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In 1977, W.P. Thurston stunned the world of low-dimensional topology by show-
ing that ‘many’ (in a precise sense) compact 3–dimensional manifolds admitted a
unique hyperbolic structure. Of course, hyperbolic 3–manifolds had been around
since the days of Poincaré, as a subfield of complex analysis. Work of Andreev
[6, 7] in the mid-sixties, Riley [111] and Jørgensen [64] in the early seventies, had
provided hyperbolic 3–manifolds of increasing complex topology. In a different line
of inquiry, W. Jaco and P. Shalen had also observed in the early seventies that
the fundamental groups of atoroidal 3–manifolds shared many algebraic properties
with those of hyperbolic manifolds. However, the fact that hyperbolic metrics on
3–manifolds were so common was totally unexpected, and their uniqueness had far
reaching topological consequences.

At about the same time, the consideration of the deformations and degenerations
of hyperbolic structures on non-compact 3–manifolds led Thurston to consider other
types of geometric structures. Building on the existing topological technology of
characteristic splittings of 3–manifold, he made the bold move of proposing his
Geometrization Conjecture which, if we state it in loose terms, says that a 3–
manifold can be uniquely decomposed into pieces which each admit a geometric
structure. For the so-called Haken 3–manifolds, which at the time were essentially
the only 3–manifolds which the topologists were able to handle, this Geometrization
Conjecture was a consequence of Thurston’s original Hyperbolization Theorem.
But for non-Haken 3–manifolds, the conjecture was clearly more ambitious, for
instance because it included the Poincaré Conjecture on homotopy 3–spheres as
a corollary. Nevertheless, the Hyperbolic Dehn Surgery Theorem and, later, the
Orbifold Geometrization Theorem provided a proof of many more cases of the
Geometrization Conjecture.

This influx of new ideas completely revolutionized the field of 3–dimensional
topology. In addition to the classical arguments of combinatorial topology, many
proofs in low–dimensional topology now involve techniques borrowed from differ-
ential geometry, complex analysis or dynamical systems. This interaction between
topology and hyperbolic geometry has also proved beneficial to the analysis of hy-
perbolic manifolds and Kleinian groups, where topological insights have contributed
to much progress.

Yet, twenty years later, it is still difficult for the non-expert to find a way through
the existing and non-existing literature on this topic. For instance, complete expo-
sitions of Thurston’s Hyperbolization Theorem and of his Orbifold Geometrization
Theorem are only beginning to become available. The problem is somewhat dif-
ferent with the topological theory of the characteristic splittings of 3–manifolds.
Several complete expositions of the corresponding results have been around for
many years, but they are not very accessible because the mathematics involved are
indeed difficult and technical.

We have tried to write a reading guide to the field of geometric structures on
3–manifolds. Our approach is to introduce the reader to the main definitions and
concepts, to state the principal theorems and discuss their importance and inter-
connections, and to refer the reader to the existing literature for proofs and details.
In particular, there are very few proofs (or even sketches of proof) in this chapter.
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In a field where unpublished prepublications have historically been very common
and important, we tried to only quote references which are widely available, but it
was of course difficult to omit such an influential publication as Thurston’s original
lecture notes [138]. The selection of topics clearly follows the biases of the author,
but we also made the deliberate choice of privileging those aspects of geometric
structures which have applications to geometric topology. In particular, we elimi-
nated from our discussion the analysis of the geometric properties of infinite volume
hyperbolic 3–manifolds, and its relation to complex analysis and complex dynami-
cal systems; we can refer the reader to [17, 23, 77, 78, 82, 85, 138] for some details
on this very active domain of research.

1. Geometric structures

1.1. The case of surfaces

As an introduction to geometric structures, we first consider a classical property of
surfaces , namely (differentiable) manifolds of dimension 2. Before going any further,
we should mention that we will use the usual implicit convention that a manifold
is connected unless specified otherwise; however, submanifolds will be allowed to
be disconnected. Also, a manifold will be without boundary, unless it is explicitly
identified as a manifold with boundary (or perhaps we should say manifold-with-
boundary). Manifolds with boundary will not occur until Section 2.5.

Any (connected) surface S admits a complete Riemannian metric which is locally
isometric to the euclidean plane E2, the unit sphere S2 in euclidean 3–space E3, or
the hyperbolic plane H2. There are two classical methods to see this: one based on
complex analysis, and another one based on the topological classification of surfaces
of finite type. We now sketch both, since they each are of independent interest.

Any orientable surface S admits a complex structure (or a Riemann surface
structure), namely an atlas which locally models the surface over open subsets
of C, where all changes of charts are holomorphic, and which is maximal for these
two properties; see for instance Ahlfors-Sario [2, Chap. III] or Reyssat [109]. The
key idea is that, in dimension 2, any Riemannian metric is conformally flat. In
other words, if we endow S with an arbitrary Riemannian metric, any point ad-
mits a neighborhood which is diffeomorphic to an open subset of C by an angle
preserving diffeomorphism; since the changes of charts respect angles, the Cauchy-
Riemann equation then implies that they are holomorphic. Similarly, a possibly
non-orientable surface S admits a twisted complex structure, defined by a maximal
atlas locally modeling S over open subsets of C and such that all changes of charts
are holomorphic or antiholomorphic. This structure lifts to a twisted complex struc-
ture on the universal covering S̃ of S. Since S̃ is simply connected, we can choose an
orientation for it. Then, composing orientation-reversing charts with the complex
conjugation z 7→ z̄, we can arrange that all charts are orientation-preserving, so
that all changes of charts are holomorphic. We now have a complex structure on
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S̃.
The construction of a twisted complex structure on S was only local. The

Uniformization Theorem (see [2] or [109] for instance), a global property, as-
serts that every simply connected complex surface is biholomorphically equiva-
lent to one of the following three surfaces: the complex plane C, the half-plane
H2 = {z ∈ C; Imz > 0}, and the complex projective line CP1 = C ∪ {∞}. There-

fore, S̃ is biholomorphically equivalent to one of these three surfaces.
The surface S is the quotient of its universal covering S̃ under the natural action

of the fundamental group π1 (S). Since the complex structure of S̃ comes from
a twisted complex structure on S, the covering automorphism defined by every
element of π1 (S) is holomorphic or anti-holomorphic with respect to this complex

structure. Also, note that every element of π1 (S) acts on S̃ without fixed points
since it is a covering automorphism. We now distinguish cases, according to whether
S̃ is biholomorphically equivalent to C, H2 or CP1.

First consider the case where S̃ is biholomorphically equivalent to C. Every holo-
morphic or antiholomorphic automorphism of C is of the form z 7→ az + b or
z 7→ cz̄ + d, with a, b, c, d ∈ C. For a fixed point free automorphism, we must have
a = 1, or |c| = 1 and c

1

2 d ∈ R. In particular, every element of π1 (S) respects the

euclidean metric of S̃ coming from the identifications S̃ ∼= C ∼= E2. This induces
on S a metric which, because the metric of S̃ ∼= E2 is complete, is also complete.
Note that this metric on S is euclidean, in the sense that every point of S has a
neighborhood which is isometric to an open subset of the euclidean plane E2.

Every holomorphic or antiholomorphic automorphism of H2 is of the form z 7→
(az + b) / (cz + d) or z 7→ (az̄ − b) / (cz̄ − d), with a, b, c, d ∈ R and ad − bc = 1.
Poincaré observed that such an automorphism preserves the hyperbolic metric of H2,
defined as the Riemannian metric which at z ∈ H2 is 1/Imz times the euclidean
metric of H2 ⊂ C ∼= E2. (We are here using the topologist’s convention for the
rescaling of metrics: When we multiply a metric by λ > 0, we mean that the
distances are locally multiplied by λ; in the same situation, a differential geometer
would say that the Riemannian metric is multiplied by λ2.) The metric of H2

is easily seen to be complete. Therefore, if S̃ is biholomorphically equivalent to
H2, the hyperbolic metric of H2 induces a complete metric on S = S̃/π1 (S). By
construction, this metric on S is hyperbolic, namely locally isometric to H2 at each
point of S.

Every holomorphic or antiholomorphic automorphism of CP1 = C ∪ {∞} is of
the form z 7→ (az + b) / (cz + d) or z 7→ (az̄ + b) / (cz̄ + d), with a, b, c, d ∈ C

and ad − bc = 1. In particular, every holomorphic automorphism of C ∪ {∞} has
fixed points. It follows that, either the fundamental group π1 (S) is trivial, or it
is isomorphic to the cyclic group Z2 and its generator acts antiholomorphically
on S̃ ∼= C ∪ {∞}. If z 7→ (az̄ + b) / (cz̄ + d) is a fixed point free involution, it
is conjugated by a biholomorphic automorphism to the map z 7→ −1/z̄. (Hint:
First conjugate it so that it exchanges 0 and ∞). Therefore, we can choose the

holomorphic identification S̃ ∼= C∪{∞} so that, either π1 (S) is trivial, or π1 (S) ∼=
Z2 is generated by z 7→ −1/z̄. Identify C ∪ {∞} = R2 × {0} ∪ {∞} ⊂ R3 ∪ {∞}
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to the unit sphere S2 of R3 by stereographic projection. For this identification,
the antiholomorphic involution z 7→ −1/z̄ of C ∪ {∞} corresponds to the isometry

x 7→ −x of S2. Then, the metric of S̃ ∼= S2 induces a metric on S = S̃/π1 (S). Note
that this metric on S is spherical , namely locally isometric to S2 everywhere, and
is necessarily complete by compactness of S2.

The model spaces E2, H2 and S2 have a property in common: They are all homo-
geneous in the sense that, for any two points in such a space, there is an isometry
sending one point to the other. As a consequence, the metrics we constructed on
S are locally homogeneous: For any two x, y ∈ S, there is a local isometry sending
x to y, namely an isometry between a neighborhood U of x and a neighborhood
V of y which sends x to y. In other words, such a metric locally looks the same
everywhere.

We should note that the topology of S is very restricted when S̃ is biholomor-
phically isomorphic to C. Indeed, the easy classification of free isometric actions on
E2 shows that S must be a plane, a torus, an open annulus, a Klein bottle, or an
open Möbius strip. The topology of S is even more restricted when S̃ is isomorphic
to CP1: We saw that in this case S must be homeomorphic to the sphere S2 or to
the real projective plane RP2 = S2/ {±Id}. On the other hand, the case where S̃ is
biholomorphically isomorphic to H2 covers all the other surfaces. In this ‘generic’
case, we saw that S admits a complete hyperbolic metric, namely a metric which
is locally isometric to the hyperbolic metric of H2.

Once we know what to look for, there is a more explicit construction of geometric
structures, which is based on the topological classification of surfaces of finite type.
Recall that a surface has finite type if it is diffeomorphic to the interior of a compact
surface with (possibly empty) boundary. If S is a surface of finite type, it has a well-
defined finite Euler characteristic χ (S) ∈ Z.

