# Kauffman brackets on surfaces

### Francis Bonahon

University of Southern California

Geometric Topology in New York, August 2013

Joint work with Helen Wong

### Joint work with Helen Wong



here with Grace Tsapsie Hibbard, born March 22, 2013



group homomorphism  $\rho \colon \pi_1(\mathcal{S}) \to \operatorname{SL}_2(\mathbb{C})$ 

S = closed oriented surface of genus  $g \ge 0$ 



group homomorphism  $\rho \colon \pi_1(\mathcal{S}) \to \mathrm{SL}_2(\mathbb{C})$ 

S = closed oriented surface of genus  $g \ge 0$ 



A group homomorphism  $\rho \colon \pi_1(S) \to \operatorname{SL}_2(\mathbb{C})$  defines its *character* 

$$\begin{aligned} &\mathcal{K}_{\rho} \colon \{ \text{closed curves in } S \} \longrightarrow \mathbb{C} \\ &\mathcal{K} \longmapsto \operatorname{Tr} \rho(\mathcal{K}) \end{aligned}$$

S = closed oriented surface of genus  $g \ge 0$ 



A group homomorphism  $\rho \colon \pi_1(S) \to \operatorname{SL}_2(\mathbb{C})$  defines its *character* 

$$\mathcal{K}_{\rho} \colon \{ \text{closed multicurves in } S \} \longrightarrow \mathbb{C}$$
$$\mathcal{K} = \bigcup_{i=1}^{n} \mathcal{K}_{i} \qquad \longmapsto (-1)^{n} \prod_{i=1}^{n} \operatorname{Tr} \rho(\mathcal{K}_{i})$$



### Theorem (Helling 1967)

A function  $\mathcal{K}$ : {closed multicurves in S}  $\longrightarrow \mathbb{C}$  is the character of a group homomorphism  $\rho \colon \pi_1(S) \to \mathrm{SL}_2(\mathbb{C})$  if and only if:



### Theorem (Helling 1967)

A function  $\mathcal{K}$ : {closed multicurves in S}  $\longrightarrow \mathbb{C}$  is the character of a group homomorphism  $\rho \colon \pi_1(S) \to \mathrm{SL}_2(\mathbb{C})$  if and only if:

► (Homotopy Invariance) K(K) depends only on the homotopy class of K



## Theorem (Helling 1967)

A function  $\mathcal{K}$ : {closed multicurves in S}  $\longrightarrow \mathbb{C}$  is the character of a group homomorphism  $\rho \colon \pi_1(S) \to \mathrm{SL}_2(\mathbb{C})$  if and only if:

- ► (Homotopy Invariance) K(K) depends only on the homotopy class of K
- (Superposition Rule)  $\mathcal{K}(K_1 \cup K_2) = \mathcal{K}(K_1)\mathcal{K}(K_2)$



## Theorem (Helling 1967)

A function  $\mathcal{K}$ : {closed multicurves in S}  $\longrightarrow \mathbb{C}$  is the character of a group homomorphism  $\rho \colon \pi_1(S) \to \mathrm{SL}_2(\mathbb{C})$  if and only if:

- ► (Homotopy Invariance) K(K) depends only on the homotopy class of K
- (Superposition Rule)  $\mathcal{K}(K_1 \cup K_2) = \mathcal{K}(K_1)\mathcal{K}(K_2)$
- ► (Skein Relation)  $\mathcal{K}(K_1) = -\mathcal{K}(K_0) \mathcal{K}(K_\infty)$  if  $K_1$ ,  $K_0$ ,  $K_\infty$ are the same everywhere, except in a small box where  $K_1 = \bigotimes$ ,  $K_0 = \bigotimes$  and  $K_\infty = \bigotimes$



## Theorem (Helling 1967)

A function  $\mathcal{K}$ : {closed multicurves in S}  $\longrightarrow \mathbb{C}$  is the character of a group homomorphism  $\rho \colon \pi_1(S) \to \mathrm{SL}_2(\mathbb{C})$  if and only if:

- ► (Homotopy Invariance) K(K) depends only on the homotopy class of K
- (Superposition Rule)  $\mathcal{K}(K_1 \cup K_2) = \mathcal{K}(K_1)\mathcal{K}(K_2)$
- ► (Skein Relation)  $\mathcal{K}(K_1) = -\mathcal{K}(K_0) \mathcal{K}(K_\infty)$  if  $K_1$ ,  $K_0$ ,  $K_\infty$ are the same everywhere, except in a small box where  $K_1 = \bigotimes$ ,  $K_0 = \bigotimes$  and  $K_\infty = \bigotimes$

The Skein Relation just rephrases the classical trace relation of  $SL_2(\mathbb{C})$ : Tr M Tr  $N = Tr MN + Tr MN^{-1}$ ,  $\forall M, N \in SL_2(\mathbb{C})$ 



## Definition An $SL_2(\mathbb{C})$ -character is a function $\mathcal{K}: \{ closed multicurves in S \} \longrightarrow \mathbb{C}$

such that:

- ► (Homotopy Invariance) K(K) depends only on the homotopy class of K
- ► (Superposition Rule) K(K<sub>1</sub> ∪ K<sub>2</sub>) = K(K<sub>1</sub>)K(K<sub>2</sub>) for any multicurves K<sub>1</sub> and K<sub>2</sub>
- ► (Skein Relation)  $\mathcal{K}(K_1) = -\mathcal{K}(K_0) \mathcal{K}(K_\infty)$  if  $K_1$ ,  $K_0$ ,  $K_\infty$ are the same everywhere, except in a small box where  $K_1 = \bigotimes$ ,  $K_0 = \bigotimes$  and  $K_\infty = \bigotimes$



### Definition

For  $q = e^{2\pi i\hbar} \in \mathbb{C} - \{0\}$ , a Kauffman q-bracket is a function

 $\mathcal{K}$ : {framed links in  $S \times [0,1]$ }  $\longrightarrow$  End(E)

- ► (Isotopy Invariance) K(K) depends only on the isotopy class of K in S × [0, 1]
- ► (Superposition Rule)  $\mathcal{K}(K_1 \cup K_2) = \mathcal{K}(K_1) \circ \mathcal{K}(K_2)$  whenever  $K = K_1 \cup K_2$  with  $K_1 \subset S \times [0, \frac{1}{2}]$  and  $K_2 \subset S \times [\frac{1}{2}, 1]$
- ► (Skein Relation)  $\mathcal{K}(K_1) = q^{\frac{1}{2}}\mathcal{K}(K_0) + q^{-\frac{1}{2}}\mathcal{K}(K_\infty)$  if  $K_1$ ,  $K_0$ ,  $K_\infty$  are the same everywhere, except in a small box where  $K_1 = \bigotimes$ ,  $K_0 = \bigotimes$  and  $K_\infty = \bigotimes$



### Definition

For  $q = e^{2\pi i\hbar} \in \mathbb{C} - \{0\}$ , a Kauffman q-bracket is a function

 $\mathcal{K}$ : {framed links in  $S \times [0,1]$ }  $\longrightarrow$  End(E)

- ► (Isotopy Invariance) K(K) depends only on the isotopy class of K in S × [0, 1]
- ► (Superposition Rule)  $\mathcal{K}(K_1 \cup K_2) = \mathcal{K}(K_1) \circ \mathcal{K}(K_2)$  whenever  $K = K_1 \cup K_2$  with  $K_1 \subset S \times [0, \frac{1}{2}]$  and  $K_2 \subset S \times [\frac{1}{2}, 1]$
- ► (Skein Relation)  $\mathcal{K}(K_1) = q^{\frac{1}{2}}\mathcal{K}(K_0) + q^{-\frac{1}{2}}\mathcal{K}(K_\infty)$  if  $K_1$ ,  $K_0$ ,  $K_\infty$  are the same everywhere, except in a small box where  $K_1 = \bigotimes$ ,  $K_0 = \bigotimes$  and  $K_\infty = \bigotimes$



### Definition

For  $q = e^{2\pi i\hbar} \in \mathbb{C} - \{0\}$ , a Kauffman q-bracket is a function

 $\mathcal{K}$ : {framed links in  $S \times [0,1]$ }  $\longrightarrow$  End(E)

