\) for each edge \(e_i\) of the triangulation \(\Gamma\), for an appropriate finite-dimensional vector space \(E\) and in such a way that

\[
X_i^{1/2} X_j^{1/2} = q X_j^{1/2} X_i^{1/2}
\]

whenever \(e_i e_j\).
Step 1. Choose an invertible operator (= matrix) $X_i^{\frac{1}{2}} \in \text{End}(E)$ for each edge e_i of the triangulation Γ, for an appropriate finite-dimensional vector space E and in such a way that

$$X_i^{\frac{1}{2}} X_j^{\frac{1}{2}} = qX_j^{\frac{1}{2}} X_i^{\frac{1}{2}}$$

whenever $e_i e_j$. This is the same thing as a representation of the Chekhov-Fock algebra of the triangulation Γ (= quantum Teichmüller space of the punctured surface $S - \mathcal{V}_\Gamma$)
Step 1. Choose an invertible operator (= matrix) $X_{i^j}^{1^2} \in \text{End}(E)$ for each edge e_i of the triangulation Γ, for an appropriate finite-dimensional vector space E and in such a way that

$$X_{i^j}^{1^2} X_{j^i}^{1^2} = q X_{j^i}^{1^2} X_{i^j}^{1^2}$$

whenever $e_i e_j$. This is the same thing as a representation of the Chekhov-Fock algebra of the triangulation Γ (= quantum Teichmüller space of the punctured surface $S - \mathcal{V}_\Gamma$).

Proposition (FB + Xiaobo Liu, 2007, relatively easy)

If $q^N = 1$ with N odd, smallest dimensional choices of such operators $X_{i^j}^{1^2} \in \text{End}(E)$ are classified by

- edge weights $x_i \in \mathbb{C}^*$ such that $X_{i^j}^{N^2} = x_i^{1^2} \text{Id}_E$

- choices of N–roots for numbers $x_i^{1^2} x_i^{1^2} \ldots x_i^{1^2} \in \mathbb{C}^*$ associated to the vertices
Kauffman brackets on surfaces

Construction of Kauffman brackets

Summary: Recipe to construct $\text{SL}_2(\mathbb{C})$–characters

1. Choose a weight $x_i^{1/2} \in \mathbb{C} - \{0\}$ for each edge e_i of the triangulation Γ

2. This defines an $\text{SL}_2(\mathbb{C})$–character for the punctured surface $S - \mathcal{V}_\Gamma$ by an explicit formula

$$K_\rho(K) = \pm \sum_{\pm \pm \cdots \pm} (0 \text{ or } 1) x_{i_1}^{\pm 1/2} x_{i_2}^{\pm 1/2} \cdots x_{i_n}^{\pm 1/2}$$

3. This character induces a character for the closed surface S if and only if

$$\begin{cases} x_{i_1}^{1/2} x_{i_2}^{1/2} \cdots x_{i_n}^{1/2} = -1 \\
1 + x_{i_1} + x_{i_1} x_{i_2} + x_{i_1} x_{i_2} x_{i_3} + \cdots + x_{i_1} x_{i_2} \cdots x_{i_{n-1}} = 0 \end{cases}$$

for each vertex
Summary: Recipe to construct $\text{SL}_2(\mathbb{C})$–characters

1. Choose a weight $x_i^{\frac{1}{2}} \in \mathbb{C} - \{0\}$ for each edge e_i of the triangulation Γ \checkmark

2. This defines an $\text{SL}_2(\mathbb{C})$–character for the punctured surface $S - \mathcal{V}_\Gamma$ by an explicit formula

$$K_\rho(K) = \pm \sum_{\pm\pm\cdots\pm} (0 \text{ or } 1) x_{i_1}^{\pm\frac{1}{2}} x_{i_2}^{\pm\frac{1}{2}} \cdots x_{i_n}^{\pm\frac{1}{2}}$$

3. This character induces a character for the closed surface S if and only if

$$\left\{ \begin{array}{l}
x_{i_1}^{\frac{1}{2}} x_{i_2}^{\frac{1}{2}} \cdots x_{i_n}^{\frac{1}{2}} = -1 \\
1 + x_{i_1} + x_{i_1} x_{i_2} + x_{i_1} x_{i_2} x_{i_3} + \cdots + x_{i_1} x_{i_2} \cdots x_{i_{n-1}} = 0
\end{array} \right.$$ for each vertex
Step 2.