If χ (S) > 0, the topological classification of surfaces (see for instance Seifert-
Threlfall [128, Kap. 6] or Massey [83, Chap. II]) says that S is a plane, a 2–sphere
or a projective plane. In the first case, S is diffeomorphic to the euclidean plane E2

and to the hyperbolic plane H2, and therefore admits a complete euclidean metric as
well as a complete hyperbolic metric. In the remaining two cases, S is diffeomorphic
to S2 or RP2 = S2/ {±Id}, and therefore admits a (complete) spherical metric.

When χ (S) = 0, S is diffeomorphic to the open annulus, the open Möbius strip,
the 2–torus or the Klein bottle. For the classical description of these surfaces as
quotients of E2, we conclude that they all admit a complete euclidean metric. Con-
sidering the quotient of H2 = {z ∈ C; Imz > 0} by a cyclic group of isometries
generated by z 7→ λz with λ > 1, or by another cyclic group of isometries generated
by z 7→ −λz̄ with again λ > 1, we can see that the open annulus and the open
Möbius strip also admit complete hyperbolic metrics.

Finally, we can consider the case where χ (S) < 0. Then, the classification of
surfaces shows that we can find a compact 1–dimensional submanifold γ of S such
that each component of S − γ is, either a ‘pair of pants’ (namely an open annulus
minus a closed disk) or a ‘pair of Möbius pants’ (namely an open Möbius strip
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minus a closed disk).
Consider a closed pair of pants P , namely the complement of three disjoint open

disks in the 2–sphere. By an explicit construction involving right angled hexagons
in H2, one can endow P with a hyperbolic metric for which the boundary ∂P is
geodesic. In addition, this hyperbolic metric can be constructed so that the length
of each boundary component of P can be an arbitrarily chosen positive number (up
to isotopy, the hyperbolic metric is actually uniquely determined by the lengths of
the boundary components). See [10, Sect. B.4] for details. In addition, there is a
limiting case as we let the length of some boundary components tend to 0, which
gives a complete hyperbolic metric on P minus 1, 2 or 3 boundary components,
and where the remaining boundary components are still geodesic and of arbitrary
lengths; in addition, such a metric has finite area.

There is a similar construction for the closed pair of ‘Möbius pants’, namely
the complement of two disjoint open disks in the projective plane. Such a pair of
Möbius pants P can be endowed with a hyperbolic metric for which the boundary
is geodesic; in addition the length of each boundary component can be arbitrarily
chosen (and there actually is an additional degree of freedom). Again, letting one or
two of these lengths tend to 0, one obtains a finite area complete hyperbolic metric
on P minus one of two boundary components.

Now, consider an arbitrary surface S of finite type, without boundary and with
χ (S) < 0. Using the classification of surfaces, one easily finds a compact 2–sided
1–submanifold C of S such that each component of S−C is, either a pair of pants,
or a pair of Möbius pants. For each component Si of S − C, let Ŝi be the surface
with boundary formally obtained by adding to each end of Si the component of C
that is adjacent to it, with the obvious topology. We saw that we can endow each
Ŝi with a complete hyperbolic metric with geodesic boundary. Now, the surface S
is obtained from the disjoint union of the Ŝi by gluing back together the boundary
components which correspond to the same component of C. We can choose the
hyperbolic metric on the Ŝi so that, when two boundary components are to be
glued back together, they have the same length and the gluing map is an isometry.
Then, one easily checks that the resulting metric on S is hyperbolic, even along C.

In this way, we can explicitly endow any surface S of finite type such that χ (S) <
0 with a complete hyperbolic metric with finite area. Note that the isotopy class
of this metric is in general far from being unique. Indeed, we were able to freely
choose the length of the components of the 1–submanifold C. In a metric of negative
curvature, every homotopy class of simple closed curves contains at most one closed
geodesic. It follows that if, in the construction, we start from two hyperbolic metrics
on the Ŝi which give different lengths to some boundary components, the resulting
two hyperbolic metrics on S cannot be isotopic. There is an additional degree
of freedom associated to each component of C: when we glue back together the
corresponding boundary components of the Ŝi, we can vary the gluing map by
pre-composing it with an orientation-preserving isometry of one of these boundary
components. If we add to this the degree of freedom hidden in the Möbius pant
components of S − C which we mentioned earlier, this clearly indicates that the



8 Francis Bonahon

hyperbolic metric of S is far from being unique.
However, the Teichmüller space T (S) of S, defined as the space of isotopy classes

of all finite area complete hyperbolic metric on S, can be completely analyzed along
these lines. In particular, it is homeomorphic to a Euclidean space of dimension
3 |χ (S)|−e, where e is the number of ends of S. Good references include Benedetti-
Petronio [10, Sect. B.4 ] or Fathi-Laudenbach-Poenaru [36, Exp. 7].

1.2. General definitions

The above analysis of surfaces suggests the following definition. A geometric struc-
ture on a connected manifold M without boundary is a locally homogeneous Rie-
mannian metric m on M . As usual, the Riemannian metric turns M into a metric
space, where the distance from x to y is defined as the infimum of the lengths of all
differentiable arcs going from x to y. A geometric structure is complete when the
corresponding metric space is complete. We just saw that every connected surface
admits such a complete geometric structure.

Given a geometric structure m on M , we can always rescale the metric by a
constant to obtain a new geometric structure. More generally, we can change m
in the following way. For x ∈ M , consider all local isometries ϕ sending x to
itself; the corresponding differentials Txϕ : TxM → TxM form a group Gx of
linear automorphisms of the tangent space TxM , called the isotropy group of the
geometric structure at x ∈ M . Note that the isotropy group respects the positive
definite quadratic form mx defined by m on TxM , and is therefore compact. Also,
if ϕ is a local isometry sending x to y, the differential of ϕ sends the isotropy group
of x to the isotropy group of y. The isotropy group of x is therefore independent
of x up to isomorphism. If we fix a point x0 ∈ M , let m′

x0
be another positive

definite quadratic form on Tx0
M which is respected by the isotropy group Gx0

. We
can then transport m′

x0
to any other tangent space TxM by using the differential

Txϕ : Tx0
M → TxM of any local m–isometry ϕ sending x0 to x; the fact that

Gx0
preserves m′

x0
guarantees that this does not depend on the choice of ϕ. We

define in this way a new Riemannian metric on M , which is locally homogeneous
by construction.

If the isotropy group Gx acts transitively on TxM , the above construction sim-
ply yields a rescaling of the metric. For geometric structures with non-transitive
isotropy groups, the modifications of the geometric structures can be a little more
complex. However, they still do not differ substantially from the original geometric
structure. This leads us to consider a weaker form of geometric structures, in order
to neutralize these trivial deformations.

A complete geometric structure on M lifts to a complete geometric structure
on the universal covering M̃ of M . A result of Singer [130] asserts that a complete
locally homogeneous Riemannian metric on a simply connected manifold is actually
homogeneous. In particular, the isometry group of M̃ acts transitively in the sense
that, for every x̃, ỹ ∈ M̃ , there exists an isometry g of M̃ such that g (x̃) = ỹ. We

consequently have a Riemannian manifold X = M̃ and a group G of isometries
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of X acting transitively on X . In addition, M admits an atlas {ϕi : Ui → Vi}i∈I

which locally models M over X and where all changes of charts are restrictions of
elements of G. Namely, each ϕi is a diffeomorphism between an open subset Ui of
M and an open subset Vi of X , the union of the Ui is equal to M , and each change
of charts ϕj ◦ ϕ

−1
i : ϕi (Ui ∩ Uj) → ϕj (Ui ∩ Uj) is the restriction of an element of

G. Finally, note that an isometry g of X is completely determined by the image gx
of a point x and by the differential Txg : TxX → TgxX (Hint: Follow the geodesics).
If we endow G with the compact open topology, it follows that for every x ∈ X the
stabilizer Gx = {g ∈ G; gx = x} is compact, since it is homeomorphic to its image
in the orthogonal group of isometries of the tangent space TxM .

More generally, consider a group G acting effectively1 and transitively on a con-
nected manifold X , in such a way that the stabilizer Gx of each point x ∈ X is
compact for the compact open topology. An (X,G)–structure on a manifold M is
defined by an atlas {ϕi : Ui → Vi}i∈I which locally models M over X and where
all changes of charts are restrictions of elements of G, as defined above. More pre-
cisely, such an (X,G)–atlas is contained in a unique maximal (X,G)–atlas, and an
(X,G)–structure on M is defined as a maximal (X,G)–atlas.

In this situation, the hypothesis that the stabilizers Gx are compact guarantees
the existence of a Riemannian metric on X which is invariant under the action of
G. Indeed, if we fix a base point x0 ∈ X , we can average an arbitrary positive
definite quadratic form on Tx0

X with respect to the Haar measure of Gx0
to obtain

a Gx0
–invariant positive definite quadratic form. If we use g ∈ G to transport this

quadratic form to Tgx0
X , we now have a well defined Riemannian metric onX which

is invariant under the action of G. This metric is homogeneous by construction,
and therefore complete. Also, note that this construction establishes a one-to-one
correspondence between G–invariant Riemannian metrics on X and Gx0

–invariant
positive definite quadratic forms on the tangent space Tx0

X .
If M is endowed with an (X,G)–structure and if we choose a G–invariant Rie-

mannian metric on X , we can pull back the metric of X by the charts of the
(X,G)–atlas. This gives a locally homogeneous metric on M , namely a geometric
structure on M .

An (X,G)–structure is complete if, for an arbitrary choice of a G–invariant metric
on X , the associated geometric structure on M is complete. Note that different
choices of a G–invariant metric on X give geometric structures on M which are
Lipschitz equivalent, so that this notion of completeness is independent of the choice
of the G–invariant metric on X .

As a summary, a complete geometric structure on M defines a complete (X,G)–
structure onM , whereX is the universal covering of M and where G is the isometry
group of X . Conversely, a complete (X,G)–structure on M defines a complete ge-
ometric structure on M , modulo the choice of a Gx0

–invariant positive definite
quadratic form on the tangent space on Tx0

X . So, intuitively, a complete (X,G)–
structure corresponds to a metric independent version of a complete geometric

1 Recall that a group G acts effectively on a set X if no non-trivial element of G acts by the
identity on X.
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structure. The reader should however beware of a few phenomena such as the fact
that, if we start from a (X,G)–structure and a G–invariant metric on M , asso-
ciate to them a complete geometric structure, and then consider the corresponding
(X ′, G′)–structure, the final geometric model may be much more symmetric than
the original one in the sense that the stabilizers G′

x′ may be larger than the stabi-
lizers Gx.

A geometry consists of a pair (X,G) as above, namely where X is a connected
manifold, where the group G acts effectively and transitively on X , and where all
stabilizers Gx are compact. This is also equivalent to the data of a connected Lie
group G and of a compact Lie subgroup H of G, if we associate to this data the
homogeneous space X = G/H endowed with the natural left action of G.