- ► (Isotopy Invariance) K(K) depends only on the isotopy class of K in S × [0, 1]
- ► (Superposition Rule)  $\mathcal{K}(K_1 \cup K_2) = \mathcal{K}(K_1) \circ \mathcal{K}(K_2)$  whenever  $K = K_1 \cup K_2$  with  $K_1 \subset S \times [0, \frac{1}{2}]$  and  $K_2 \subset S \times [\frac{1}{2}, 1]$
- ► (Skein Relation)  $\mathcal{K}(K_1) = q^{\frac{1}{2}}\mathcal{K}(K_0) + q^{-\frac{1}{2}}\mathcal{K}(K_\infty)$  if  $K_1$ ,  $K_0$ ,  $K_\infty$  are the same everywhere, except in a small box where  $K_1 = \bigotimes$ ,  $K_0 = \bigotimes$  and  $K_\infty = \bigotimes$



### Definition

For  $q = e^{2\pi i\hbar} \in \mathbb{C} - \{0\}$ , a Kauffman q-bracket is a function

 $\mathcal{K}$ : {framed links in  $S \times [0,1]$ }  $\longrightarrow$  End(E)

- ► (Isotopy Invariance) K(K) depends only on the isotopy class of K in S × [0, 1]
- ► (Superposition Rule)  $\mathcal{K}(K_1 \cup K_2) = \mathcal{K}(K_1) \circ \mathcal{K}(K_2)$  whenever  $K = K_1 \cup K_2$  with  $K_1 \subset S \times [0, \frac{1}{2}]$  and  $K_2 \subset S \times [\frac{1}{2}, 1]$
- ► (Skein Relation)  $\mathcal{K}(K_1) = q^{\frac{1}{2}}\mathcal{K}(K_0) + q^{-\frac{1}{2}}\mathcal{K}(K_\infty)$  if  $K_1$ ,  $K_0$ ,  $K_\infty$  are the same everywhere, except in a small box where  $K_1 = \bigotimes$ ,  $K_0 = \bigotimes$  and  $K_\infty = \bigotimes$



### Definition

For  $q = e^{2\pi i\hbar} \in \mathbb{C} - \{0\}$ , a Kauffman q-bracket is a function

 $\mathcal{K}$ : {framed links in  $S \times [0,1]$ }  $\longrightarrow$  End( $\mathcal{E}$ )  $\cong$  M<sub>n</sub>( $\mathbb{C}$ )

- ► (Isotopy Invariance) K(K) depends only on the isotopy class of K in S × [0, 1]
- ► (Superposition Rule)  $\mathcal{K}(K_1 \cup K_2) = \mathcal{K}(K_1) \circ \mathcal{K}(K_2)$  whenever  $K = K_1 \cup K_2$  with  $K_1 \subset S \times [0, \frac{1}{2}]$  and  $K_2 \subset S \times [\frac{1}{2}, 1]$
- ► (Skein Relation)  $\mathcal{K}(K_1) = q^{\frac{1}{2}}\mathcal{K}(K_0) + q^{-\frac{1}{2}}\mathcal{K}(K_\infty)$  if  $K_1$ ,  $K_0$ ,  $K_\infty$  are the same everywhere, except in a small box where  $K_1 = \bigotimes$ ,  $K_0 = \bigotimes$  and  $K_\infty = \bigotimes$



### Definition

For  $q = e^{2\pi i\hbar} \in \mathbb{C} - \{0\}$ , a Kauffman q-bracket is a function

 $\mathcal{K}$ : {framed links in  $S \times [0,1]$ }  $\longrightarrow$  End( $\mathcal{E}$ )  $\cong$  M<sub>n</sub>( $\mathbb{C}$ )

- ► (Isotopy Invariance) K(K) depends only on the isotopy class of K in S × [0, 1]
- ► (Superposition Rule)  $\mathcal{K}(K_1 \cup K_2) = \mathcal{K}(K_1) \circ \mathcal{K}(K_2)$  whenever  $K = K_1 \cup K_2$  with  $K_1 \subset S \times [0, \frac{1}{2}]$  and  $K_2 \subset S \times [\frac{1}{2}, 1]$
- ► (Skein Relation)  $\mathcal{K}(K_1) = q^{\frac{1}{2}}\mathcal{K}(K_0) + q^{-\frac{1}{2}}\mathcal{K}(K_\infty)$  if  $K_1$ ,  $K_0$ ,  $K_\infty$  are the same everywhere, except in a small box where  $K_1 = \bigotimes$ ,  $K_0 = \bigotimes$  and  $K_\infty = \bigotimes$



### Definition

For  $q = e^{2\pi i\hbar} \in \mathbb{C} - \{0\}$ , a Kauffman q-bracket is a function

 $\mathcal{K}$ : {framed links in  $S \times [0,1]$ }  $\longrightarrow$  End( $\mathcal{E}$ )  $\cong$  M<sub>n</sub>( $\mathbb{C}$ )

- ► (Isotopy Invariance) K(K) depends only on the isotopy class of K in S × [0, 1]
- ► (Superposition Rule)  $\mathcal{K}(K_1 \cup K_2) = \mathcal{K}(K_1) \circ \mathcal{K}(K_2)$  whenever  $K = K_1 \cup K_2$  with  $K_1 \subset S \times [0, \frac{1}{2}]$  and  $K_2 \subset S \times [\frac{1}{2}, 1]$
- ► (Skein Relation)  $\mathcal{K}(K_1) = q^{\frac{1}{2}}\mathcal{K}(K_0) + q^{-\frac{1}{2}}\mathcal{K}(K_\infty)$  if  $K_1$ ,  $K_0$ ,  $K_\infty$  are the same everywhere, except in a small box where  $K_1 = \bigotimes$ ,  $K_0 = \bigotimes$  and  $K_\infty = \bigotimes$

Historic examples

1. When S = the sphere and  $\operatorname{End}(E) = \operatorname{End}(\mathbb{C}) = \mathbb{C}$ , the only example is the classical Kauffman bracket ( $\cong$  Jones polynomial)  $\mathcal{K} \colon \{ \text{framed links in } \mathbb{R}^3 \} \longrightarrow \mathbb{C}$ 

Historic examples

1. When S = the sphere and  $\operatorname{End}(E) = \operatorname{End}(\mathbb{C}) = \mathbb{C}$ , the only example is the classical Kauffman bracket ( $\cong$  Jones polynomial)  $\mathcal{K}$ : {framed links in  $\mathbb{R}^3$ }  $\longrightarrow \mathbb{C}$ 

2. Witten's interpretation (1987) of the Jones polynomial in the framework of a topological quantum field theory, mathematicalized by Reshetikhin-Turaev, provides a Kauffman q-bracket

 $\mathcal{K}_{WRT}$ : {framed links in  $S \times [0, 1]$ }  $\longrightarrow$  End(E) for every q that is an N-root of unity with N odd.

Historic examples

1. When S = the sphere and  $\operatorname{End}(E) = \operatorname{End}(\mathbb{C}) = \mathbb{C}$ , the only example is the classical Kauffman bracket ( $\cong$  Jones polynomial)  $\mathcal{K}$ : {framed links in  $\mathbb{R}^3$ }  $\longrightarrow \mathbb{C}$ 

2. Witten's interpretation (1987) of the Jones polynomial in the framework of a topological quantum field theory, mathematicalized by Reshetikhin-Turaev, provides a Kauffman q-bracket

 $\mathcal{K}_{\mathrm{WRT}}$ : {framed links in  $S \times [0, 1]$ }  $\longrightarrow$  End(E) for every q that is an N-root of unity with N odd.

The skein relation appears as a consequence of a property of the quantum trace in the quantum group  $U_q(\mathfrak{sl}_2)$ 

Historic examples

1. When S = the sphere and  $\operatorname{End}(E) = \operatorname{End}(\mathbb{C}) = \mathbb{C}$ , the only example is the classical Kauffman bracket ( $\cong$  Jones polynomial)  $\mathcal{K}$ : {framed links in  $\mathbb{R}^3$ }  $\longrightarrow \mathbb{C}$ 

2. Witten's interpretation (1987) of the Jones polynomial in the framework of a topological quantum field theory, mathematicalized by Reshetikhin-Turaev, provides a Kauffman q-bracket

 $\mathcal{K}_{WRT}$ : {framed links in  $S \times [0, 1]$ }  $\longrightarrow$  End(E) for every q that is an N-root of unity with N odd.