Theorem (FB + Helen Wong, 2011)

Given operators $X_{\frac{1}{2}} \in \text{End}(E)$ associated to the edges of the triangulation Γ as in Step 1, there is an explicit formula

$$K(K) = \sum_{\pm \cdots \pm} (0 \text{ or } \pm q^\Box) X_{i_1}^{\pm \frac{1}{2}} X_{i_2}^{\pm \frac{1}{2}} \cdots X_{i_n}^{\pm \frac{1}{2}}$$

that defines a Kauffman q–bracket

$$K: \{\text{framed links in } (S - V_\Gamma) \times [0, 1]\} \longrightarrow \text{End}(E)$$

for the punctured surface $S - V_\Gamma$.
Step 2.

Theorem (FB + Helen Wong, 2011)

Given operators $X_i^{\frac{1}{2}} \in \text{End}(E)$ associated to the edges of the triangulation Γ as in Step 1, there is an explicit formula

$$K(K) = \sum_{\pm \pm \ldots \pm} (0 \text{ or } \pm q^{\square}) X_{i_1}^{\pm \frac{1}{2}} X_{i_2}^{\pm \frac{1}{2}} \ldots X_{i_n}^{\pm \frac{1}{2}}$$

that defines a Kauffman q–bracket

$$K: \{\text{framed links in } (S - \mathcal{V}_\Gamma) \times [0, 1]\} \longrightarrow \text{End}(E)$$

for the punctured surface $S - \mathcal{V}_\Gamma$

Remark Much harder. Need to worry about the order in which to multiply the operators $X_i^{\frac{1}{2}} \in \text{End}(E)$, which requires the introduction of correction factors q^{\square} related to the classical Kauffman bracket in \mathbb{R}^3.
Step 2.

Theorem (FB + Helen Wong, 2011)

Given operators $X_i^{\frac{1}{2}} \in \text{End}(E)$ associated to the edges of the triangulation Γ as in Step 1, there is an explicit formula

$$\mathcal{K}(K) = \sum_{\pm \pm \cdots \pm} (0 \text{ or } \pm q^{\Box}) X_{i_1}^{\pm \frac{1}{2}} X_{i_2}^{\pm \frac{1}{2}} \cdots X_{i_n}^{\pm \frac{1}{2}}$$

that defines a Kauffman q–bracket

$$\mathcal{K}: \{\text{framed links in } (S - \mathcal{V}_\Gamma) \times [0, 1]\} \rightarrow \text{End}(E)$$

for the punctured surface $S - \mathcal{V}_\Gamma$

Remark Much harder. Need to worry about the order in which to multiply the operators $X_i^{\frac{1}{2}} \in \text{End}(E)$, which requires the introduction of correction factors q^{\Box} related to the classical Kauffman bracket in \mathbb{R}^3.

FB + Qingtao Chen, 2013 More conceptual approach based on the representation theory of the quantum group $U_q(\mathfrak{sl}_2)$
Summary: Recipe to construct $\text{SL}_2(\mathbb{C})$–characters

1. Choose a weight $x_i^{\frac{1}{2}} \in \mathbb{C} - \{0\}$ for each edge e_i of the triangulation Γ.

2. This defines an $\text{SL}_2(\mathbb{C})$–character for the punctured surface $S - \mathcal{V}_\Gamma$ by an explicit formula

$$K_\rho(K) = \pm \sum_{\pm \pm \cdots \pm} (0 \text{ or } 1) x_{i_1}^{\frac{1}{2}} x_{i_2}^{\frac{1}{2}} \cdots x_{i_n}^{\frac{1}{2}}$$