We identify two geometries (X,G) and (X ′, G′) if there is a diffeomorphism from
X to X ′ which sends the action of G to the action of G′. An (X,G)–structure on

M naturally lifts to an
(
X̃, G̃

)
–structure where G̃ consists of all lifts of elements

of G to the universal covering X̃ of X . Therefore, we can restrict attention to
geometries (X,G) where X is simply connected. Also, if the geometry (X,G) can
be enlarged to a more symmetric geometry (X,G′) with G ⊂ G′, every (X,G)–
structure naturally defines an (X,G′)–structure. Consequently, if we want to classify
all possible geometries in a given dimension, it makes sense to restrict attention to
geometries (X,G) which are maximal , namely where X is simply connected and
where there is no larger geometry (X ′, G′) with G ⊂ G′ and G 6=G′.

2. The eight 3–dimensional geometries

We now focus on the dimension 3, and want to list all maximal geometries (X,G)
where X is 3–dimensional. As indicated above, this amounts to listing all pairs
(G,H) where G is a Lie group, H is a compact Lie subgroup of G, and the quotient
G/H has dimension 3 and is simply connected (we let the reader translate the
maximality condition into this context). Note that H must be isomorphic to a
closed subgroup of O (3). Listing all such geometries now becomes a relatively easy
exercise using the Lie group machinery.

However, it is convenient to decrease the list even further. We will see that com-
plete geometric structures of finite volume tend to have better uniqueness proper-
ties. Therefore, it makes sense to restrict attention to geometries for which there is
at least one manifold admitting a complete (X,G)–structure of finite volume; note
that this finite volume property does not depend on the choice of a G–invariant
metric on X .

In this context, Thurston observed that there are exactly 8 maximal geometries
(X,G) for which there is at least one finite volume complete (X,G)–structure.
This section is devoted to a description of these eight geometries and of their first
properties. The article by Scott [125] constitutes a very complete reference for this
material.
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2.1. The three isotropic geometries

The three 2–dimensional geometries (X,G) which we encountered are isotropic in
the sense that, for any two points x, x′ ∈ X and any half-lines R+v ⊂ TxX and
R+v′ ⊂ Tx′X in the tangent spaces of X at x and x′, there is an element of G
sending x to x′ and v to v′. This is equivalent to the property that the stabilizer Gx

acts transitively on the set of half-lines in the tangent space TxX . In other words
the geometry (X,G) is isotropic if, not only does X look the same at every point,
but it also looks the same in every direction.

In dimension 3 (and actually in any dimension), there similarly are three isotropic
maximal geometries. If, for an isotropic geometry (X,G), we endow X with a G–
invariant Riemannian metric, passing to the orthogonal shows that we can send
any plane tangent to X at x ∈ X to any other plane tangent to X at x′ ∈ X
by an element of G. As a consequence, any G–invariant metric on X must have
constant sectional curvature. A classical result in differential geometry says that,
for everyK ∈ R and every dimension n, there is only one simply connected complete
Riemannian manifold of dimension n and of constant sectional curvature K, up to
isometry; see for instance Wolf [154]. Since rescaling the metric by λ > 0 multiplies
the curvature by λ−2, this leaves us with only 3 possible models for X , according
to whether the curvature is positive, 0 or negative.

When the curvature is positive, we can rescale the metric so that the curvature
is +1. Then, X is isometric to the unit sphere

S3 =
{
(x0, x1, x2, x3) ∈ R4;

3∑

i=0

x2
i = 1

}

with the Riemannian metric induced by the euclidean metric of R4 = E4. By
maximality, G is equal to the isometry group Isom

(
S3

)
of S3. This isometry group

clearly contains the orthogonal group O (4). Since O (4) acts transitively on the
space of orthonormal frames2 of S3, this inclusion is actually an equality, namely
G = Isom

(
H3

)
= O (4).

When the curvature is 0, X is isometric to the euclidean space E3, with the usual
euclidean metric. Again, G coincides with the isometry group Isom

(
E3

)
, which is

described by the exact sequence

0 → R3 → Isom
(
E3

)
→ O (3) → 0

where the subgroup R3 consists of all translations, and where the map Isom
(
E3

)
→

O (3) is defined by considering the tangent part of an isometry. Any choice of a base
point x0 ∈ E3 defines a splitting of this exact sequence, by sending g ∈ O (3) to
the isometry of E3 that fixes x0 and is tangent to g. In particular, this describes
Isom

(
E3

)
as the semi-direct product of R3 and of O (3), twisted by the usual action

2 Recall that an orthogonal frame is an orthonormal basis in the tangent space TxS3 of some
x ∈ S3
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of O (3) on R3.
When the curvature is negative, we can again rescale the metric so that the

curvature is −1. Then, X is isometric to the hyperbolic 3–space

H3 =
{
(u, v, w) ∈ R3;w > 0

}

endowed with the Riemannian metric which, at (u, v, w), is 1/w times the euclidean
metric. Among the three isotropic geometries, the geometry of H3 is probably the
least familiar, but it is also the richest. For instance we will see that, as in the case
of surfaces, there are many more 3–manifolds which admit a geometry modelled
over H3 than over E3 or S3. An isometry of H3 continuously extends to its closure
in R3 ∪ {∞}. The boundary of H3 in R3 ∪ {∞} is R2 × {0} ∪ {∞}, which the
standard isomorphism R2 ∼= C identifies to the complex projective line CP1 =
C ∪ {∞}. It can be shown that any homeomorphism of C ∪ {∞} that is induced
by an isometry of H3 is holomorphic or antiholomorphic, and therefore is of the
form z 7→ (az + b) / (cz + d) or z 7→ (az̄ + b) / (cz̄ + d) with a, b, c, d ∈ C with
ad− bc = 1. Conversely, every holomorphic or antiholomorphic homeomorphism ϕ
of C ∪ {∞} extends to an isometry of H3. The easier way to see this is probably
to remember that such a ϕ can be written as a product of inversions across circles,
to extend an inversion of C∪ {∞} across the circle C to the inversion of R3 ∪ {∞}
across the sphere that has the same center and the same radius as C, and to check
that the inversion across such a sphere respects H3 and the metric of H3.

2.2. The four Seifert type geometries

In contrast to the dimension 2, there is enough room in dimension 3 to allow
maximal geometries (X,G) which are not isotropic. Namely, for such a geometry,
there is at each point x a preferred line Lx in the tangent space TxX such that, for
each g ∈ G and each x ∈ X , the differential Txg : TxX → TxX sends the line Lx

to Lgx.
The first two such geometries are provided by the Riemannian manifolds S2 ×E1

and H2 × E1, endowed with the product metric.
For X = H2 ×E1, say, consider the natural action of the group G = Isom

(
H2

)
×

Isom
(
E1

)
, where Isom(Y ) denotes the isometry group of Y . This action respects

the metric of X , and is clearly transitive. Note that, for every (x, y) ∈ H2 × E1,
the differential of any element of the stabilizer G(x,y) respects the line L(x,y) =
0 × TyE1 ⊂ T(x,y)H

2 × E1. Therefore, the geometry (X,G) is non-isotropic, and of
the type mentioned above.

It remains to check that this geometry (X,G) is maximal. This is clearly equiva-
lent to the property that, for every G–invariant metric m on X , the isometry group
of m cannot be larger than G. At each point (x, y) ∈ X , the metric m must be in-
variant under the action of the stabilizer G(x,y). In particular, since G(x,y) contains
maps which rotate X around {x} ×E1, the bilinear form induced by m on T(x,y)X
must be invariant under rotation around L(x,y) = 0×TyE1. It follows that m must
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be obtained from the product metric m0 by rescaling it by a factor of λ1 > 0 in the
direction of the line L(x,y) = 0× TyE1 and by a factor of λ2 > 0 in the direction of

the orthogonal plane L⊥
(x,y) = TxH2 × 0 (keeping these two subspaces orthogonal).

To show that G is the whole isometry group of such a metric m, note that the sec-
tional curvature of m along a plane P ⊂ T(x,y)X is 0 if P contains the line L(x,y),

is −λ−2
2 if P is equal to the orthogonal L⊥

(x,y), and is strictly between 0 and −λ−2
2

otherwise. It follows that the differential of every m–isometry ϕ must send L(x,y) to

Lϕ(x,y) and L⊥
(x,y) to L⊥

ϕ(x,y). In particular, at an arbitrary point (x0, y0) ∈ X , there

is an isometry ϕ′ ∈ G such that ϕ′ (x0, y0) = ϕ (x0, y0) and T(x0,y0)ϕ
′ = T(x0,y0)ϕ,

which implies that ϕ = ϕ′ ∈ G. Therefore, every m–isometry ϕ is an element of G.
Replacing H2 by S2, we similarly prove that the manifold X = S2 × E1 endowed

with the natural action of G = Isom
(
S2

)
× Isom

(
E1

)
defines a maximal geometry

(X,G) (the only difference being that the sectional curvature along a plane is now
between 0 and +λ−2

2 ).
Note that the geometry where X = E2 × E1 and G = Isom

(
E2

)
× Isom

(
E1

)
is

conspicuously absent. This is because E2 ×E1 is identical to the euclidean 3–space
E3, and G can therefore be extended to the larger group Isom

(
E3

)
. Therefore, this

geometry is not maximal.
There are also twisted versions of these product geometries. We first describe

an explicit model for the twisted product H2×̃E1. Let T 1H2 be the unit tangent
bundle of H2, consisting of all tangent vectors of length 1 of H2. Consider the
natural projection p : T 1H2 → H2, associating its base point to each v ∈ T 1H2.

The metric of H2 determines a metric on T 1H2 as follows: The tangent space of
T 1H2 at v ∈ T 1H2 naturally splits as the direct sum of a line Lv and of a plane
Pv, where Lv is the tangent line to the fiber p−1 (p (v)), and where Pv consists of
all infinitesimal parallel translations of v along geodesics passing through the point
p (v) ∈ H2. The norm defined by the metric of H2 on Tp(v)H

2 induces a metric on
the fiber p−1 (p (v)) ⊂ Tp(v)H

2, making it isometric to the unit circle S1, and this
metric induces a norm on the line Lv tangent to p−1 (p (v)). Also, the restriction
of the differential dpv identifies the plane Pv to the tangent space Tp(v)H

2, and the
metric of H2 then defines a norm on Pv. The Riemannian metric of T 1H2 is defined
by the property that, at each v ∈ T 1H2, it restricts to the above norms on Lv and
Pv and it makes these two spaces orthogonal.

The construction of this metric is intrinsic enough that it is respected by the
natural lift v 7→ Tp(v)ϕ (v) of each isometry ϕ : H2 → H2. It is also respected by the
other natural transformations of T 1H2 that rotate each vector v by a fixed angle
θ, for every θ. In particular, this metric makes T 1H2 a homogeneous Riemannian
manifold.

The space T 1H2 has the homotopy type of a circle. The model for H2×̃E1 is its
universal covering T̃ 1H2.

Topologically, H2×̃E1 is homeomorphic to H2 ×E1, by a homeomorphism which
conjugates the submersion p̃ : H2×̃E1 → H2 lifting p to the projection H2 × E1 →
H2. However, the situation is metrically very different. Indeed, if α is an oriented
differentiable curve going from x to itself in H2 and if v is in the fiber p̃−1 (x), there
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is a unique way of lifting α to a curve α̃ in H2×̃E1 that begins at v and is everywhere
orthogonal to the fibers p−1 (α (t)). It immediately follows from the Gauss Bonnet
Formula that, in contrast to what happens in the case of H2 × E1 → H2 (where α̃
returns to its starting point v), the end point of α̃ sits at a signed distance of −A
from v in the fiber p̃−1 (x), where A is the signed area enclosed by α in H2 and
where p̃−1 (x) is oriented by the orientation of H2.