The skein relation appears as a consequence of a property of the quantum trace in the quantum group  $U_q(\mathfrak{sl}_2)$ 

Goal of this talk: Construct other examples of Kauffman brackets

When q = 1 and  $q^{\frac{1}{2}} = -1$ , an irreducible Kauffman 1-bracket is the same thing as an  $SL_2(\mathbb{C})$ -character, namely as a point of the *character variety* 

 $\mathcal{R}_{\mathrm{SL}_2(\mathbb{C})}(S) = \{\text{homomorphisms } \rho \colon \pi_1(S) \to \mathrm{SL}_2(\mathbb{C})\} /\!\!/ \mathrm{SL}_2(\mathbb{C})$ 

When q = 1 and  $q^{\frac{1}{2}} = -1$ , an irreducible Kauffman 1-bracket is the same thing as an  $SL_2(\mathbb{C})$ -character, namely as a point of the *character variety* 

 $\mathcal{R}_{\mathrm{SL}_2(\mathbb{C})}(S) = \{\text{homomorphisms } \rho \colon \pi_1(S) \to \mathrm{SL}_2(\mathbb{C})\} /\!\!/ \mathrm{SL}_2(\mathbb{C})$ 

Turaev (1987), Frohman, Bullock, Kania-Bartoszýnska, Przytycki, Sikora (around 2000): Interpretation of a Kauffman *q*-bracket as a "point" in a quantization of the character variety  $\mathcal{R}_{SL_2(\mathbb{C})}(S)$ , namely as a quantum  $SL_2(\mathbb{C})$ -character.

When q = 1 and  $q^{\frac{1}{2}} = -1$ , an irreducible Kauffman 1-bracket is the same thing as an  $SL_2(\mathbb{C})$ -character, namely as a point of the *character variety* 

 $\mathcal{R}_{\mathrm{SL}_2(\mathbb{C})}(S) = \{\text{homomorphisms } \rho \colon \pi_1(S) \to \mathrm{SL}_2(\mathbb{C})\} /\!\!/ \mathrm{SL}_2(\mathbb{C})$ 

Turaev (1987), Frohman, Bullock, Kania-Bartoszýnska, Przytycki, Sikora (around 2000): Interpretation of a Kauffman *q*-bracket as a "point" in a quantization of the character variety  $\mathcal{R}_{SL_2(\mathbb{C})}(S)$ , namely as a quantum  $SL_2(\mathbb{C})$ -character.

From quantum to classical (Bonahon-Wong): When  $q^N = 1$  with N odd, every irreducible Kauffman q-bracket determines a character  $\mathcal{K}_{\rho} \in \mathcal{R}_{\mathrm{SL}_2(\mathbb{C})}(S)$ , called the *classical shadow* of the Kauffman bracket.

When q = 1 and  $q^{\frac{1}{2}} = -1$ , an irreducible Kauffman 1-bracket is the same thing as an  $SL_2(\mathbb{C})$ -character, namely as a point of the *character variety* 

 $\mathcal{R}_{\mathrm{SL}_2(\mathbb{C})}(S) = \{\text{homomorphisms } \rho \colon \pi_1(S) \to \mathrm{SL}_2(\mathbb{C})\} /\!\!/ \mathrm{SL}_2(\mathbb{C})$ 

Turaev (1987), Frohman, Bullock, Kania-Bartoszýnska, Przytycki, Sikora (around 2000): Interpretation of a Kauffman *q*-bracket as a "point" in a quantization of the character variety  $\mathcal{R}_{SL_2(\mathbb{C})}(S)$ , namely as a quantum  $SL_2(\mathbb{C})$ -character.

From quantum to classical (Bonahon-Wong): When  $q^N = 1$  with N odd, every irreducible Kauffman q-bracket determines a character  $\mathcal{K}_{\rho} \in \mathcal{R}_{\mathrm{SL}_2(\mathbb{C})}(S)$ , called the *classical shadow* of the Kauffman bracket.

Today, from classical to quantum: Realize every character  $\mathcal{K}_{\rho} \in \mathcal{R}_{\mathrm{SL}_2(\mathbb{C})}(S)$  as the classical shadow of a Kauffman *q*-bracket.

Construction of  $\mathrm{SL}_2(\mathbb{C})$ -characters

How to construct a group homomorphism  $\rho \colon \pi_1(S) \to \mathrm{SL}_2(\mathbb{C})$ ?

Pick a triangulation  $\Gamma$  of S, with vertex set  $\mathcal{V}_{\Gamma}$ 



Pick a triangulation  $\Gamma$  of S, with vertex set  $\mathcal{V}_{\Gamma}$ 



Assign a weight  $x_i \in \mathbb{C} - \{0\}$  to each edge  $e_i$  of  $\Gamma$ 

Pick a triangulation  $\Gamma$  of S, with vertex set  $\mathcal{V}_{\Gamma}$ 



Assign a weight  $x_i \in \mathbb{C} - \{0\}$  to each edge  $e_i$  of  $\Gamma$ 

This defines a pleated surface with shear-bend coordinates  $x_i$ , and with monodromy  $\rho \colon \pi_1(S - \mathcal{V}_{\Gamma}) \to \mathrm{PSL}_2(\mathbb{C}) = \mathrm{SL}_2(\mathbb{C}) / \pm \mathrm{Id}$ 

Pick a triangulation  $\Gamma$  of S, with vertex set  $\mathcal{V}_{\Gamma}$ 



Assign a weight  $x_i \in \mathbb{C} - \{0\}$  to each edge  $e_i$  of  $\Gamma$ 

This defines a pleated surface with shear-bend coordinates  $x_i$ , and with monodromy  $\rho \colon \pi_1(S - \mathcal{V}_{\Gamma}) \to \mathrm{PSL}_2(\mathbb{C}) = \mathrm{SL}_2(\mathbb{C}) / \pm \mathrm{Id}$ 

which, after choices of square roots  $x_i^{\frac{1}{2}}$  and of a spin structure, defines a homomorphism  $\rho \colon \pi_1(S - \mathcal{V}_{\Gamma}) \to \mathrm{SL}_2(\mathbb{C})$ 

Pick a triangulation  $\Gamma$  of S, with vertex set  $\mathcal{V}_{\Gamma}$ 



Assign a weight  $x_i \in \mathbb{C} - \{0\}$  to each edge  $e_i$  of  $\Gamma$ 

This defines a pleated surface with shear-bend coordinates  $x_i$ , and with monodromy  $\rho \colon \pi_1(S - \mathcal{V}_{\Gamma}) \to \mathrm{PSL}_2(\mathbb{C}) = \mathrm{SL}_2(\mathbb{C}) / \pm \mathrm{Id}$ 

which, after choices of square roots  $x_i^{\frac{1}{2}}$  and of a spin structure, defines a homomorphism  $\rho \colon \pi_1(S - \mathcal{V}_{\Gamma}) \to \mathrm{SL}_2(\mathbb{C})$ 

Main Point: The construction is classical and, for a curve  $K \subset S - \mathcal{V}_{\Gamma}$ , gives a very explicit formula for  $\operatorname{Tr} \rho(K)$ 

More precisely, if *K* crosses the edges 
$$e_{i_1}, e_{i_2}, \dots, e_{i_n},$$
  

$$Tr \rho(K) = \pm Tr \left[ M_1 \begin{pmatrix} x_{i_1}^{\frac{1}{2}} & 0 \\ 0 & x_{i_1}^{-\frac{1}{2}} \end{pmatrix} M_2 \begin{pmatrix} x_{i_2}^{\frac{1}{2}} & 0 \\ 0 & x_{i_2}^{-\frac{1}{2}} \end{pmatrix} \dots M_n \begin{pmatrix} x_{i_n}^{\frac{1}{2}} & 0 \\ 0 & x_{i_n}^{-\frac{1}{2}} \end{pmatrix} \right]$$

where

$$M_k = \begin{cases} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} & \text{if} \\ \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} & \text{if} \end{cases}$$

More precisely, if *K* crosses the edges 
$$e_{i_1}, e_{i_2}, \dots, e_{i_n}$$
,  

$$Tr \rho(K) = \pm Tr \left[ M_1 \begin{pmatrix} x_{i_1}^{\frac{1}{2}} & 0 \\ 0 & x_{i_1}^{-\frac{1}{2}} \end{pmatrix} M_2 \begin{pmatrix} x_{i_2}^{\frac{1}{2}} & 0 \\ 0 & x_{i_2}^{-\frac{1}{2}} \end{pmatrix} \dots M_n \begin{pmatrix} x_{i_n}^{\frac{1}{2}} & 0 \\ 0 & x_{i_n}^{-\frac{1}{2}} \end{pmatrix} \right]$$

$$= \pm \sum_{\pm \pm \dots \pm} (0 \text{ or } 1) x_{i_1}^{\pm \frac{1}{2}} x_{i_2}^{\pm \frac{1}{2}} \dots x_{i_n}^{\pm \frac{1}{2}}$$

where

$$M_k = \begin{cases} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} & \text{if} \\ \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} & \text{if} \end{cases}$$