3. This character induces a character for the closed surface S if and only if

$$\begin{cases}
 x_{i_1}^{\frac{1}{2}} x_{i_2}^{\frac{1}{2}} \cdots x_{i_n}^{\frac{1}{2}} = -1 \\
 1 + x_{i_1} + x_{i_1} x_{i_2} + x_{i_1} x_{i_2} x_{i_3} + \cdots + x_{i_1} x_{i_2} \cdots x_{i_{n-1}} = 0
\end{cases}$$

for each vertex.
Summary: Recipe to construct $\text{SL}_2(\mathbb{C})$–characters

1. Choose a weight $x_i^{1/2} \in \mathbb{C} - \{0\}$ for each edge e_i of the triangulation Γ.

2. This defines an $\text{SL}_2(\mathbb{C})$–character for the punctured surface $S - V_\Gamma$ by an explicit formula:

 $$ \mathcal{K}_\rho(K) = \pm \sum_{\pm \pm \cdots \pm} (0 \text{ or } 1)x_i^{1/2}x_j^{1/2}\cdots x_n^{1/2} \checkmark $$

3. This character induces a character for the closed surface S if and only if

 $$ \begin{cases}
 x_{i_1}^{1/2}x_{i_2}^{1/2}\cdots x_{i_n}^{1/2} = -1 \\
 1 + x_{i_1} + x_{i_1}x_{i_2} + x_{i_1}x_{i_2}x_{i_3} + \cdots + x_{i_1}x_{i_2}\cdots x_{i_{n-1}} = 0
 \end{cases} $$

for each vertex.
Problem: This defines a Kauffman bracket

\[\mathcal{K}: \{\text{framed links in } (S - \mathcal{V}_\Gamma) \times [0,1]\} \longrightarrow \text{End}(E) \]

on the punctured surface \(S - \mathcal{V}_\Gamma \), not necessarily on the closed surface \(S \)
Problem: This defines a Kauffman bracket

\[\mathcal{K} : \{\text{framed links in } (S - \mathcal{V}_\Gamma) \times [0, 1]\} \longrightarrow \text{End}(E) \]

on the *punctured* surface \(S - \mathcal{V}_\Gamma \), not necessarily on the *closed* surface \(S \).
Problem: This defines a Kauffman bracket

\[\mathcal{K}: \{\text{framed links in } (S - \mathcal{V}_\Gamma) \times [0, 1]\} \longrightarrow \text{End}(E) \]

on the *punctured* surface \(S - \mathcal{V}_\Gamma \), not necessarily on the *closed* surface \(S \)
Summary: Recipe to construct $SL_2(\mathbb{C})$–characters

1. Choose a weight $x_i^{\frac{1}{2}} \in \mathbb{C} - \{0\}$ for each edge e_i of the triangulation Γ.

2. This defines an $SL_2(\mathbb{C})$–character for the punctured surface $S - \mathcal{V}_\Gamma$ by an explicit formula

$$K_{\rho}(K) = \pm \sum_{\pm \pm \cdots \pm} (0 \text{ or } 1) x_i^{\pm \frac{1}{2}} x_i^{\pm \frac{1}{2}} \cdots x_i^{\pm \frac{1}{2}}$$

3. This character induces a character for the closed surface S if and only if

$$\begin{cases}
 x_i^{\frac{1}{2}} x_i^{\frac{1}{2}} \cdots x_i^{\frac{1}{2}} = -1 \\
 1 + x_i + x_i x_i x_i + x_i x_i x_i x_i + \cdots + x_i x_i x_i \cdots x_{i_{n-1}} = 0
\end{cases}$$

for each vertex.
In Step 1, we associated to the edges of the triangulation Γ operators $X_i^{\frac{1}{2}} \in \text{End}(E)$ such that $X_i^{\frac{N}{2}} = x_i^{\frac{1}{2}} \text{Id}_E$
In Step 1, we associated to the edges of the triangulation Γ operators $X_{i}^{\frac{1}{2}} \in \text{End}(E)$ such that $X_{i}^{\frac{N}{2}} = x_{i}^{\frac{1}{2}} \text{Id}_{E}$