Since the Riemannian manifold T 1H2 is homogeneous, so is its universal covering
T̃ 1H2 = H2×̃E1. In particular, the isometry group of X = H2×̃E1 contains the
group G generated by the vertical translations along the fibers and by the lifts of
the isometries of T 1H2 associated to the isometries of H2.

It remains to see that the geometry (X,G) so defined is maximal. As usual, it
suffices to prove that the isometry group of any G–invariant metric is equal to G.
The action of the stabilizer Gv on the tangent space TvX contains all rotations
around the line Lv tangent to the fiber p−1 (p (v)). Therefore, any G–invariant
metricm onX must be obtained by rescaling the original metric by a uniform factor
along Lv and by another uniform factor along the plane Pv orthogonal to Lv. A
straightforward computation shows that the sectional curvature of such a metric m
along a plane P ⊂ TvX is maximal when P contains Lv, and is minimal when P is
orthogonal to Lv. As a consequence, the differential of every isometry ϕ of m must
send Lv to Lϕ(v), and therefore commutes with the projection p̃ : H2×̃E1 → H2.

Also, considering the lift of a closed curve α enclosing a non-zero area in H2×̃E1,
we see that an m–isometry ϕ respects the orientation of the fibers of p̃ if and only
if the induced map H2 → H2 is orientation-preserving. At this point, for every
m–isometry ϕ and for an arbitrary v ∈ X , one easily finds an element ψ ∈ G with
ϕ (v) = ψ (v) and Tvϕ = Tvψ, from which we conclude that ϕ = ψ. Therefore, the
geometry of H2×̃E1 with the transformation group G is maximal.

To conclude this discussion of H2×̃E1, we should note that the action of the
orientation-preserving isometry group of H2 on T 1H2 is transitive and free, so that
the choice of a base point identifies this group to T 1H2. We saw in Section 1.1
that every orientation-preserving isometry of H2 is a linear fractional map of the
form z 7→ (az + b) / (cz + d) with a, b, c, d ∈ R, which we can normalize so that
ad− bc = 1. Associating to such a linear fractional the matrix with coefficients a,
b, c, d defines a group isomorphism between the orientation-preserving isometry
group of H2 and the matrix group PSL2 (R) = SL2 (R) / {±Id}. For this reason,

H2×̃E1 = T̃ 1H2 is often denoted by P̃SL2 (R).
There is a similar twisted product E2×̃E1. An explicit model for E2×̃E1 can be

constructed as follows. Let E2×̃E1 be R3 with the Riemannian metric

ds2 = dx2 + dy2 +
(
dz − 1

2ydx+ 1
2xdy

)2

There is a Riemannian submersion p : E2×̃E1 → E2 defined by p (x, y, z) = (x, y).
Any isometry ϕ : E2 → E2 lifts to an isometry Φ of E2×̃E1 defined by the formula

Φ (x, y, z) =
(
ϕ (x, y) , εz + 1

2bx− 1
2ay

)
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where ε = +1 or −1 according to whether ϕ preserves or reverses the orientation
of E2 and where (a, b) = ϕ (0, 0). Also, every vertical translation of E2×̃E1 = R3 is
an isometry. It follows that the Riemannian manifold E2×̃E1 is homogeneous.

The Riemannian submersion p : E2×̃E1 → E2 is ‘twisted’ in a way which is very
similar to the one we observed for H2×̃E1: If α is a curve going from x to x in E2

and if we lift α to a curve α̃ in E2×̃E1 that is everywhere orthogonal to the fibers,
the end point of α̃ is at oriented distance −A from its starting point in the fiber
p−1 (x), where A is the signed area enclosed by α in E2; this immediately follows
from the expression of the area A as the line integral of 1

2xdy −
1
2ydx along α.

The manifold X = E2×̃E1, endowed with the action of the group G generated by
all vertical translations and by the lifts of isometries of E2 described above, defines
a geometry (X,G). The fact that this geometry is maximal is proved by the same
methods as for H2×̃E1.

The isometry group G of X = E2×̃E1 is easily seen to be nilpotent. It is the only
nilpotent group among the groups associated to maximal 3–dimensional geometries.
For this reason, the geometry of X = E2×̃E1 is often called the Nil geometry.

We could also expect a similarly twisted geometry S2×̃E1. However, a compu-
tation shows that the sectional curvature of such a homogeneous manifold would
have to be everywhere positive, and the model space would consequently have to
be compact. There is a twisted product S2×̃S1 corresponding to the universal cover
T̃ 1S2 of the unit tangent bundle of S2, as in the case of T̃ 1H2 = H2×̃E1. Note that
each fiber of T̃ 1S2 = S2×̃S1 double covers a fiber of T 1S2. In this geometry, if we lift
a closed curve α in S2 to a curve α̃ in S2×̃S1 which is everywhere orthogonal to the
S1 factor, the end points of α̃ are +A apart in the fiber above the starting point of
α, where A is the area enclosed by α in S2; note that A is defined modulo the area
of S2, namely 4π, which is exactly the length of the fiber above the initial point of
α. However, this geometry is not maximal. Indeed, it is well known that there is
a diffeomorphism between T̃ 1S2 and S3 which sends the projection T̃ 1S2 → S2 to
the Hopf fibration. In addition, an immediate computation shows that the standard
identification S3 ∼= T̃ 1S2 sends the metric of S3 obtained by rescaling the metric
of T̃ 1S2 by a factor of 1

2 in the direction of the fibers (so that the fibers now have

length 2π). As a consequence, the geometry of T̃ 1S2 = S2×̃S1 is actually contained
in the geometry of S3, and is not maximal.

We will later see that the four geometries considered in this section mostly occur
for manifolds which admit fibrations of a certain type, called Seifert fibrations. For
this reason, these are often called Seifert-type geometries.

2.3. The Sol geometry

Finally, there is a maximal geometry (X,G) where all stabilizers Gx are finite.
Topologically,X is just R3, but is endowed with the Riemannian metric m0 which

at (x, y, z) is ds2 = e2zdx2 + e−2zdy2 + dz2. (There is nothing special about the
number e; it can easily be replaced by any number greater than 1 by rescaling in
the z–direction). This metric is respected by the group G of transformations of X
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of the form

(x, y, z) 7→
(
εe−cx+ a, ε′ecy + b, z + c

)
or

(
εe−cy + a, ε′ecx+ b,−z + c

)

where a, b, c ∈ R and ε, ε′ = ±1. Namely, G is generated by all horizontal trans-
lations, the reflections across the xz– and yz–coordinate planes, the vertical shifts
(x, y, z) 7→ (e−cx, ecy, z + c), c ∈ R, and the flip (x, y, z) 7→ (y, x,−z). Note that
the stabilizer of the origin consists of the eight maps (x, y, z) 7→ (±x,±y, z) and
(x, y, z) 7→ (±y,±x,−z).

Let us show that the geometry (X,G) is maximal. As usual, it suffices to show
that, for any G–invariant metric m, the isometry group of m is not larger than
G. Looking at stabilizers, we immediately see that such a G–invariant metric m
must be obtained by rescaling the original metric m0 in the horizontal and vertical
directions, namely that there exist constants λ, µ > 0 such that the metric m
corresponds to ds2 = λe2zdx2 + λe−2zdy2 + µdz2. Then, the sectional curvature of
m is equal to +1/µ along any horizontal (for the identification X = R3) tangent
plane, is equal to −1/µ along any vertical tangent plane, and is strictly between
these two values along a plane which is neither horizontal nor vertical. It follows
that any m–isometry ϕ must respect up to sign the vector field U which is vertical
pointing upwards in X = R3 and has norm 1 for m. If we consider the covariant
differentiation v 7→ ∇vU as an automorphism of each tangent space T(x,y,z)X =
R3, a straightforward computation shows that the direction of the x–axis is the
eigenspace of a positive eigenvalue, and that the direction of the y–axis is the
eigenspace of a negative eigenvalue. Therefore, the differential of an m–isometry ϕ
must respect the three coordinate axes if ϕ sends U to U , and exchange the x–
and y–axes if ϕ sends U to −U . It easily follows that there is an element ϕ′ of
G which has the same value and the same differential as ϕ at an arbitrary point
(x0, y0, x0) ∈ X , from which we conclude that ϕ = ϕ′ ∈ G. This concludes the
proof that the geometry (X,G) is maximal.

The group G is easily seen to be solvable, and is the only one with this property
among the groups corresponding to the geometries we have encountered so far. For
this reason, the geometry (X,G) is often called the Sol geometry.

At this point, we have described eight maximal 3–dimensional geometries. We
will later see that, for each of these geometries, there is at least one manifold
which admits a finite volume complete geometric structure corresponding to this
geometry. Thurston showed that the list is complete, and that there is no other
maximal 3–dimensional geometry with this property. We cannot give the details
of the proof of this fact here, and refer to Scott [125, §5] for a discussion of this
proof. However, it is probably worth mentioning that certain maximal geometries,
such as the geometry of X = R3 endowed with the isometry group G of the metric
ds2 = e2λzdx2 +e−2µzdy2+dz2 with λ 6=µ are excluded because no manifold admits
a finite volume (G,X)–structure of this type.
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2.4. Topological obstructions to the existence of complete geometric structures

We saw that every surface admits a complete geometric structure. In dimension 3,
there are topological obstructions to the existence of a complete geometric structure
on a given 3–manifold.

A simple observation restricts the geometric structures with which a non-
orientable manifold M can be endowed. We saw that the geometries of E2×̃E1

and H2×̃E1 are chiral , in the sense that they admit no orientation-reversing isome-
tries. In particular, in the atlas defining on M a geometric structure modelled over
one of these two spaces, the changes of charts are orientation-preserving. It follows
that M is orientable.

The same holds for a complete geometric structure modelled over S3. Indeed, if
M is endowed with a complete geometric structure modelled over S3, any isometry
between an open subset of the universal covering M̃ of M and an open subset of
S3 uniquely extends to an isometry between M̃ and S3, by the result of Singer
[130] which we already mentioned. As a consequence, M is isometric to a quotient
S3/Γ, where Γ ∼= π1 (M) is a finite group acting freely and isometrically on S3.
The Lefschetz Fixed Point Theorem, or inspection, shows that every orientation-
reversing isometry of S3 must have fixed points. Therefore, Γ must respect the
orientation of S3. This proves:

Proposition 2.1. If the 3–manifold M admits a geometric structure modelled over
E2×̃E1 or H2×̃E1, or a complete geometric structure modelled over S3, then M is
orientable.