Construction of  $SL_2(\mathbb{C})$ -characters

Problem: This defines an  $SL_2(\mathbb{C})$ -character on the punctured surface  $S - \mathcal{V}_{\Gamma}$ , not necessarily on the closed surface S

Problem: This defines an  $SL_2(\mathbb{C})$ -character on the punctured surface  $S - \mathcal{V}_{\Gamma}$ , not necessarily on the closed surface S



Problem: This defines an  $SL_2(\mathbb{C})$ -character on the punctured surface  $S - \mathcal{V}_{\Gamma}$ , not necessarily on the closed surface S



 $\operatorname{Tr} \rho(K) = \operatorname{Tr} \rho(K')?$ 

Problem: This defines an  $SL_2(\mathbb{C})$ -character on the punctured surface  $S - \mathcal{V}_{\Gamma}$ , not necessarily on the closed surface S



$$\operatorname{Tr} \rho(K) = \operatorname{Tr} \rho(K')?$$

#### Fact

The edge weights  $x_i$  define an  $SL_2(\mathbb{C})$ -character on the closed surface S if and only if, for every vertex,

$$\begin{cases} x_{i_1}^{\frac{1}{2}} x_{i_1}^{\frac{1}{2}} \dots x_{i_1}^{\frac{1}{2}} = -1 \\ 1 + x_{i_1} + x_{i_1} x_{i_2} + x_{i_1} x_{i_2} x_{i_3} + \dots + x_{i_1} x_{i_2} \dots x_{i_{n-1}} = 0 \end{cases}$$

Construction of  $SL_2(\mathbb{C})$ -characters

## Summary Recipe to construct $SL_2(\mathbb{C})$ -characters:

1. Choose a weight  $x_i^{\frac{1}{2}} \in \mathbb{C} - \{0\}$  for each edge  $e_i$  of the triangulation  $\Gamma$ 

- 1. Choose a weight  $x_i^{\frac{1}{2}} \in \mathbb{C} \{0\}$  for each edge  $e_i$  of the triangulation  $\Gamma$
- 2. This defines an  $SL_2(\mathbb{C})$ -character for the *punctured* surface  $S \mathcal{V}_{\Gamma}$  by an explicit formula

$$\mathcal{K}_{
ho}(\mathcal{K}) = \pm \sum_{\pm \pm \cdots \pm} (0 \text{ or } 1) x_{i_1}^{\pm \frac{1}{2}} x_{i_2}^{\pm \frac{1}{2}} \dots x_{i_n}^{\pm \frac{1}{2}}$$

- 1. Choose a weight  $x_i^{\frac{1}{2}} \in \mathbb{C} \{0\}$  for each edge  $e_i$  of the triangulation  $\Gamma$
- 2. This defines an  $SL_2(\mathbb{C})$ -character for the *punctured* surface  $S \mathcal{V}_{\Gamma}$  by an explicit formula

$$\mathcal{K}_{
ho}(\mathcal{K}) = \pm \sum_{\pm \pm \cdots \pm} (0 \text{ or } 1) x_{i_1}^{\pm \frac{1}{2}} x_{i_2}^{\pm \frac{1}{2}} \dots x_{i_n}^{\pm \frac{1}{2}}$$

3. This character induces a character for the *closed* surface *S* if and only if

$$\begin{cases} x_{i_1}^{\frac{1}{2}} x_{i_2}^{\frac{1}{2}} \dots x_{i_n}^{\frac{1}{2}} = -1 \\ 1 + x_{i_1} + x_{i_1} x_{i_2} + x_{i_1} x_{i_2} x_{i_3} + \dots + x_{i_1} x_{i_2} \dots x_{i_{n-1}} = 0 \end{cases}$$

for each vertex

Fix  $q \in \mathbb{C}$  with  $q^N = 1$ , N odd

Fix  $q \in \mathbb{C}$  with  $q^N = 1$ , N odd

Want to construct a Kauffman q-bracket

 $\mathcal{K}$ : {framed links in  $S \times [0,1]$ }  $\longrightarrow$  End(E)

Fix  $q \in \mathbb{C}$  with  $q^N = 1$ , N odd

Want to construct a Kauffman q-bracket

 $\mathcal{K}$ : {framed links in  $S \times [0,1]$ }  $\longrightarrow$  End(E)

namely such that:

- ► (Isotopy Invariance) K(K) depends only on the isotopy class of K in S × [0, 1]
- ▶ (Superposition Rule)  $\mathcal{K}(K_1 \cup K_2) = \mathcal{K}(K_1) \circ \mathcal{K}(K_2)$  whenever  $K = K_1 \cup K_2$  with  $K_1 \subset S \times [0, \frac{1}{2}]$  and  $K_2 \subset S \times [\frac{1}{2}, 1]$
- ► (Skein Relation)  $\mathcal{K}(K_1) = q^{\frac{1}{2}}\mathcal{K}(K_0) + q^{-\frac{1}{2}}\mathcal{K}(K_\infty)$  if  $K_1$ ,  $K_0$ ,  $K_\infty$  are the same everywhere, except in a small box where  $K_1 = \bigotimes$ ,  $K_0 = \bigotimes$  and  $K_\infty = \bigotimes$

- 1. Choose a weight  $x_i^{\frac{1}{2}} \in \mathbb{C} \{0\}$  for each edge  $e_i$  of the triangulation  $\Gamma$
- 2. This defines an  $SL_2(\mathbb{C})$ -character for the *punctured* surface  $S \mathcal{V}_{\Gamma}$  by an explicit formula

$$\mathcal{K}_{
ho}(\mathcal{K}) = \pm \sum_{\pm \pm \dots \pm} (0 ext{ or } 1) x_{i_1}^{\pm rac{1}{2}} x_{i_2}^{\pm rac{1}{2}} \dots x_{i_n}^{\pm rac{1}{2}}$$

$$\begin{cases} x_{i_1}^{\frac{1}{2}} x_{i_2}^{\frac{1}{2}} \dots x_{i_n}^{\frac{1}{2}} = -1 \\ 1 + x_{i_1} + x_{i_1} x_{i_2} + x_{i_1} x_{i_2} x_{i_3} + \dots + x_{i_1} x_{i_2} \dots x_{i_{n-1}} = 0 \end{cases}$$
 for each vertex

Step 1. Choose an invertible operator (= matrix)  $X_i^{\frac{1}{2}} \in \operatorname{End}(E)$  for each edge  $e_i$  of the triangulation  $\Gamma$ ,

Step 1. Choose an invertible operator (= matrix)  $X_i^{\frac{1}{2}} \in \operatorname{End}(E)$  for each edge  $e_i$  of the triangulation  $\Gamma$ , for an appropriate finite-dimensional vector space E

Step 1. Choose an invertible operator (= matrix)  $X_i^{\frac{1}{2}} \in \operatorname{End}(E)$  for each edge  $e_i$  of the triangulation  $\Gamma$ , for an appropriate finite-dimensional vector space E and in such a way that

$$X_{i}^{\frac{1}{2}}X_{j}^{\frac{1}{2}} = qX_{j}^{\frac{1}{2}}X_{i}^{\frac{1}{2}}$$
 whenever  $\bigwedge_{e_{i}}$  e

Step 1. Choose an invertible operator (= matrix)  $X_i^{\frac{1}{2}} \in \operatorname{End}(E)$  for each edge  $e_i$  of the triangulation  $\Gamma$ , for an appropriate finite-dimensional vector space E and in such a way that

$$X_{i}^{\frac{1}{2}}X_{j}^{\frac{1}{2}} = qX_{j}^{\frac{1}{2}}X_{i}^{\frac{1}{2}}$$
 whenever  $/$ 

This is the same thing as a *representation of the Chekhov-Fock algebra* of the triangulation  $\Gamma$  (= quantum Teichmüller space of the punctured surface  $S - V_{\Gamma}$ )