Step 3a. If $x_{i_{1}}^{\frac{1}{2}} x_{i_{2}}^{\frac{1}{2}} \ldots x_{i_{n}}^{\frac{1}{2}} = -1$ at a vertex, the corresponding operators $X_{i}^{\frac{1}{2}} \in \text{End}(E)$ can be chosen so that

$$X_{i_{1}}^{\frac{1}{2}} X_{i_{2}}^{\frac{1}{2}} \ldots X_{i_{n}}^{\frac{1}{2}} = -q^{\frac{n+2}{4}} \text{Id}_{E}$$
Summary: Recipe to construct $SL_2(\mathbb{C})$–characters

1. Choose a weight $x_{i}^{\frac{1}{2}} \in \mathbb{C} - \{0\}$ for each edge e_{i} of the triangulation Γ.

2. This defines an $SL_2(\mathbb{C})$–character for the punctured surface $S - \mathcal{V}_{\Gamma}$ by an explicit formula

$$K_{\rho}(K) = \sum_{\pm \pm \cdots \pm} (0 \text{ or } 1) x_{i_{1}}^{\frac{1}{2}} x_{i_{2}}^{\frac{1}{2}} \cdots x_{i_{n}}^{\frac{1}{2}}$$

3. This character induces a character for the closed surface S if and only if

$$\begin{cases}
 x_{i_{1}}^{\frac{1}{2}} x_{i_{2}}^{\frac{1}{2}} \cdots x_{i_{n}}^{\frac{1}{2}} = -1 \\
 1 + x_{i_{1}} + x_{i_{1}} x_{i_{2}} + x_{i_{1}} x_{i_{2}} x_{i_{3}} + \cdots + x_{i_{1}} x_{i_{2}} \cdots x_{i_{n-1}} = 0
\end{cases}$$

for each vertex.
Summary: Recipe to construct $SL_2(\mathbb{C})$–characters

1. Choose a weight $x_i^{\frac{1}{2}} \in \mathbb{C} - \{0\}$ for each edge e_i of the triangulation Γ.

2. This defines an $SL_2(\mathbb{C})$–character for the punctured surface $S - \mathcal{V}_\Gamma$ by an explicit formula
 \[
 \mathcal{K}_\rho(K) = \pm \sum_{\pm \cdots \pm} (0 \text{ or } 1) x_i^{\pm \frac{1}{2}} x_j^{\pm \frac{1}{2}} \cdots x_n^{\pm \frac{1}{2}}
 \]

3. This character induces a character for the closed surface S if and only if
 \[
 \left\{
 \begin{array}{l}
 x_i^{\frac{1}{2}} x_j^{\frac{1}{2}} \cdots x_n^{\frac{1}{2}} = -1 \\
 1 + x_i + x_i x_j + x_i x_j x_3 + \cdots + x_i x_j \cdots x_{i_{n-1}} = 0
 \end{array}
 \right.
 \]
 for each vertex.
Step 3b. For a vertex $v = e_i^1 e_i^2 e_i^3 \ldots e_i^n$ of the triangulation Γ for the operators $X_{\frac{1}{2}}^{i_j} \in \text{End}(E)$ associated to the edges, consider

$$1 + qX_{i_1} + q^2 X_{i_1}X_{i_2} + q^3 X_{i_1}X_{i_2}X_{i_3} + \cdots + q^{n-1} X_{i_1}X_{i_2} \ldots X_{i_{n-1}}$$
Step 3b. For a vertex $v = e_{i_1} e_{i_2} e_{i_3} \ldots e_{i_n}$ of the triangulation Γ for the operators $X_{i_j}^{\frac{1}{2}} \in \text{End}(E)$ associated to the edges, set

$$F_v = \ker \left(1 + qX_{i_1} + q^2 X_{i_1} X_{i_2} + q^3 X_{i_1} X_{i_2} X_{i_3} + \cdots + q^{n-1} X_{i_1} X_{i_2} \ldots X_{i_{n-1}} \right)$$
Step 3b. For a vertex \(v = e_{i_1} e_{i_2} \ldots e_{i_n} \) of the triangulation \(\Gamma \) for the operators \(X_{i_1}^{1/2} \in \text{End}(E) \) associated to the edges, set