The second restriction has to do with the fact that, for seven out of the eight
3–dimensional geometries, the model space X is homeomorphic to R3 or S3 and, as
such, contain no essential 2–sphere. A 2–sphere S embedded in the 3–manifold M
is essential if the closure of no component of M − S is diffeomorphic to the 3–ball.
By a theorem of Alexander [4], R3 and S3 contain no essential 2–sphere. Among
the eight 3–dimensional geometries, the only model space that contain essential
2–spheres is therefore S2 × E1.

An essential projective plane in the 3–manifold M is a surface P embedded in
M which is diffeomorphic to the real projective plane RP2 and which is 2–sided,
namely such that the normal bundle of P in M is trivial. Note that, if M contains
a 1–sided projective plane, either M contains an essential 2–sphere, namely the
boundary of a tubular neighborhood of P , or else M is diffeomorphic to the real
projective 3–space RP3.

An easy covering theory argument shows that, if we have a covering M̃ → M
of 3–manifolds and if M̃ contains no essential 2–sphere or projective plane, then
M also contains no essential 2–sphere or projective plane. The converse is actually
true by a deeper result, the Equivariant Sphere Theorem of W. Meeks, L. Simon
and S.T. Yau [88, 89, 87]. But we only need the result in the forward direction,
which immediately shows:
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Theorem 2.2. If the 3–manifold M admits a complete geometric structure mod-
elled over E3, S3, H3, H2 × E1, E2×̃E1, H2×̃E1 or Sol (namely one of the eight
3–dimensional geometries except S2 × E1), then M contains no essential 2–sphere
or projective plane.

More stringent restrictions occur for the Seifert-type geometries. Namely, the
existence of such a geometry on a compact 3–manifold usually leads to a Seifert
fibration on this manifold. But we first need to define Seifert fibrations. Seifert
fibrations were introduced by H. Seifert3 [127]; in addition to [127], useful references
on Seifert fibrations include the books by Orlik [103] and Montesinos [96], as well
as Scott’s survey [125].

A Seifert fibration of the 3–manifold M is a decomposition of M into disjoint
simple closed curves, called the fibers of the fibration, such that the following prop-
erty holds: Every fiber has a neighborhood U which is diffeomorphic to the quotient
of a solid torus S1 × B2 by the free action of a finite group action respecting the
product structure, in such a way that the fibers of the fibration correspond to the
images of the circles {x} × B2. Here, Bn denotes the closed unit ball in Rn.

By inspection, the above fibered neighborhood U has to be of one of the following
two types:

If U is orientable, then there is a diffeomorphism between U and S1 × B2 for
which, if we identify S1 and B2 to the unit circle and unit disk in C, the fibers of
U all have a parametrization of the form z 7→ (zp, z0z

q), where z ranges over S1,
z0 ∈ B2 depends on the fiber, and the coprime integers p > 0 and q depend only on
U and on its parametrization. Namely, the fibers wrap p times in the S1–direction
and q times in the B2–direction, except the central fiber corresponding to z0 = 0,
which wraps only once in the S1–direction.

If U is non-orientable, it admits a diffeomorphism with [0, 1] × B2/ ∼, where ∼
identifies {1}×B2 to {0}×B2 by complex conjugation, and where the fibers corre-
spond to the sets [0, 1]× {z0, z̄0}. Note that most fibers are orientation-preserving,
with the exception of those corresponding to z0 ∈ R.

A fiber is generic if it admits an orientable fibered neighborhood U as above
with p = 1 and q = 0, namely if the fibration is a locally trivial bundle near
this fiber; otherwise, the fiber is exceptional . Orientation-preserving exceptional
fibers are isolated. Orientation-reversing exceptional fibers form a 2–dimensional
submanifold of M whose components are open annuli, tori and Klein bottles (since
they are locally trivial circle bundles).

Now, consider the space Σ of fibers of a Seifert fibration of the 3–manifold M .
Near a fiber f which is orientation-preserving in M , a fibered solid torus neigh-
borhood U of f in M provides a neighborhood of the point f ∈ Σ in Σ which
is homeomorphic to a quotient B2/Zp, where the cyclic group Zp (possibly with
p = 1) acts on B2 by rotation; note that this quotient B2/Zp is homeomorphic to
a disk centered at f . Similarly, the point of Σ corresponding to a fiber f which is
orientation-reversing in M has a neighborhood homeomorphic to B2/Z2, where Z2

3 The fibrations considered by Seifert had only orientation-preserving fibers, but the generalization
given below is not intrinsically different.
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acts on B2 by complex conjugation; note that B2/Z2 is in this case homeomorphic
to a half-disk with f on its boundary. As a consequence, Σ is a topological sur-
face with boundary, where the boundary points correspond to orientation-reversing
fibers.

When we consider Σ only as a topological surface, we unfortunately loose a
lot of information regarding the differentiable structure of M . For instance, we can
endow the surface Σ with a differentiable structure for which the natural projection
p : M → Σ is differentiable but, if the fibration has at least one exceptional fiber,
there is no differentiable structure on Σ for which M → Σ is a submersion, in
contrast to what is usually expected of a fibration. For this reason, it is much
better to consider the natural orbifold structure of Σ. This leads us to digress into
a brief discussion of orbifolds.

Orbifolds were first introduced in the 1950s by I. Satake [120, 121] under the
name of V–manifolds, and later rediscovered and popularized by Thurston [138]
under the name of orbifolds. In addition to these references, some basic facts about
orbifolds can also be found in Montesinos [96] or Bonahon-Siebenmann [19].

Roughly speaking, an orbifold is a topological space endowed with an atlas
which locally models it over quotients of manifolds by properly discontinuous group
actions. More precisely, let a (differentiable) folding map be a continuous map

f : Ũ → U from a differentiable manifold Ũ to a topological space U such that
the folding group Gf , defined as the group of diffeomorphisms g of Ũ such that

f ◦ g = f , acts properly discontinuously4 on Ũ and such that the induced map
Ũ/Gf → U is a homeomorphism.

A (differentiable) orbifold is defined as a metrizable topological space O endowed

with an atlas of folding charts fi : Ũi → Ui, i ∈ I, where the Ui form an open
covering of O and where the fi are compatible in the following sense: For every
xi ∈ Ũi and xj ∈ Ũj with fi (xi) = fj (xj), there is a diffeomorphism ψij from an

open neighborhood Ṽi of xi in Ũi to an open neighborhood Ṽj of xj in Ũj such

that fj ◦ ψij = fi over Ṽi. More formally, an orbifold is a topological space O
with a maximal atlas of compatible folding charts as above. Note that it is always
possible to restrict the folding charts so as to obtain an atlas where all folding
charts have finite folding group. So, the definition of orbifolds would be unchanged
if we restricted attention to folding charts with finite folding groups, which is what
many authors do. To alleviate the notation, we will often use the same symbol
to represent an orbifold and its underlying topological space; in theory, this is
somewhat dangerous since the structure of an orbifold involves much more data
than its underlying topological space, but we will try to make sure that the context
clearly identifies the interpretation which has to be used. When we really need to
emphasis the distinction, we will denote by |O| the topological space underlying
the orbifold O.

A typical example of orbifold is provided by the properly discontinuous action
of a group Γ over a manifold M . Then, the quotient map M → M/Γ is a folding

4 Recall that a group G acts properly discontinuously on a locally compact space X if every x ∈ X

admits a neighborhood V such that {g ∈ G;V ∩ gV 6= ∅} is finite.
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chart, and defines an orbifold structure on M/Γ. An orbifold obtained in this way is
said to be uniformizable. Although many (and perhaps most) important orbifolds
are uniformizable, there exists orbifolds which are not; we will encounter some non-
uniformizable 2–orbifolds in Proposition 2.6. In any case, it is always useful to keep
the example of uniformizable orbifolds in mind, since any orbifold is locally of this
type.

An orbifold covering map between two orbifolds is a continuous open map ϕ :
O → O′ between their underlying topological spaces such that, if

{
fi : Ũi → Ui; i ∈

I
}

is the maximal atlas defining the first orbifold,
{
ϕ ◦ fi : Ũi → ϕ (Ui) ; i ∈ I

}

is an atlas defining the second orbifold. If, in addition, the map ϕ : O → O′ is a
homeomorphism, then ϕ−1 is also an orbifold covering map, and this defines an
isomorphism between the two orbifolds.

If the group Γ acts properly discontinuously on M and if Γ′ is a subgroup of Γ,
the canonical map M/Γ′ → M/Γ is an orbifold covering map. By definition, an
orbifold covering map is always locally of this type.

For every point x of the topological space O underlying an orbifold, every folding
chart fi : Ũi → Ui of the orbifold atlas with x ∈ Ui and every x̃ ∈ f−1

i (x), it

immediately follows from definitions that the action on the tangent space T
x̃
Ũi

of the (finite) stabilizer of x̃ in the folding group Gfi
depends only on x, up to

conjugation. The corresponding finite linear group Gx, well defined up to linear
conjugation, is the isotropy group of x. The point x is regular if the isotropy group
Gx is trivial, and singular otherwise. For instance, for the uniformizable orbifold
M/Γ arising from a properly discontinuous action of a group Γ on a manifold M ,
the set of singular points of M/Γ is exactly the image of the union of the fixed
point sets of the non-trivial elements of Γ.

By straightforward generalization of the case of manifolds, we can define geomet-
ric structures on orbifolds. Namely, an orbifold admits an (X,G)–structure if its

maximal orbifold atlas contains an atlas
{
fi : Ũi → Ui; i ∈ I

}
where the Ũi are

open subsets of X , the folding groups Gfi
consist of restrictions to Ũi of elements

of G, and the change of charts ψij are also restrictions of elements of G. If X is
endowed with a G–invariant Riemannian metric, this metric induces a Riemannian
metric on the set of regular points of the orbifold, and therefore a metric space
structure on the topological space underlying the orbifold, by defining the distance
from x to y as the infimum of the lengths of those paths which go from x to y
and which consist only of regular points, with the possible exception of x and y.
By definition, the corresponding geometric structure is complete if this underlying
metric space is complete.

If an orbifold O admits a complete (G,X)–structure, consider a folding chart

f : Ũ → U of the atlas defining this structure. By definition, Ũ is an open subset of
X and the folding group Gf is a subgroup of G. Then, the argument of Singer [130]
immediately extends to give a global folding chart X → O, whose folding group Γ
is contained in G. In other words the orbifold O is isomorphic to the orbifold X/Γ,
quotient of X by a subgroup Γ of G acting properly discontinuously on X (See also
Thurston [138, Chap. 3] or Benedetti-Petronio [10, Sect. B.1]). This proves:
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Lemma 2.3. If an orbifold admits a complete geometric structure modelled over
(X,G), then it is isomorphic to the orbifold X/Γ quotient of X by a subgroup Γ
of G acting properly discontinuously on X, and this by an isomorphism respecting
geometric structures. In particular, the orbifold is uniformizable.