Step 1. Choose an invertible operator (= matrix)  $X_i^{\frac{1}{2}} \in \operatorname{End}(E)$  for each edge  $e_i$  of the triangulation  $\Gamma$ , for an appropriate finite-dimensional vector space E and in such a way that  $\Re$ 

$$X_i^{\frac{1}{2}}X_j^{\frac{1}{2}} = qX_j^{\frac{1}{2}}X_i^{\frac{1}{2}}$$
 whenever  $/$ 

This is the same thing as a *representation of the Chekhov-Fock algebra* of the triangulation  $\Gamma$  (= quantum Teichmüller space of the punctured surface  $S - V_{\Gamma}$ )

Proposition (FB + Xiaobo Liu, 2007, relatively easy) If  $q^N = 1$  with N odd, smallest dimensional choices of such operators  $X_i^{\frac{1}{2}} \in \text{End}(E)$  are classified by

• edge weights  $x_i \in \mathbb{C}^*$  such that  $X_i^{\frac{N}{2}} = x_i^{\frac{1}{2}} \operatorname{Id}_E$ 

► choices of N-roots for numbers x<sup>1</sup><sub>i1</sub>x<sup>1</sup><sub>i2</sub>x<sup>1</sup><sub>i2</sub>...x<sup>1</sup><sub>in</sub> ∈ C\* associated to the vertices

- 1. Choose a weight  $x_i^{\frac{1}{2}} \in \mathbb{C} \{0\}$  for each edge  $e_i$  of the triangulation  $\Gamma$
- 2. This defines an  $SL_2(\mathbb{C})$ -character for the *punctured* surface  $S \mathcal{V}_{\Gamma}$  by an explicit formula

$$\mathcal{K}_{
ho}(\mathcal{K}) = \pm \sum_{\pm \pm \dots \pm} (0 ext{ or } 1) x_{i_1}^{\pm rac{1}{2}} x_{i_2}^{\pm rac{1}{2}} \dots x_{i_n}^{\pm rac{1}{2}}$$

$$\begin{cases} x_{i_1}^{\frac{1}{2}} x_{i_2}^{\frac{1}{2}} \dots x_{i_n}^{\frac{1}{2}} = -1 \\ 1 + x_{i_1} + x_{i_1} x_{i_2} + x_{i_1} x_{i_2} x_{i_3} + \dots + x_{i_1} x_{i_2} \dots x_{i_{n-1}} = 0 \end{cases}$$
 for each vertex

- 1. Choose a weight  $x_i^{\frac{1}{2}} \in \mathbb{C} \{0\}$  for each edge  $e_i$  of the triangulation  $\Gamma \checkmark$
- 2. This defines an  $SL_2(\mathbb{C})$ -character for the *punctured* surface  $S \mathcal{V}_{\Gamma}$  by an explicit formula

$$\mathcal{K}_{
ho}(\mathcal{K}) = \pm \sum_{\pm \pm \dots \pm} (0 ext{ or } 1) x_{i_1}^{\pm rac{1}{2}} x_{i_2}^{\pm rac{1}{2}} \dots x_{i_n}^{\pm rac{1}{2}}$$

$$\begin{cases} x_{i_1}^{\frac{1}{2}} x_{i_2}^{\frac{1}{2}} \dots x_{i_n}^{\frac{1}{2}} = -1 \\ 1 + x_{i_1} + x_{i_1} x_{i_2} + x_{i_1} x_{i_2} x_{i_3} + \dots + x_{i_1} x_{i_2} \dots x_{i_{n-1}} = 0 \end{cases}$$
 for each vertex

Step 2.

# Theorem (FB + Helen Wong, 2011)

Given operators  $X_i^{\frac{1}{2}} \in \operatorname{End}(E)$  associated to the edges of the triangulation  $\Gamma$  as in Step 1, there is an explicit formula

$$\mathcal{K}(\mathcal{K}) = \sum_{\pm \pm \dots \pm} (0 \text{ or } \pm q^{\Box}) X_{i_1}^{\pm \frac{1}{2}} X_{i_2}^{\pm \frac{1}{2}} \dots X_{i_n}^{\pm \frac{1}{2}}$$

that defines a Kauffman q-bracket

 $\mathcal{K}\colon \{\textit{framed links in } (S-\mathcal{V}_{\Gamma})\times[0,1]\} \longrightarrow \mathrm{End}(E)$  for the punctured surface  $S-\mathcal{V}_{\Gamma}$ 

Step 2.

# Theorem (FB + Helen Wong, 2011)

Given operators  $X_i^{\frac{1}{2}} \in \operatorname{End}(E)$  associated to the edges of the triangulation  $\Gamma$  as in Step 1, there is an explicit formula

$$\mathcal{K}(\mathcal{K}) = \sum_{\pm \pm \dots \pm} (0 \text{ or } \pm q^{\Box}) X_{i_1}^{\pm \frac{1}{2}} X_{i_2}^{\pm \frac{1}{2}} \dots X_{i_n}^{\pm \frac{1}{2}}$$

that defines a Kauffman q-bracket

 $\mathcal{K}\colon \{\textit{framed links in } (S-\mathcal{V}_{\Gamma})\times [0,1]\} \longrightarrow \mathrm{End}(E)$  for the punctured surface  $S-\mathcal{V}_{\Gamma}$ 

Remark Much harder. Need to worry about the order in which to multiply the operators  $X_i^{\frac{1}{2}} \in \text{End}(E)$ , which requires the introduction of correction factors  $q^{\square}$  related to the classical Kauffman bracket in  $\mathbb{R}^3$ .

### Step 2.

## Theorem (FB + Helen Wong, 2011)

Given operators  $X_i^{\frac{1}{2}} \in \text{End}(E)$  associated to the edges of the triangulation  $\Gamma$  as in Step 1, there is an explicit formula

$$\mathcal{K}(\mathcal{K}) = \sum_{\pm \pm \dots \pm} (0 \text{ or } \pm q^{\Box}) X_{i_1}^{\pm \frac{1}{2}} X_{i_2}^{\pm \frac{1}{2}} \dots X_{i_n}^{\pm \frac{1}{2}}$$

that defines a Kauffman q-bracket

 $\mathcal{K}\colon \{\textit{framed links in } (S-\mathcal{V}_{\Gamma})\times [0,1]\} \longrightarrow \mathrm{End}(E)$  for the punctured surface  $S-\mathcal{V}_{\Gamma}$ 

Remark Much harder. Need to worry about the order in which to multiply the operators  $X_i^{\frac{1}{2}} \in \text{End}(E)$ , which requires the introduction of correction factors  $q^{\square}$  related to the classical Kauffman bracket in  $\mathbb{R}^3$ .

 $\mathsf{FB}$  + Qingtao Chen, 2013 More conceptual approach based on the representation theory of the quantum group  $\mathrm{U}_q(\mathfrak{sl}_2)$ 

- 1. Choose a weight  $x_i^{\frac{1}{2}} \in \mathbb{C} \{0\}$  for each edge  $e_i$  of the triangulation  $\Gamma \checkmark$
- 2. This defines an  $SL_2(\mathbb{C})$ -character for the *punctured* surface  $S \mathcal{V}_{\Gamma}$  by an explicit formula

$$\mathcal{K}_{
ho}(\mathcal{K}) = \pm \sum_{\pm \pm \dots \pm} (0 \, \, ext{or} \, \, 1) \, x_{i_1}^{\pm rac{1}{2}} x_{i_2}^{\pm rac{1}{2}} \dots x_{i_n}^{\pm rac{1}{2}}$$

$$\begin{cases} x_{i_1}^{\frac{1}{2}} x_{i_2}^{\frac{1}{2}} \dots x_{i_n}^{\frac{1}{2}} = -1 \\ 1 + x_{i_1} + x_{i_1} x_{i_2} + x_{i_1} x_{i_2} x_{i_3} + \dots + x_{i_1} x_{i_2} \dots x_{i_{n-1}} = 0 \end{cases}$$
 for each vertex