\[
F_v = \ker \left(1 + qX_{i_1} + q^2 X_{i_1}X_{i_2} + q^3 X_{i_1}X_{i_2}X_{i_3} + \cdots + q^{n-1}X_{i_1}X_{i_2} \cdots X_{i_{n-1}} \right)
\]

and

\[
F = \bigcap_{\text{vertices } v} F_v \subset E
\]
Theorem

1. The linear subspace $F \subseteq E$ is invariant under the image of the Kauffman bracket

 $\mathcal{K}: \{\text{framed links in } (S - \mathcal{V}_\Gamma) \times [0, 1]\} \longrightarrow \text{End}(E)$

 constructed in Step 2
Theorem

1. The linear subspace $F \subset E$ is invariant under the image of the Kauffman bracket

$$\mathcal{K}: \{\text{framed links in } (S - \mathcal{V}_\Gamma) \times [0, 1]\} \longrightarrow \text{End}(E)$$

constructed in Step 2 (but not invariant under the X_i!!)
Theorem

1. **The linear subspace** \(F \subset E \) **is invariant under the image of the Kauffman bracket**

\[
\mathcal{K} : \{ \text{framed links in } (S - \mathcal{V}_\Gamma) \times [0, 1] \} \longrightarrow \text{End}(E)
\]

constructed in Step 2 (but not invariant under the \(X_i \)!!)

2. **If** \(K, K' \subset (S - \mathcal{V}_\Gamma) \times [0, 1] \) **are isotopic in** \(S \times [0, 1] \), **then**

\[
\mathcal{K}(K)|_F = \mathcal{K}(K')|_F
\]
Theorem

1. The linear subspace $F \subset E$ is invariant under the image of the Kauffman bracket
 \[\mathcal{K} : \{ \text{framed links in } (S - V_{\Gamma}) \times [0, 1] \} \rightarrow \text{End}(E) \]
 constructed in Step 2 (but not invariant under the X_i !!)

2. If $K, K' \subset (S - V_{\Gamma}) \times [0, 1]$ are isotopic in $S \times [0, 1]$, then
 \[\mathcal{K}(K)|_F = \mathcal{K}(K')|_F \]

Corollary

\mathcal{K} induces a Kauffman q–bracket
\[\bar{\mathcal{K}} : \{ \text{framed links in } S \times [0, 1] \} \rightarrow \text{End}(F) \]

for the closed surface S
Theorem

\[\dim F \geq \begin{cases}
N^{3(g-1)} & \text{if } g \geq 2 \\
N & \text{if } g = 1 \\
1 & \text{if } g = 0
\end{cases} \]
Theorem

\[\dim F \geq \begin{cases}
N^3(g-1) & \text{if } g \geq 2 \\
N & \text{if } g = 1 \\
1 & \text{if } g = 0
\end{cases} \]

Theorem

Up to isomorphism, the Kauffman bracket

\[\overline{\mathcal{K}} : \{ \text{framed links in } S \times [0, 1] \} \longrightarrow \text{End}(F) \]

depends only on the (classical) \(SL_2(\mathbb{C}) \)-character \(\mathcal{K}_\rho \in \mathcal{R}_{SL_2(\mathbb{C})}(S) \) associated to the same edge weights \(x_i \in \mathbb{C}^ \). In particular, it is independent of the triangulation \(\Gamma \)
Theorem

\[\text{dim } F \geq \begin{cases} \mathcal{N}^3(g-1) & \text{if } g \geq 2 \\ \mathcal{N} & \text{if } g = 1 \\ 1 & \text{if } g = 0 \end{cases} \]

with equality for generic (all?) \(K_{\rho} \in \mathcal{R}_{\text{SL}_2(\mathbb{C})}(S) \)

Theorem

Up to isomorphism, the Kauffman bracket

\[\widetilde{\mathcal{K}} : \{ \text{framed links in } S \times [0, 1] \} \longrightarrow \text{End}(F) \]

depends only on the (classical) \(\text{SL}_2(\mathbb{C}) \)-character \(K_{\rho} \in \mathcal{R}_{\text{SL}_2(\mathbb{C})}(S) \) associated to the same edge weights \(x_i \in \mathbb{C}^* \). In particular, it is independent of the triangulation \(\Gamma \).
Theorem (Bonahon-Wong, 2012)