In the case of the base space Σ of a Seifert fibration of the 3–manifold M , any
small 2–dimensional submanifold Ũ of M which is transverse to the leaves projects
to an open subset U of Σ, and the local models for the Seifert fibration show that
the restriction of the projection p to Ũ → U locally is a folding chart. It is im-
mediate that these folding charts are compatible, and therefore define an orbifold
structure on Σ. This 2–dimensional orbifold is the base orbifold of the Seifert fibra-
tion. Note that the singular points of this orbifold are exactly those corresponding
to exceptional fibers of the Seifert fibration; the isotropy group of such a singular
point is cyclic, acting by rotations on R2, when the singular point corresponds to
an orientation-preserving exceptional fiber, and is Z2 acting by reflection when it
corresponds to an orientation-reversing exceptional fiber.

Up to orbifold isomorphism, this base 2–orbifold is completely determined by:
the topological type of the topological surface Σ with boundary underlying the
orbifold; the discrete subset S of Σ consisting of those singular points where the
isotropy group is a finite rotation group; the assignment of this isotropy group Gx

to each x ∈ S. This easily follows from local considerations near the singular set.
Seifert fibrations were classified by H. Seifert [127] in the 1930s. Namely, given

two 3–manifolds M and M ′ each endowed with a Seifert fibration, he introduced
invariants which enabled him to decide whether there exists a diffeomorphism be-
tween M and M ′ sending fibration to fibration. As indicated earlier, Seifert was
only considering fibrations where the fibers are orientation-preserving, but his work
straightforwardly extends to the case where we allow orientation-reversing fibers.
We now discuss Seifert’s classification, using a reformulation proposed by Thurston.
The details of this classification can be found in Seifert [127], Orlik [103], Scott [125],
Montesinos [96], Bonahon-Siebenmann [19].

We first consider the classification of Seifert fibrations of oriented 3–manifolds
M .

In this case, there are no orientation-reversing fibers, so that the topological space
underlying the base 2–orbifold Σ is a surface without boundary. The first invariant
of the Seifert fibration is the orbifold isomorphism type of Σ.

Then, there is an invariant β/α ∈ Q/Z associated to each exceptional fiber f as
follows: Let U ∼= S1 × B2 be a fibered neighborhood of f where the fibers have a
parametrization of the form z 7→ (zp, z0z

q), z ∈ S1, where f is the central fiber
corresponding to z0 = 0, and where the identification U ∼= S1 × B2 is consistent
with the orientation of M and with the standard orientation of S1 and B2. Then
α = p and β ∈ Z is such that βq ≡ 1modp. (In particular, the data of β/α ∈ Q/Z
is equivalent to that of q/p ∈ Q/Z, but it turns out to be slightly more convenient).
Note that, if we consider f as a point of Σ, the isotropy group of f in the base
orbifold is Zα, acting by rotations.

Finally, when M is compact, there is a globally defined Euler number e0 ∈ Q.
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This invariant has the property that its modZ reduction is equal to the sum of the
invariants β/α ∈ Q/Z associated to all the exceptional fibers of the fibration. When
the Seifert fibration is a locally trivial bundle where the fibers can be coherently
oriented, this bundle has an Euler class defined in the cohomology group H2 (Σ; Z);
the orientations of M and of the fibers determine an orientation of Σ, which itself
determines an isomorphism H2 (Σ; Z) ∼= Z; then, e0 is the integer corresponding to
the Euler class through this isomorphism; note that reversing the orientation of the
fibers multiplies the Euler class and the isomorphism H2 (Σ; Z) ∼= Z by −1, so that
e0 is unchanged. Also, this Euler number is well behaved with respect to coverings:
If we have a finite covering M ′ → M of oriented manifolds and if M is endowed
with a Seifert fibration of Euler number e0, this fibration pulls back to a Seifert
fibration of M ′ whose Euler number is e0n

2/p, where p is the degree of the covering
and where n is the number of components of the preimage in M ′ of a generic fiber
of M . With the fact that e0 = 1 for every Seifert fibration of S3, these properties
can actually be used to explicitly define e0: Indeed, an easy exercise, based on the
choice of suitable orbifold coverings of Σ, shows that, for every Seifert fibration of
M , there is a finite covering of M where this Seifert fibration pulls back to a locally
trivial bundle or to a Seifert fibration of S3. A more explicit definition of e0 can be
found in Neumann-Raymond [100], Montesinos [96], or Bonahon-Siebenmann [19].

When M is not compact, e0 is not defined.
Seifert’s classification of Seifert fibrations of oriented 3–manifolds can be

rephrased as follows.

Theorem 2.4 (Oriented classification of Seifert fibrations). Consider two oriented
3–manifolds M and M ′, each endowed with a Seifert fibration. Then, there is an
orientation-preserving diffeomorphism M → M ′ sending fiber to fiber if and only
if there is an isomorphism between their base orbifolds which sends each singular
point to a singular point with the same invariant β/α ∈ Q/Z and if, when the
manifolds are compact, the two Seifert fibrations have the same Euler number e0 ∈
Q. Conversely, if Σ is a 2–orbifold where all isotropy groups are cyclic acting by
rotation, if we assign to each singular point of Σ with isotropy group Zα an element
β/α ∈ Q/Z with β coprime to α, and if, when Σ is compact, we pick a rational
number e0 ∈ Q whose modZ reduction is equal to the sum of the β/α, there is a
Seifert fibration of an oriented 3–manifold M which realizes this data.

Note that reversing the orientation of the manifold M reverses the sign of the
invariants β/α ∈ Q/Z associated to their exceptional fibers and, if applicable, of
the Euler number e0 ∈ Q. Therefore, Theorem 2.4 also provides the unoriented
classification of Seifert fibrations of orientable 3–manifolds.

The classification of Seifert fibrations of non-orientable manifolds is somewhat
harder to state, but it essentially follows the lines of the oriented classification.
We can summarize it by saying that such a Seifert fibration is characterized by
the following data: the base orbifold Σ; invariants β/α ∈ Q/Z associated to the
orientation-preserving exceptional fibers; orientability data for the locally trivial
bundle obtained by removing the exceptional fibers; when the manifold is compact,
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a global obstruction in Z2. However these data tend to be interdependent. We refer
to Seifert [127], Scott [125], Montesinos [96], Bonahon-Siebenmann [19] for precise
statements.

We can now state the restrictions which a Seifert-type geometry imposes on a
3–manifold. Complete proofs and details can be found in Scott [125].

Theorem 2.5. If the manifold M admits a complete geometric structure modelled
over S2 × E1, H2 × E1, H2×̃E1 or E2×̃E1, then one of the following occurs:

(i) The foliation of M by the E1 factors is a Seifert fibration. In this case, all
generic fibers of the Seifert fibration have the same length l, and the metric of the S2,
H2 or E2 factors projects to a complete spherical, hyperbolic or euclidean geometric
structure on the base orbifold Σ of this fibration. If M is compact, orientable, and
oriented so that the charts of its geometric structure are orientation-preserving,
then the Euler number e0 ∈ Q is equal to 0 for the product geometry of S2 × E1

and H2 × E1, and is negative for the twisted geometries of H2×̃E1 and E2×̃E1. In
addition, when e0 is defined and non-zero, the length l of the generic fibers is equal
to −e0area (Σ), where the area is that of the geometric structure induced on the
base 2–orbifold Σ.

(ii) The foliation of M by the E1 factors is a (locally trivial) E1–bundle over a
surface Σ. In this case, the metric of the S2, H2 or E2 factors projects to a spherical,
hyperbolic or euclidean complete geometric structure on Σ.

(iii) At most two leaves of the foliation by the E1 factors are closed subsets of
M . In this case, M is diffeomorphic to one of eleven manifolds: the two S2–bundles
over S1, the connected sum RP3#RP3 of two copies of the real projective 3–space
RP3, the product RP2 × S1, the two E2–bundles over S1, the two E1–bundles over
the 2–torus, or the three E1–bundles over the Klein bottle.
If, in addition, the geometric structure of M has finite volume, then Case (ii) and
the non-compact manifolds of Case (iii) cannot occur. In Case (i), the geomet-
ric structure induced on the base 2–orbifold Σ has finite area. In Case (iii), the
geometric structure of M is necessarily modelled over S2 × E1.

The conclusions of Case (i) will be more useful if we can specify which 2–orbifolds
admit complete spherical, euclidean, or hyperbolic structures.

For this, it is convenient to introduce the Euler characteristic of a compact orb-
ifold O. The proof that every differentiable manifold admits a triangulation imme-
diately extends to show that every differentiable orbifold admits a triangulation.
A triangulation of the orbifold O is a decomposition of the topological space un-
derlying O into subsets of O called orbifold simplices, such that each point x of
this underlying space has a neighborhood U which is a union of orbifold simplices,
which is contained in the image of some folding chart fi : Ũi → Ui of the orbifold
atlas of O, and such that the decomposition of U into orbifold simplices lifts to
a triangulation of f−1

i (U) ⊂ Ũi which is invariant under the action of the folding
group Gfi

. In addition, we insist that the isotropy group is constant on the interior
of each orbifold simplex. Then, the orbifold Euler characteristic of the compact
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orbifold O is the sum

χorb (O) =
∑

σ

(−1)
dim σ 1

|Gσ|
∈ Q

where the sum is over all orbifold simplices σ of the triangulation σ, and where
|Gσ| is the cardinal of the isotropy group of an arbitrary point of the interior of σ.
Standard proofs that the Euler characteristic of a manifold is independent of the
triangulation automatically extend to orbifolds. Note that the orbifold characteristic
χorb (O) is a rational number, and should not be confused with the usual Euler
characteristic χ (|O|) of the topological space |O| underlying the orbifold O.

We similarly define the orbifold Euler characteristic of an orbifold O of finite type,
namely an orbifold which is isomorphic to the interior of a compact orbifold Ō with
boundary (where orbifolds with boundary are defined by replacing manifolds by
manifolds with boundary in the definition of folding maps). In this case, χorb (O) =
χorb

(
Ō

)

A fundamental property of this orbifold Euler characteristic is that it is well
behaved with respect to orbifold coverings: If there is an orbifold covering O → O′

of degree n, namely such that the pre-image of a regular point of O′ consists of
n regular points of O, then χorb (O) = nχorb (O′). Also, note that the orbifold
Euler characteristic χorb (O) coincides with the usual Euler characteristic when the
orbifold O is a manifold, namely when all the isotropy groups are trivial.

When Σ is a finite type 2–orbifold of the type occurring as base orbifolds of
Seifert fibrations, namely where all isotropy groups are cyclic acting by rotations or
Z2 acting by reflection, it is immediate from definitions that χorb (Σ) is the sum of
the usual Euler characteristic of its underlying space |Σ|, of − 1

2 times the number of

non-compact components of the set of reflection points of Σ, and of
∑k

i=1 (1/αi − 1)
where Σ has exactly k isolated singular points and the isotropy group of the i–th
singular point is Zαi

acting by rotation.

Proposition 2.6 (Geometrization of 2–orbifolds). Let Σ be a 2–orbifold of the type
occurring as base orbifolds of Seifert fibrations, namely where all isotropy groups
are cyclic acting by rotations or Z2 acting by reflection. Then:

(i) If Σ is compact, it admits a hyperbolic structure if and only if its orbifold
Euler characteristic χorb (Σ) is negative.

(ii) If Σ is compact, it admits a euclidean structure if and only if χorb (Σ) is
equal to 0.