- 1. Choose a weight  $x_i^{\frac{1}{2}} \in \mathbb{C} \{0\}$  for each edge  $e_i$  of the triangulation  $\Gamma \checkmark$
- 2. This defines an  $SL_2(\mathbb{C})$ -character for the *punctured* surface  $S \mathcal{V}_{\Gamma}$  by an explicit formula

$$\mathcal{K}_{\rho}(\mathcal{K}) = \pm \sum_{\pm \pm \dots \pm} (0 \text{ or } 1) x_{i_1}^{\pm \frac{1}{2}} x_{i_2}^{\pm \frac{1}{2}} \dots x_{i_n}^{\pm \frac{1}{2}} \checkmark$$

$$\begin{cases} x_{i_1}^{\frac{1}{2}} x_{i_2}^{\frac{1}{2}} \dots x_{i_n}^{\frac{1}{2}} = -1 \\ 1 + x_{i_1} + x_{i_1} x_{i_2} + x_{i_1} x_{i_2} x_{i_3} + \dots + x_{i_1} x_{i_2} \dots x_{i_{n-1}} = 0 \end{cases}$$
 for each vertex

#### Problem: This defines a Kauffman bracket

 $\mathcal{K}\colon \{\text{framed links in } (S-\mathcal{V}_{\Gamma})\times [0,1]\} \longrightarrow \operatorname{End}(E)$ 

on the punctured surface  $S-\mathcal{V}_{\Gamma},$  not necessarily on the closed surface S

#### Problem: This defines a Kauffman bracket

 $\mathcal{K}\colon \{\text{framed links in } (S-\mathcal{V}_{\Gamma})\times [0,1]\} \longrightarrow \operatorname{End}(E)$ 

on the *punctured* surface  $S - \mathcal{V}_{\Gamma}$ , not necessarily on the *closed* surface S



#### Problem: This defines a Kauffman bracket

 $\mathcal{K}$ : {framed links in  $(S - \mathcal{V}_{\Gamma}) \times [0, 1]$ }  $\longrightarrow$  End(E)

on the *punctured* surface  $S - \mathcal{V}_{\Gamma}$ , not necessarily on the *closed* surface S



 $\mathcal{K}(K) = \mathcal{K}(K')?$ 

- 1. Choose a weight  $x_i^{\frac{1}{2}} \in \mathbb{C} \{0\}$  for each edge  $e_i$  of the triangulation  $\Gamma \checkmark$
- 2. This defines an  $SL_2(\mathbb{C})$ -character for the *punctured* surface  $S \mathcal{V}_{\Gamma}$  by an explicit formula

$$\mathcal{K}_{\rho}(\mathcal{K}) = \pm \sum_{\pm \pm \dots \pm} (0 \text{ or } 1) \, x_{i_1}^{\pm \frac{1}{2}} x_{i_2}^{\pm \frac{1}{2}} \dots x_{i_n}^{\pm \frac{1}{2}} \checkmark$$

$$\begin{cases} x_{i_1}^{\frac{1}{2}} x_{i_2}^{\frac{1}{2}} \dots x_{i_n}^{\frac{1}{2}} = -1 \\ 1 + x_{i_1} + x_{i_1} x_{i_2} + x_{i_1} x_{i_2} x_{i_3} + \dots + x_{i_1} x_{i_2} \dots x_{i_{n-1}} = 0 \end{cases}$$
 for each vertex

In Step 1, we associated to the edges of the triangulation  $\Gamma$  operators  $X_i^{\frac{1}{2}} \in \operatorname{End}(E)$  such that  $X_i^{\frac{N}{2}} = x_i^{\frac{1}{2}} \operatorname{Id}_E$ 

In Step 1, we associated to the edges of the triangulation  $\Gamma$  operators  $X_i^{\frac{1}{2}} \in \operatorname{End}(E)$  such that  $X_i^{\frac{N}{2}} = x_i^{\frac{1}{2}} \operatorname{Id}_E$ 

Step 3a. If  $x_{i_1}^{\frac{1}{2}} x_{i_2}^{\frac{1}{2}} \dots x_{i_n}^{\frac{1}{2}} = -1$  at a vertex, the corresponding operators  $X_i^{\frac{1}{2}} \in \text{End}(E)$  can be chosen so that

$$X_{i_1}^{\frac{1}{2}} X_{i_2}^{\frac{1}{2}} \dots X_{i_n}^{\frac{1}{2}} = -q^{\frac{n+2}{4}} \operatorname{Id}_{E}$$

- 1. Choose a weight  $x_i^{\frac{1}{2}} \in \mathbb{C} \{0\}$  for each edge  $e_i$  of the triangulation  $\Gamma \checkmark$
- 2. This defines an  $SL_2(\mathbb{C})$ -character for the *punctured* surface  $S \mathcal{V}_{\Gamma}$  by an explicit formula

$$\mathcal{K}_{\rho}(\mathcal{K}) = \pm \sum_{\pm \pm \dots \pm} (0 \text{ or } 1) \, x_{i_1}^{\pm \frac{1}{2}} x_{i_2}^{\pm \frac{1}{2}} \dots x_{i_n}^{\pm \frac{1}{2}} \checkmark$$

$$\begin{cases} x_{i_1}^{\frac{1}{2}} x_{i_2}^{\frac{1}{2}} \dots x_{i_n}^{\frac{1}{2}} = -1 \\ 1 + x_{i_1} + x_{i_1} x_{i_2} + x_{i_1} x_{i_2} x_{i_3} + \dots + x_{i_1} x_{i_2} \dots x_{i_{n-1}} = 0 \end{cases}$$
 for each vertex

- 1. Choose a weight  $x_i^{\frac{1}{2}} \in \mathbb{C} \{0\}$  for each edge  $e_i$  of the triangulation  $\Gamma \checkmark$
- 2. This defines an  $SL_2(\mathbb{C})$ -character for the *punctured* surface  $S \mathcal{V}_{\Gamma}$  by an explicit formula

$$\mathcal{K}_{\rho}(\mathcal{K}) = \pm \sum_{\pm \pm \dots \pm} (0 \text{ or } 1) \, x_{i_1}^{\pm \frac{1}{2}} x_{i_2}^{\pm \frac{1}{2}} \dots x_{i_n}^{\pm \frac{1}{2}} \checkmark$$

$$\begin{cases} x_{i_1}^{\frac{1}{2}} x_{i_2}^{\frac{1}{2}} \dots x_{i_n}^{\frac{1}{2}} = -1 \checkmark \\ 1 + x_{i_1} + x_{i_1} x_{i_2} + x_{i_1} x_{i_2} x_{i_3} + \dots + x_{i_1} x_{i_2} \dots x_{i_{n-1}} = 0 \end{cases}$$
for each vertex

Step 3b. For a vertex 
$$v = \underbrace{e_{i_1}}_{e_{i_{n-1}}} e_{i_n}$$
 of the triangulation  $\Gamma$  for the operators  $X_{i_j}^{\frac{1}{2}} \in \operatorname{End}(E)$  associated to the edges, consider

$$1+qX_{i_1}+q^2X_{i_1}X_{i_2}+q^3X_{i_1}X_{i_2}X_{i_3}+\cdots+q^{n-1}X_{i_1}X_{i_2}\ldots X_{i_{n-1}}$$

Step 3b. For a vertex 
$$v = \underbrace{e_{i_3}}_{e_{i_n-1}} e_{i_n} e_{i_n}$$
 of the triangulation  $\Gamma$  for the operators  $X_{i_j}^{\frac{1}{2}} \in \operatorname{End}(E)$  associated to the edges, set

$$F_{\nu} = \ker \left( 1 + qX_{i_1} + q^2X_{i_1}X_{i_2} + q^3X_{i_1}X_{i_2}X_{i_3} + \dots + q^{n-1}X_{i_1}X_{i_2}\dots X_{i_{n-1}} \right)$$

Step 3b. For a vertex 
$$v = \underbrace{e_{i_1}}_{e_{i_{n-1}}} e_{i_n}$$
 of the triangulation  $\Gamma$  for  
the operators  $X_{i_j}^{\frac{1}{2}} \in \operatorname{End}(E)$  associated to the edges, set  
 $F_v = \ker (1+qX_{i_1}+q^2X_{i_1}X_{i_2}+q^3X_{i_1}X_{i_2}X_{i_3}+\dots+q^{n-1}X_{i_1}X_{i_2}\dots X_{i_{n-1}})$   
and  
 $F = \bigcap F_v \subset E$ 

vertices v

### Theorem

1. The linear subspace  $F \subset E$  is invariant under the image of the Kauffman bracket

 $\mathcal{K} \colon \{ \textit{framed links in } (S - \mathcal{V}_{\Gamma}) \times [0, 1] \} \longrightarrow \mathrm{End}(E)$  constructed in Step 2

1. The linear subspace  $F \subset E$  is invariant under the image of the Kauffman bracket

 $\mathcal{K}$ : {framed links in  $(S - \mathcal{V}_{\Gamma}) \times [0, 1]$ }  $\longrightarrow$  End(*E*) constructed in Step 2 (but not invariant under the  $X_i$ !!)