When $q^N = 1$ with N odd, every irreducible Kauffman q–bracket

$$\mathcal{K}: \{\text{framed links in } S \times [0, 1]\} \longrightarrow \text{End}(E)$$

determines a classical character $\mathcal{K}_\rho \in \mathcal{R}_{SL_2(C)}(S)$
Theorem (Bonahon-Wong, 2012)

When $q^N = 1$ with N odd, every irreducible Kauffman q–bracket
\[K : \{\text{framed links in } S \times [0, 1]\} \to \text{End}(E) \]
determines a classical character $K_\rho \in \mathcal{R}_{\text{SL}_2(\mathbb{C})}(S)$
\[K_\rho : \{\text{closed multicurves in } S\} \to \mathbb{C} \]
Theorem (Bonahon-Wong, 2012)

When \(q^N = 1 \) with \(N \) odd, every irreducible Kauffman \(q \)-bracket \(\mathcal{K} : \{ \text{framed links in } S \times [0,1] \} \rightarrow \text{End}(E) \)
determines a classical character \(\mathcal{K}_\rho \in \mathcal{R}_{\text{SL}_2(\mathbb{C})}(S) \)
\[
\mathcal{K}_\rho : \{ \text{closed multicurves in } S \} \rightarrow \mathbb{C}
\]
by the property that
\[
\mathcal{K}(K) \in \text{End}(E)
\]
for every knot \(K \subset S \times [0,1] \) whose projection to \(S \) has no crossing and whose framing is vertical.
Theorem (Bonahon-Wong, 2012)

When \(q^N = 1 \) with \(N \) odd, every irreducible Kauffman \(q \)-bracket \(\mathcal{K} : \{\text{framed links in } S \times [0, 1]\} \rightarrow \text{End}(E) \) determines a classical character \(\mathcal{K}_\rho \in \mathcal{R}_{\text{SL}_2(\mathbb{C})}(S) \)

\[\mathcal{K}_\rho : \{\text{closed multicurves in } S\} \rightarrow \mathbb{C} \]

by the property that

\[T_N(\mathcal{K}(K)) \in \text{End}(E) \]

for every knot \(K \subset S \times [0, 1] \) whose projection to \(S \) has no crossing and whose framing is vertical.

Here, \(T_N(x) \) is the (normalized) \(N \)-th Chebyshev polynomial of the first type defined by \(2 \cos N \theta = T_N(2 \cos \theta) \)
Theorem (Bonahon-Wong, 2012)

When $q^N = 1$ with N odd, every irreducible Kauffman q–bracket $\mathcal{K}: \{\text{framed links in } S \times [0, 1]\} \rightarrow \text{End}(E)$ determines a classical character $\mathcal{K}_\rho \in \mathcal{R}_{\text{SL}_2(\mathbb{C})}(S)$

$$\mathcal{K}_\rho: \{\text{closed multicurves in } S\} \rightarrow \mathbb{C}$$

by the property that

$$T_N(\mathcal{K}(K)) = \mathcal{K}_\rho(K) \text{Id}_E \in \text{End}(E)$$

for every knot $K \subset S \times [0, 1]$ whose projection to S has no crossing and whose framing is vertical.

Here, $T_N(x)$ is the (normalized) N–th Chebyshev polynomial of the first type defined by $2 \cos N\theta = T_N(2 \cos \theta)$.
Theorem (Bonahon-Wong, 2012)

When \(q^N = 1 \) with \(N \) odd, every irreducible Kauffman \(q \)-bracket
\[
\mathcal{K} : \{\text{framed links in } S \times [0, 1]\} \to \text{End}(E)
\]
determines a classical character \(\mathcal{K}_\rho \in \mathcal{R}_{\text{SL}_2(\mathbb{C})}(S) \)
\[
\mathcal{K}_\rho : \{\text{closed multicurves in } S\} \to \mathbb{C}
\]
by the property that
\[
T_N(\mathcal{K}(K)) = \mathcal{K}_\rho(K) \text{Id}_E \in \text{End}(E)
\]
for every knot \(K \subset S \times [0, 1] \) whose projection to \(S \) has no crossing and whose framing is vertical.