(iii) If Σ is compact, it admits a spherical structure only if χorb (Σ) is posi-
tive. Conversely, if χorb (Σ) > 0, either Σ admits a spherical structure, or Σ has
underlying topological space a 2–sphere and exactly one singular point, or Σ has
underlying topological space a 2–sphere and has exactly two singular points, of re-
spective isotropy groups Zp and Zq with p 6= q.

(iv) If Σ is non compact, it always admits a complete hyperbolic structure.
(v) If Σ is non-compact, it admits a complete euclidean structure if and only if

it falls into one of the following eight categories: the topological space underlying Σ
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is a plane and Σ has at most one singular point; the topological space underlying Σ
is a half-plane, and the set of singular points of Σ forms a line; the topological space
underlying Σ is a plane and Σ has exactly two singular points, with isotropy group
Z2 acting by rotations; the topological space underlying Σ is a half-plane, and the
singular set of Σ consists of one line of reflection points and of a single point with
isotropy group Z2 acting by rotation; the topological space underlying Σ is an open
annulus, with no singular point; the topological space underlying Σ is a semi-open
annulus, and the singular set consists of a circle of reflection points; the topological
space underlying Σ is a square with two opposite sides removed, and the singular
set consists of two lines; the topological space underlying Σ is an open Möbius strip,
with no singular point.

(vi) If M is non-compact, it cannot admit a complete spherical structure.

Here, a half-plane is the closure of one component of the complement of a line
in E2. A closed annulus is a 2–manifold diffeomorphic to S1 × [0, 1]. If we remove 1
or 2 boundary components from a compact annulus, one gets a semi-open or open
annulus. The terminology is similar for closed and open Möbius strips.

In Case (iii) of Proposition 2.6, we encounter two exceptional types of 2–orbifolds:
those where Σ has underlying topological space a 2–sphere and exactly one singular
point; and those where Σ has underlying topological space a 2–sphere and has
exactly two singular points, of respective isotropy groups Zp and Zq with p 6= q. In
either case, an easy covering argument on the complement of the singular set shows
that these orbifolds are not uniformizable, namely that they are isomorphic to no
orbifold M/Γ, where the group Γ acts properly discontinuously on the 2–manifold
M . In particular, by Lemma 2.3, these orbifolds admit no geometric structure.

Proposition 2.6 can be straightforwardly generalized to include all 2–orbifolds,
allowing dihedral isotropy groups. The list of exceptions is just a little longer. Our
restriction to cyclic isotropy groups is only for the convenience of the exposition,
since the only 2–orbifolds which we will encounter in this chapter mostly arise as
base orbifolds of Seifert fibrations.

The proof of Proposition 2.6 is fairly elementary. The necessary conditions on the
Euler characteristic in Cases (i), (ii) and (iii) follow from an immediate extension
of the Gauss-Bonnet formula to 2–orbifolds. The existence part can be proved by
methods similar to those used in Section 1.1 to construct geometric structures on
surfaces. The analytic method generalizes to orbifolds without any major problems
(Hint: First construct a ‘universal orbifold covering’ Σ̃ → Σ and show that Σ̃ has
no singular point unless Σ is one of the exceptional orbifolds of Case (ii); see also
[84]), and it is interesting to see why it fails to provide a geometric structure on
the non-uniformizable 2–orbifolds. For orbifolds of finite type, the geometric cut-
and-paste method is probably easier. In particular, this is the method used in [101]
where a complete proof of Proposition 2.6 for finite type 2–orbifolds is given.

After this digression on geometric 2–orbifolds, we now return to 3–manifolds.
A surprising fact is that a geometry modelled over E3 also leads to a Seifert

fibration. Again, a detailed proof can be found in Scott [125].
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Theorem 2.7. If the manifold M admits a complete geometric structure modelled
over the euclidean space E3, then the maximal atlas defining the geometric structure
contains an atlas modelling M over E2×E1 = E3, where all changes of charts respect
the splitting of E2 × E1, and such that at least one of the following occurs:

(i) The foliation of M by the E1 factors defines a Seifert fibration of M ; the
metric of the E2 factor induces a euclidean structure on the base orbifold of the
Seifert fibration and, if defined, the Euler number e0 of the fibration is equal to 0.

(ii) The foliation of M by the E2 factors endows M with the structure of a
locally trivial bundle over the circle S1 with fiber the plane E2; topologically, there
are exactly two such bundles.

(iii) M is the euclidean space E3.

Similarly, a geometric structure modelled over S3 leads to the existence of a
Seifert fibration. As usual, we refer to [125] for a proof.

Theorem 2.8. If the manifold M admits a complete geometric structure modelled
over the sphere S3, then the maximal atlas defining this geometric structure contains
an oriented atlas modelling M over S2×̃S1 = S3, where all changes of charts respect
the splitting of S2×̃S1. In addition, the foliation of M by the S1 factors defines a
Seifert fibration; the metric of S2 defines a spherical structure on the base of this
fibration and the Euler number e0 of the fibration is strictly positive. In addition,
the fundamental group of M is finite.

We should probably emphasize the coincidental nature of Theorems 2.7 and 2.8.
For instance, similar statements for 3–orbifolds are false. There are compact 3–
orbifolds which admit euclidean or spherical structures but which admit no fibra-
tion; see Section 3.6.

We now turn to hyperbolic structures.
Let T2 denote the 2–torus S1 × S1. A singular torus in the manifold M is

a continuous map T2 → M ; it is incompressible if the induced homomorphism
π1

(
T2

)
→ π1 (M) is injective. Let an end of the 3–manifold M be the image of a

proper embedding S× [0,∞[ →M where S is a compact surface without boundary.
Recall that a map is proper when the pre-image of every compact set is compact.
The reader should beware that, what we call here an end for the sake of simplic-
ity, is usually called a tame end neighborhood of M . A singular torus T2 → M is
essential if it is incompressible and if it cannot be homotoped to a singular torus
with image in an end of M .

Note that, if the singular torus T2 →M is incompressible and can be homotoped
into an end U ∼= S × [0,∞[, then the fundamental group of U must contain a
subgroup isomorphic to Z2, and S therefore is a 2–torus or a Klein bottle. Therefore,
only the toric ends U ∼= S× [0,∞[, where S is a torus or a Klein bottle, are relevant
here.

Theorem 2.9. If the 3–manifold M admit a complete geometric structure modelled
over the hyperbolic space H3, then M contains no essential 2–sphere, projective
plane or singular torus. If, in addition, the hyperbolic structure of M has finite
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volume, then M is the union of a compact manifold with boundary and of finitely
many toric ends.

It should be observed that these topological restrictions to the existence of a
hyperbolic structure are the weakest ones among those encountered in this section.
This is consistent with what we already observed in Section 1.1 for the dimension
2, where all but finitely surfaces admitted a complete hyperbolic structure.

In most cases, if M admits a Seifert fibration with base orbifold Σ, then M
contains an essential singular 2–torus. For instance, suppose that Σ contains a non-
separating simple closed curve α which avoids the singular set, or a separating
simple closed curve α avoiding the singular set such that each component of Σ− α
topologically is neither a disk with 0 or 1 singular point, nor an open annulus
with no singular point. Then, the fibers over α form an embedded 2–torus or Klein
bottle in M , and it can be shown that the orientation cover of this surface gives
an essential singular 2–torus in M . When this type of technique does not provide
an essential singular 2–torus, other arguments show that the fundamental group
of M is finite, or that M contains an essential 2–sphere or projective plane, all
properties preventing it from admitting a complete hyperbolic structure. This yields
the following property, whose proof can be found in [125, Chap. 5].

Theorem 2.10. Let the 3–manifold M admit a Seifert fibration with base 2–
orbifold Σ. Then, it admits no complete hyperbolic structure, unless Σ is non-
compact and admits a euclidean structure (compare Case (v) of Proposition 2.6.
In addition, M admits no finite volume complete hyperbolic structure.

There consequently is almost no overlap between those 3–manifolds which admit
a complete Seifert-type geometric structure and those which admit a complete
hyperbolic geometric structure.

Finally, we now discuss the Sol geometry. We first exhibit some 3–manifolds which
admit such a geometry.

Let A be an element of GL2 (Z), namely a 2 × 2 matrix with integer entries
and determinant ±1. The matrix A defines a linear automorphism of R2 which
respects the lattice Z2, and therefore induces a linear diffeomorphism ϕ of the
2–torus T2 ∼= R2/Z2. Assume in addition that the eigenvalues of A are real and
distinct; this is always the case when the determinant of A is −1 and, when the
determinant is +1, occurs exactly when the trace of A has absolute value greater
than 2. Since their product is equal to ±1, we can write these eigenvalues as λ1 =
±e−t, λ2 = ±et with t > 0. By definition, this property of eigenvalues means that
the linear diffeomorphism ϕ induced by A is an Anosov linear diffeomorphism of
T2.

Choose a linear isomorphism L : R2 → R2 × {0} ⊂ R3 = Sol which sends
the λ1–eigenspace to the x–axis and the λ2 to the y–axis. Consider the group
Γ0 of isometries of Sol which consists of all horizontal translations by elements of
L

(
Z2

)
⊂ R2×{0}, and let Γ be generated by Γ0 and by the isometry T : (x, y, z) 7→

(λ1x, λ2y, z + t) = (±e−tx,±ety, z + t). It is fairly immediate that Γ acts freely
and properly discontinuously on Sol, and we can consider the quotient manifold
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M = Sol/Γ, with the geometric structure induced by the geometric structure of
Sol. Using the map L, we see that M is diffeomorphic to the mapping torus of the
linear diffeomorphism ϕ, defines as the identification space T2 × [0, 1] / ∼, where ∼
identified each point (x, 0) to (ϕ (x) , 1).

In this way, we can put a geometric structure modelled over Sol on the mapping
tori of all Anosov linear diffeomorphisms of the 2–torus.

This construction actually provides all non-trivial examples of 3–manifolds with
a complete geometric structure modelled over Sol, as shown by the following result.

Theorem 2.11. If the 3–manifold M admits a complete geometric structure mod-
elled over Sol, then one of the following occurs:

(i) The foliation of Sol = R3 by horizontal planes induces a foliation of M
whose leaves are 2–tori; this foliation actually defines on M the structure of a
locally trivial bundle over S1 with fiber the 2–torus T2, and M is diffeomorphic to
the mapping torus of an Anosov linear diffeomorphism of T2;

(ii) There is a geometry-preserving diffeomorphism between M and the quotient
of Sol by a group of isometries which respects a horizontal plane; in particular, M
is a line bundle over a 2–torus, a Klein bottle, an open annulus, an open Möbius
strip or a plane.

As usual, we refer to [125] for a proof of Theorem 2.11. Note that the list of
3–manifolds occurring in this context is extremely restricted.

2.5. Geometric structures with totally geodesic boundary

We now turn to geometric structures on manifolds with boundary. If we want to
obtain any uniqueness properties for such geometric structures, we clearly have to
impose some type of rigidity condition on the boundary. A natural condition is
to require the boundary to be totally geodesic. Recall that a submanifold N of a
Riemannian manifold M is totally geodesic if, locally, any small geodesic arc of M
that joins two points of N is completely contained in N .