1. The linear subspace  $F \subset E$  is invariant under the image of the Kauffman bracket

 $\mathcal{K}$ : {framed links in  $(S - \mathcal{V}_{\Gamma}) \times [0, 1]$ }  $\longrightarrow$  End(E) constructed in Step 2 (but not invariant under the  $X_i$ !!)

2. If K,  $K' \subset (S - \mathcal{V}_{\Gamma}) \times [0, 1]$  are isotopic in  $S \times [0, 1]$ , then  $\mathcal{K}(K)_{|F} = \mathcal{K}(K')_{|F}$   $e_{i_1}$   $e_{i_n}$   $e_{i_n}$   $e_{i_{n-1}}$ 

1. The linear subspace  $F \subset E$  is invariant under the image of the Kauffman bracket

 $\mathcal{K}$ : {framed links in  $(S - \mathcal{V}_{\Gamma}) \times [0, 1]$ }  $\longrightarrow$  End(E) constructed in Step 2 (but not invariant under the  $X_i$ !!)

2. If K,  $K' \subset (S - \mathcal{V}_{\Gamma}) \times [0, 1]$  are isotopic in  $S \times [0, 1]$ , then  $\mathcal{K}(K)|_F = \mathcal{K}(K')|_F$   $e_{i_3} e_{i_1} e_{i_1}$ Corollary

 $\mathcal{K}$  induces a Kauffman q-bracket

 $\bar{\mathcal{K}}\colon \{\textit{framed links in }S\times[0,1]\}\longrightarrow \mathrm{End}(F)$  for the closed surface S

Kauffman brackets on surfaces

Construction of Kauffman brackets

Theorem

$$\dim F \ge \begin{cases} N^{3(g-1)} & \text{if } g \ge 2\\ N & \text{if } g = 1\\ 1 & \text{if } g = 0 \end{cases}$$

$$\dim F \ge \begin{cases} N^{3(g-1)} & \text{if } g \ge 2\\ N & \text{if } g = 1\\ 1 & \text{if } g = 0 \end{cases}$$

#### Theorem

Up to isomorphism, the Kauffman bracket

 $\bar{\mathcal{K}}$ : {framed links in  $S \times [0,1]$ }  $\longrightarrow$  End(F)

depends only on the (classical)  $SL_2(\mathbb{C})$ -character  $\mathcal{K}_{\rho} \in \mathcal{R}_{SL_2(\mathbb{C})}(S)$ associated to the same edge weights  $x_i \in \mathbb{C}^*$ . In particular, it is independent of the triangulation  $\Gamma$ 

$$\dim F \geqslant \begin{cases} N^{3(g-1)} & \text{if } g \geqslant 2\\ N & \text{if } g = 1\\ 1 & \text{if } g = 0 \end{cases}$$

(-2(-1))

with equality for generic (all?)  $\mathcal{K}_{\rho} \in \mathcal{R}_{\mathrm{SL}_2(\mathbb{C})}(S)$ 

#### Theorem

Up to isomorphism, the Kauffman bracket

 $\bar{\mathcal{K}}$ : {framed links in  $S \times [0,1]$ }  $\longrightarrow$  End(F)

depends only on the (classical)  $SL_2(\mathbb{C})$ -character  $\mathcal{K}_{\rho} \in \mathcal{R}_{SL_2(\mathbb{C})}(S)$ associated to the same edge weights  $x_i \in \mathbb{C}^*$ . In particular, it is independent of the triangulation  $\Gamma$ 

From quantum to classical: the classical shadow

Theorem (Bonahon-Wong, 2012) When  $q^N = 1$  with N odd, every irreducible Kauffman q-bracket  $\mathcal{K}: \{ \text{framed links in } S \times [0,1] \} \longrightarrow \text{End}(E)$ determines a classical character  $\mathcal{K}_{\rho} \in \mathcal{R}_{\text{SL}_2(\mathbb{C})}(S)$ 

From quantum to classical: the classical shadow

Theorem (Bonahon-Wong, 2012) When  $q^N = 1$  with N odd, every irreducible Kauffman q-bracket  $\mathcal{K}: \{ \text{framed links in } S \times [0,1] \} \longrightarrow \text{End}(E)$ determines a classical character  $\mathcal{K}_{\rho} \in \mathcal{R}_{\mathrm{SL}_2(\mathbb{C})}(S)$  $\mathcal{K}_{\rho}: \{ \text{closed multicurves in } S \} \longrightarrow \mathbb{C}$ 

From quantum to classical: the classical shadow

Theorem (Bonahon-Wong, 2012) When  $q^N = 1$  with N odd, every irreducible Kauffman q-bracket  $\mathcal{K}: \{ \text{framed links in } S \times [0,1] \} \longrightarrow \text{End}(E)$ determines a classical character  $\mathcal{K}_{\rho} \in \mathcal{R}_{\mathrm{SL}_2(\mathbb{C})}(S)$   $\mathcal{K}_{\rho}: \{ \text{closed multicurves in } S \} \longrightarrow \mathbb{C}$ by the property that  $\mathcal{K}(\mathcal{K}) \in \text{End}(E)$ for every knot  $\mathcal{K} \subset S \times [0,1]$  whose projection to S has no

crossing and whose framing is vertical.

From quantum to classical: the classical shadow

Theorem (Bonahon-Wong, 2012) When  $q^N = 1$  with N odd, every irreducible Kauffman q-bracket  $\mathcal{K}$ : {framed links in  $S \times [0, 1]$ }  $\longrightarrow$  End(E) determines a classical character  $\mathcal{K}_{\rho} \in \mathcal{R}_{\mathrm{SL}_2(\mathbb{C})}(S)$  $\mathcal{K}_{\varrho}$ : {closed multicurves in S}  $\longrightarrow \mathbb{C}$ by the property that  $T_N(\mathcal{K}(K))$  $\in \operatorname{End}(E)$ for every knot  $K \subset S \times [0,1]$  whose projection to S has no crossing and whose framing is vertical. Here,  $T_N(x)$  is the (normalized) N-th Chebyshev polynomial of

the first type defined by  $2\cos N\theta = T_N(2\cos\theta)$ 

From quantum to classical: the classical shadow

Theorem (Bonahon-Wong, 2012) When  $q^N = 1$  with N odd, every irreducible Kauffman q-bracket  $\mathcal{K}: \{ \text{framed links in } S \times [0,1] \} \longrightarrow \text{End}(E)$ determines a classical character  $\mathcal{K}_{\rho} \in \mathcal{R}_{\text{SL}_2(\mathbb{C})}(S)$   $\mathcal{K}_{\rho}: \{ \text{closed multicurves in } S \} \longrightarrow \mathbb{C}$ by the property that

 $T_N(\mathcal{K}(\mathcal{K})) = \mathcal{K}_{\rho}(\mathcal{K}) \operatorname{Id}_E \in \operatorname{End}(E)$ 

for every knot  $K \subset S \times [0,1]$  whose projection to S has no crossing and whose framing is vertical.

Here,  $T_N(x)$  is the (normalized) *N*-th Chebyshev polynomial of the first type defined by  $2 \cos N\theta = T_N(2 \cos \theta)$ 

From quantum to classical: the classical shadow

Theorem (Bonahon-Wong, 2012) When  $q^N = 1$  with N odd, every irreducible Kauffman q-bracket  $\mathcal{K}: \{ \text{framed links in } S \times [0,1] \} \longrightarrow \text{End}(E)$ determines a classical character  $\mathcal{K}_{\rho} \in \mathcal{R}_{\mathrm{SL}_2(\mathbb{C})}(S)$   $\mathcal{K}_{\rho}: \{ \text{closed multicurves in } S \} \longrightarrow \mathbb{C}$ by the property that

 $T_N(\mathcal{K}(\mathcal{K})) = \mathcal{K}_{\rho}(\mathcal{K}) \operatorname{Id}_E \in \operatorname{End}(E)$ 

for every knot  $K \subset S \times [0,1]$  whose projection to S has no crossing and whose framing is vertical.