Here, \(T_N(x) \) is the (normalized) \(N \)-th Chebyshev polynomial of the first type defined by \(2 \cos N\theta = T_N(2 \cos \theta) \)

This is not the (normalized) \(N \)-th Chebyshev polynomial of the second type \(S_N(x) \) is defined by \(\sin N\theta = S_N(2 \cos \theta) \sin \theta \) which usually occurs in the representation theory of \(SL_2 \) and \(U_q(sl_2) \)
For the Kauffman q–bracket that we constructed,

$$\mathcal{K}(K) = \sum_{\pm\pm\ldots\pm} (0 \text{ or } \pm q) X_{i_1}^{\pm \frac{1}{2}} X_{i_2}^{\pm \frac{1}{2}} \ldots X_{i_n}^{\pm \frac{1}{2}}$$

where the matrices $X_{i}^{\frac{1}{2}} \in \text{End}(E)$ are such that

$$X_{i}^{\frac{1}{2}} X_{j}^{\frac{1}{2}} = q^n X_{j}^{\frac{1}{2}} X_{i}^{\frac{1}{2}} \text{ and } X_{i}^{\frac{N}{2}} = x_i \text{Id}_E$$
For the Kauffman q–bracket that we constructed,

$$\mathcal{K}(K) = \sum_{\pm \pm \cdots \pm} (0 \text{ or } \pm q^{\square}) X_{i_1}^{\pm \frac{1}{2}} X_{i_2}^{\pm \frac{1}{2}} \cdots X_{i_n}^{\pm \frac{1}{2}}$$

where the matrices $X_{i}^{\frac{1}{2}} \in \text{End}(E)$ are such that

$$X_{i}^{\frac{1}{2}} X_{j}^{\frac{1}{2}} = q^{\square} X_{j}^{\frac{1}{2}} X_{i}^{\frac{1}{2}} \text{ and } X_{i}^{\frac{N}{2}} = x_i \text{ Id}_E$$

$$T_N(\mathcal{K}(K)) = \sum_{-N \leq k_i \leq N} (\text{polynomial in } q^{\pm 1}) X_{i_1}^{\pm \frac{k_1}{2}} X_{i_2}^{\pm \frac{k_2}{2}} \cdots X_{i_n}^{\pm \frac{k_n}{2}}$$

About N^n terms.
For the Kauffman q–bracket that we constructed,

$$\mathcal{K}(K) = \sum_{\pm \pm \cdots \pm} (0 \text{ or } \pm q^{\square}) X^\pm_{i_1} X^\pm_{i_2} \cdots X^\pm_{i_n}$$

where the matrices $X^\frac{1}{2} \in \text{End}(E)$ are such that

$$X^\frac{1}{2} X^\frac{1}{2} = q^{\square} X^\frac{1}{2} X^\frac{1}{2} \text{ and } X^\frac{N}{2} = x_i \text{ Id}_E$$

Miraculous cancelations when $q^N = 1!$

$$T_N(\mathcal{K}(K)) = \pm \sum_{\pm \pm \cdots \pm} (0 \text{ or } 1) X^{\pm \frac{N}{2}}_{i_1} X^{\pm \frac{N}{2}}_{i_2} \cdots X^{\pm \frac{N}{2}}_{i_n}$$