Here,  $T_N(x)$  is the (normalized) *N*-th Chebyshev polynomial of the first type defined by  $2 \cos N\theta = T_N(2 \cos \theta)$ 

This is not the (normalized) *N*-th Chebyshev polynomial of the second type  $S_N(x)$  is defined by  $\sin N\theta = S_N(2\cos\theta)\sin\theta$  which usually occurs in the representation theory of SL<sub>2</sub> and U<sub>q</sub>( $\mathfrak{sl}_2$ )

For the Kauffman q-bracket that we constructed,

$$\mathcal{K}(\mathcal{K}) = \sum_{\pm \pm \dots \pm} (0 \text{ or } \pm q^{\Box}) X_{i_1}^{\pm \frac{1}{2}} X_{i_2}^{\pm \frac{1}{2}} \dots X_{i_n}^{\pm \frac{1}{2}}$$

where the matrices  $X_i^{\frac{1}{2}} \in \operatorname{End}(E)$  are such that  $X_i^{\frac{1}{2}}X_j^{\frac{1}{2}} = q \square X_j^{\frac{1}{2}}X_i^{\frac{1}{2}}$  and  $X_i^{\frac{N}{2}} = x_i \operatorname{Id}_E$ 

For the Kauffman q-bracket that we constructed,

$$\mathcal{K}(\mathcal{K}) = \sum_{\pm \pm \dots \pm} (0 \text{ or } \pm q^{\Box}) X_{i_1}^{\pm \frac{1}{2}} X_{i_2}^{\pm \frac{1}{2}} \dots X_{i_n}^{\pm \frac{1}{2}}$$

where the matrices  $X_i^{\frac{1}{2}} \in \operatorname{End}(E)$  are such that  $X_i^{\frac{1}{2}} X_j^{\frac{1}{2}} = q \Box X_j^{\frac{1}{2}} X_i^{\frac{1}{2}}$  and  $X_i^{\frac{N}{2}} = x_i \operatorname{Id}_E$ 

 $T_N(\mathcal{K}(\mathcal{K})) = \sum_{-N \leqslant k_i \leqslant N} (\text{polynomial in } q^{\pm 1}) X_{i_1}^{\pm \frac{k_1}{2}} X_{i_2}^{\pm \frac{k_2}{2}} \dots X_{i_n}^{\pm \frac{k_n}{2}}$ 

About  $N^n$  terms.

For the Kauffman q-bracket that we constructed,

$$\mathcal{K}(\mathcal{K}) = \sum_{\pm \pm \dots \pm} (0 \text{ or } \pm q^{\Box}) X_{i_1}^{\pm \frac{1}{2}} X_{i_2}^{\pm \frac{1}{2}} \dots X_{i_n}^{\pm \frac{1}{2}}$$

where the matrices  $X_i^{\frac{1}{2}} \in \operatorname{End}(E)$  are such that  $X_i^{\frac{1}{2}}X_j^{\frac{1}{2}} = q \square X_j^{\frac{1}{2}}X_i^{\frac{1}{2}}$  and  $X_i^{\frac{N}{2}} = x_i \operatorname{Id}_E$ Miraculous cancelations when  $q^N = 1!$  $\mathcal{T}_N(\mathcal{K}(\mathcal{K})) = \pm \sum_{\pm + \dots \pm} (0 \text{ or } 1) X_{i_1}^{\pm \frac{N}{2}} X_{i_2}^{\pm \frac{N}{2}} \dots X_{i_n}^{\pm \frac{N}{2}}$ 

At most  $2^n$  terms.

For the Kauffman q-bracket that we constructed,

$$\mathcal{K}(\mathcal{K}) = \sum_{\pm \pm \dots \pm} (0 \text{ or } \pm q^{\Box}) X_{i_1}^{\pm \frac{1}{2}} X_{i_2}^{\pm \frac{1}{2}} \dots X_{i_n}^{\pm \frac{1}{2}}$$

where the matrices  $X_i^{\frac{1}{2}} \in \text{End}(E)$  are such that  $X_i^{\frac{1}{2}}X_j^{\frac{1}{2}} = q \Box X_j^{\frac{1}{2}}X_i^{\frac{1}{2}}$  and  $X_i^{\frac{N}{2}} = x_i \text{ Id}_E$ Miraculous cancelations when  $q^N = 1!$ 

$$T_{N}(\mathcal{K}(\mathcal{K})) = \pm \sum_{\pm \pm \dots \pm} (0 \text{ or } 1) X_{i_{1}}^{\pm \frac{N}{2}} X_{i_{2}}^{\pm \frac{N}{2}} \dots X_{i_{n}}^{\pm \frac{N}{2}}$$
$$= \pm \sum_{\pm \pm \dots \pm} (0 \text{ or } 1) x_{i_{1}}^{\pm \frac{1}{2}} x_{i_{2}}^{\pm \frac{1}{2}} \dots x_{i_{n}}^{\pm \frac{1}{2}} \operatorname{Id}_{E}$$

At most  $2^n$  terms.

For the Kauffman q-bracket that we constructed,

$$\mathcal{K}(\mathcal{K}) = \sum_{\pm \pm \dots \pm} (0 \text{ or } \pm q^{\Box}) X_{i_1}^{\pm \frac{1}{2}} X_{i_2}^{\pm \frac{1}{2}} \dots X_{i_n}^{\pm \frac{1}{2}}$$

where the matrices  $X_i^{\frac{1}{2}} \in \operatorname{End}(E)$  are such that  $X_i^{\frac{1}{2}}X_j^{\frac{1}{2}} = q \Box X_j^{\frac{1}{2}}X_i^{\frac{1}{2}}$  and  $X_i^{\frac{N}{2}} = x_i \operatorname{Id}_E$ Miraculous cancelations when  $q^N = 1!$ 

$$\begin{aligned} T_N(\mathcal{K}(\mathcal{K})) &= \pm \sum_{\pm \pm \dots \pm} (0 \text{ or } 1) \, X_{i_1}^{\pm \frac{N}{2}} X_{i_2}^{\pm \frac{N}{2}} \dots X_{i_n}^{\pm \frac{N}{2}} \\ &= \pm \sum_{\pm \pm \dots \pm} (0 \text{ or } 1) \, x_{i_1}^{\pm \frac{1}{2}} x_{i_2}^{\pm \frac{1}{2}} \dots x_{i_n}^{\pm \frac{1}{2}} \, \mathrm{Id}_E = \mathcal{K}_{\rho}(\mathcal{K}) \, \mathrm{Id}_E \end{aligned}$$

At most  $2^n$  terms.

# Corollary

The classical shadow of the Kauffman q-bracket  $\mathcal{K}$  that we constructed is the character  $\mathcal{K}_{\rho} \in \mathcal{R}_{\mathrm{SL}_2(\mathbb{C})}(S)$  associated to the same edge weights  $x_i$  as  $\mathcal{K}$ 

Miraculous cancelations

# Corollary

The classical shadow of the Kauffman q-bracket  $\mathcal{K}$  that we constructed is the character  $\mathcal{K}_{\rho} \in \mathcal{R}_{\mathrm{SL}_2(\mathbb{C})}(S)$  associated to the same edge weights  $x_i$  as  $\mathcal{K}$ 

Current proof of miraculous cancelations

Miraculous cancelations

# Corollary

The classical shadow of the Kauffman q-bracket  $\mathcal{K}$  that we constructed is the character  $\mathcal{K}_{\rho} \in \mathcal{R}_{\mathrm{SL}_2(\mathbb{C})}(S)$  associated to the same edge weights  $x_i$  as  $\mathcal{K}$ 

Current proof of miraculous cancelations Wishful thinking to guess

Miraculous cancelations

# Corollary

The classical shadow of the Kauffman q-bracket  $\mathcal{K}$  that we constructed is the character  $\mathcal{K}_{\rho} \in \mathcal{R}_{\mathrm{SL}_2(\mathbb{C})}(S)$  associated to the same edge weights  $x_i$  as  $\mathcal{K}$ 

Current proof of miraculous cancelations Wishful thinking to guess Brute force to check

Miraculous cancelations

# Corollary

The classical shadow of the Kauffman q-bracket  $\mathcal{K}$  that we constructed is the character  $\mathcal{K}_{\rho} \in \mathcal{R}_{\mathrm{SL}_2(\mathbb{C})}(S)$  associated to the same edge weights  $x_i$  as  $\mathcal{K}$ 

#### Current proof of miraculous cancelations

Wishful thinking to guess Brute force to check

#### Better conjecture/future proof

This should come from a deep fact in the representation theory of  $\mathrm{U}_q(\mathfrak{sl}_2)$  when  $q^N=1$