At most 2^n terms.
For the Kauffman q–bracket that we constructed,
\[
\mathcal{K}(K) = \sum_{\pm\pm\ldots\pm} (0 \text{ or } \pm q^{\Box}) X_{i_1}^{\pm \frac{1}{2}} X_{i_2}^{\pm \frac{1}{2}} \ldots X_{i_n}^{\pm \frac{1}{2}}
\]
where the matrices $X_{i}^{\frac{1}{2}} \in \text{End}(E)$ are such that
\[
X_{i}^{\frac{1}{2}} X_{j}^{\frac{1}{2}} = q^{\Box} X_{j}^{\frac{1}{2}} X_{i}^{\frac{1}{2}} \quad \text{and} \quad X_{i}^{\frac{N}{2}} = x_{i} \text{Id}_E
\]
Miraculous cancelations when $q^{N} = 1!$
\[
T_{N}(\mathcal{K}(K)) = \pm \sum_{\pm\pm\ldots\pm} (0 \text{ or } 1) X_{i_1}^{\pm \frac{N}{2}} X_{i_2}^{\pm \frac{N}{2}} \ldots X_{i_n}^{\pm \frac{N}{2}}
\]
\[
= \pm \sum_{\pm\pm\ldots\pm} (0 \text{ or } 1) x_{i_1}^{\pm \frac{1}{2}} x_{i_2}^{\pm \frac{1}{2}} \ldots x_{i_n}^{\pm \frac{1}{2}} \text{Id}_E
\]
At most 2^n terms.
For the Kauffman q–bracket that we constructed,

$$
\mathcal{K}(K) = \sum_{\pm\pm\ldots\pm} (0 \text{ or } \pm q^{\square}) X_{i_1}^{\pm \frac{1}{2}} X_{i_2}^{\pm \frac{1}{2}} \ldots X_{i_n}^{\pm \frac{1}{2}}
$$

where the matrices $X_i^{\frac{1}{2}} \in \text{End}(E)$ are such that

$$
X_i^{\frac{1}{2}} X_j^{\frac{1}{2}} = q^{\square} X_j^{\frac{1}{2}} X_i^{\frac{1}{2}} \text{ and } X_i^{\frac{N}{2}} = x_i \text{Id}_E
$$

Miraculous cancelations when $q^N = 1$!

$$
T_N(\mathcal{K}(K)) = \pm \sum_{\pm\pm\ldots\pm} (0 \text{ or } 1) X_{i_1}^{\pm \frac{N}{2}} X_{i_2}^{\pm \frac{N}{2}} \ldots X_{i_n}^{\pm \frac{N}{2}}
$$

$$
= \pm \sum_{\pm\pm\ldots\pm} (0 \text{ or } 1) x_{i_1}^{\pm \frac{1}{2}} x_{i_2}^{\pm \frac{1}{2}} \ldots x_{i_n}^{\pm \frac{1}{2}} \text{Id}_E = \mathcal{K}_\rho(K) \text{Id}_E
$$

At most 2^n terms.
Corollary

The classical shadow of the Kauffman q–bracket \mathcal{K} that we constructed is the character $\mathcal{K}_\rho \in \mathcal{R}_{\text{SL}_2(\mathbb{C})}(S)$ associated to the same edge weights x_i as \mathcal{K}.
Corollary

The classical shadow of the Kauffman q–bracket \mathcal{K} that we constructed is the character $\mathcal{K}_\rho \in \mathcal{R}_{SL_2(\mathbb{C})}(S)$ associated to the same edge weights x_i as \mathcal{K}

Current proof of miraculous cancelations
Corollary

The classical shadow of the Kauffman q–bracket \mathcal{K} that we constructed is the character $\mathcal{K}_\rho \in \mathcal{R}_{SL_2(C)}(S)$ associated to the same edge weights x_i as \mathcal{K}

Current proof of miraculous cancelations
Wishful thinking to guess
Corollary

The classical shadow of the Kauffman q–bracket \mathcal{K} that we constructed is the character $\mathcal{K}_\rho \in \mathcal{R}_{\text{SL}_2(\mathbb{C})}(S)$ associated to the same edge weights x_i as \mathcal{K}

Current proof of miraculous cancelations
Wishful thinking to guess
Brute force to check
Corollary

The classical shadow of the Kauffman q–bracket \mathcal{K} that we constructed is the character $\mathcal{K}_{\rho} \in \mathcal{R}_{SL_2(\mathbb{C})}(S)$ associated to the same edge weights x_i as \mathcal{K}.

Current proof of miraculous cancelations
Wishful thinking to guess
Brute force to check

Better conjecture/future proof
This should come from a deep fact in the representation theory of $U_q(\mathfrak{sl}_2)$ when $q^N = 1$