Let M be a manifold with boundary ∂M . Thicken M by gluing along ∂M a
small collar ∂M × [0, 1[, to obtain a manifold M+ without boundary. By definition,
a geometric structure with totally geodesic boundary on M is the restriction to M
of a locally homogeneous Riemannian metric on M+ for which the boundary ∂M is
totally geodesic. Such a geometric structure is complete if the metric space structure
induced on M is complete.

Among the eight 3–dimensional geometries, the two twisted geometries H2×̃E1

and E2×̃E1 locally contain no totally geodesic surface; this can easily be checked
from the explicit expression of their metric given in Section 2.2.

All other six 3–dimensional geometries contain totally geodesic surfaces. For the
isotropic geometries S3, E, H3, there is such a totally geodesic surface passing
through each point x and tangent to any plane in the tangent space at x. In the
product geometries H2 × E1, S2 × E1, all totally geodesic surfaces locally are of
the form g × E1, H2 × {x} or S2 × {x}, where g is a geodesic of H2 or S2 and
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x ∈ E1. Finally, every totally geodesic surface of Sol is contained in a plane par-
allel to the xz– or yz–plane, in the model described in Section 2.3. In particular,
these geometric models admit at most two complete totally geodesic surfaces, up to
isometry. Therefore, for each geometry, there is at most two possible local models
for a boundary point.

Note that, in each of the six model spaces S3, E3, H3, H2 × E1, S2 × E1, Sol
admitting totally geodesic surfaces, there is an isometric involution of the model
space which acts as a reflection across this surface. Conversely, it is easy to see
that the fixed point set of an isometric involution is always totally geodesic. This
observation provides a convenient way to analyze geometric structures with totally
geodesic boundary, as follows.

Given a manifold M with boundary ∂M , let its double be the manifold DM
without boundary obtained from the disjoint union of two copies M1 and M2 of M
by gluing together the boundaries ∂M1 and ∂M2 through the natural identification
maps ∂M1

∼= ∂M ∼= ∂M2. This double DM comes equipped with a natural invo-
lution τ which exchanges the images of M1 and M2 and which fixes the image of
the boundary ∂M . The differentiable structure of M gives a natural differentiable
structure on DM for which the involution τ is differentiable. It then immediately
follows from the above observations that the data of a geometric structure with to-
tally geodesic boundary on M is equivalent to the data of a τ–invariant geometric
structure on the double DM .

Now, the restrictions to the existence of a complete geometric structure on DM
given in Section 2.4 easily translate to restrictions to the existence of complete
geometric structures with totally geodesic boundary on M .

Let a compression disk for the boundary ∂M in M be a 2–dimensional subman-
ifold D (with D ∩ ∂M = ∂D) of M such that D is diffeomorphic to the disk (=
2–ball) B2. A compression disk is essential if its boundary ∂D does not bound a
disk in the boundary ∂M . Similarly, a singular compression disk is a continuous
map B2 →M sending S1 = ∂B2 to ∂M . Such a singular compression disk is essen-
tial if its restriction S1 → ∂M is not homotopic to 0 in ∂M . The celebrated Dehn’s
Lemma and Loop Theorem of Papakyriakopoulos [108] (see also Hempel [50]) assert
that the existence of an essential singular compression disk is equivalent to that of
an essential compression disk.

Note that a compression disk for ∂M gives a sphere in the double DM . An easy
homology calculation shows that this sphere is essential if the compression disk is
essential. With Theorem 2.2, this gives:

Theorem 2.12. If the 3–manifold M admits a complete geometric structure with
totally geodesic boundary modelled over E3, S3, H3, H2×E1 or Sol, then M contains
no essential 2–sphere, projective plane or compression disk.

When M admits a Seifert-type geometry with totally geodesic boundary, the
fibrations of the double DM provided by Theorem 2.5 must be invariant under
the double involution τ . When DM inherits a Seifert fibration from the geometric
structure, this Seifert fibration can project to either a Seifert fibration of M or to
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a locally trivial bundle structure on M whose fibers are compact intervals.
In the first case, a Seifert fibration of a manifold with boundary is defined as in

the empty boundary case: The boundary is a union of fibers, and every boundary
fiber admits a neighborhood U diffeomorphic to the quotient of S1 × B2

+ by a free
action of a finite group respecting the product structure, in such a way that the
fibers of the fibration correspond to the image of the circles S1×{z} and that U∩∂M
is the image of S1 ×

(
B2

+ ∩ iR
)
. Here, B2

+ is the half-disk {z ∈ C; |z| 6 1,Rez > 0}
and iR is the imaginary axis. By inspection, such a neighborhood U of a boundary
point must be diffeomorphic, either to S1 × B2

+ with the product fibration, or to
[0, 1]×B2

+/ ∼ where ∼ identifies {0}×B2
+ to {1}×B2

+ by complex conjugation and
where the fibers correspond to the sets [0, 1]× {z0, z̄0}.

The space of leaves of a Seifert fibration is a 2–dimensional orbifold with bound-
ary, where an orbifold with boundary is defined along the lines of the definition in
the empty boundary case, allowing folding charts to originate from manifolds with
boundary. The topological space underlying this base 2–orbifold is a surface with
boundary, but its boundary points fall into two categories: Those which really are
in the boundary of the orbifold, and correspond to fibers contained in the boundary
of the 3–manifold; and those which really are in the interior of the orbifold, with
isotropy group Z2 acting by reflection, and correspond to orientation reversing fibers
in the interior of the 3–manifold.

The classification of Seifert fibered 3–manifolds with boundary is essentially the
same as the one discussed in Section 2.4, and in particular Theorem 2.4. The Euler
number e0 ∈ Q/Z is undefined when the boundary is non-empty.

Theorem 2.13. Let the 3–manifold M with non-empty boundary ∂M admit a com-
plete geometric structure with totally geodesic boundary, modelled over S2 × E1,
H2×E1 or E3 ∼= E2×E1. Then, possibly after a change of the splitting E3 ∼= E2×E1,
one of the following occurs:

(i) The foliation of the model space by the E1 factors projects to a Seifert
fibration on M . In this case, the metric of the S2, H2 or E2 factors projects to a
complete spherical, hyperbolic or euclidean, respectively, geometric structure with
geodesic boundary on the base orbifold of the fibration.

(ii) The foliation of the model space by the E1 factors projects to a locally trivial
bundle structure on M , with base a surface with boundary and with fiber an interval.
In this case, the metric of the S2, H2 or E2 factors projects to a complete spherical,
hyperbolic or euclidean, respectively, geometric structure with geodesic boundary on
the base surface.

(iii) At most one leaf of the foliation of M by the E1 factors is a closed subset
of M . In this case, M is diffeomorphic to one of the two B2–bundles over S1, or to
an interval bundle over the 2–torus or the Klein bottle.

In (ii), the interval fiber of the bundle can be open, compact or semi-open. It is
compact precisely when the fibration of the double DM is a Seifert fibration, and
the doubling involution τ acts by reflection on each of its fibers. In (iii), the interval
fibers can be compact or semi-open.

In the 3–manifold M with boundary ∂M , let a singular annulus be a continuous
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map A2 → M sending the boundary ∂A2 to ∂M , where A2 denotes the standard
annulus (or cylinder) A2 = S1 × [0, 1]. Let an end of M be a subset U ⊂M that is
properly diffeomorphic to a manifold with corners S× [0,∞[, where S is a compact
surface with boundary and where U ∩ ∂M corresponds to (∂S)× [0,∞[. A singular
annulus A2 → M is essential if the induced homomorphisms π1

(
A2

)
→ π1 (M)

and π1

(
A2,∂A2

)
→ π1 (M,∂M) are injective and if it cannot be homotoped into

an end U ∼= S × [0,∞[ by a homotopy keeping the image of ∂A2 in ∂M ; note that
the property involving fundamental groups is independent of the choice of base
point.

As in the case of singular tori, easy homotopic considerations show that, if the
induced homomorphisms π1

(
A2

)
→ π1 (M) and π1

(
A2,∂A2

)
→ π1 (M,∂M) are

injective and if the singular annulus A2 → M can be homotoped into an end U ∼=
S× [0,∞[ by a homotopy keeping the image of ∂A2 in ∂M , then the surface S must
be an annulus or a Möbius strip. In particular, only annular ends U ∼= S × [0,∞[,
namely those for which S is an annulus or a Möbius strip, are relevant here.

Doubling the annulus A2 along its boundary gives a 2–torus. Therefore, a singular
annulus A2 →M defines a singular 2–torus T2 → DM in the double DM of M . An
easy cut and paste argument shows that this singular 2–torus is essential in DM if
and only if the singular annulus is essential in M .

Applying Theorem 2.9 to the double DM , one easily obtains:

Theorem 2.14. If the 3–manifold M with boundary admits a complete hyperbolic
structure with totally geodesic boundary, then M contains no essential 2–sphere,
projective plane, compression disk, singular 2–torus or singular annulus. If, in ad-
dition, the hyperbolic structure of M has finite volume, then M is the union of a
compact subset and of finitely many annular and toric ends.

Similarly, an application of Theorem 2.11 gives:

Theorem 2.15. If the 3–manifold M with non-empty boundary admits a complete
geometric structure modelled over Sol, then M is an interval bundle over the plane,
the 2–torus, the Klein bottle, a compact, semi-open or open annulus, or a compact
or open Möbius strip.

In Theorem 2.15, the interval fiber can be compact, open or semi-open.

3. Characteristic splittings

We saw that a 3–manifold M very seldom admits a geometric structure modelled
over S2 × E1, H2 × E1, H2×̃E1, E2×̃E1, E3, S3 or Sol. On the other hand, the
only obstructions to the existence of a hyperbolic structure which we encountered
consisted of essential 2–spheres, projective planes, singular 2–tori and, in the case
with boundary, compression disks and singular annuli. In this section, we will see
that a general 3–manifold M splits into pieces where these topological obstructions
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vanish. Most of these splittings are unique up to isotopy.
Recall that two diffeomorphisms f0, f1 : M → N are isotopic if they can be

connected by a family of diffeomorphisms ft : M → N which depend differentiably
on t ∈ [0, 1]. Traditionally, the term isotopy refers to either a family of diffeomor-
phisms ft : M → N , t ∈ [0, 1], as above, or a diffeomorphism f : M → M which is
isotopic to the identity. We will mostly use the second convention in this chapter.

3.1. Connected sum decompositions

First, let us focus on essential 2–spheres. Recall that a 2–sphere S embedded in
the 3–manifold M is essential if it does not bound a 3–ball in M . The analysis of
such essential spheres is equivalent to the Kneser-Milnor theory of connected sums
of 3–manifolds. In addition to the original articles by Kneser [70] and Milnor [94],
the book by Hempel [50] is an excellent reference for this material.

Let the 3–manifold M contain an essential 2–sphere S. If S is non-separating,
there is a simple arc k embedded in M − S which goes from one side of S to the
other one. (Note that S always has two distinct sides, namely its normal bundle is
trivial, because S is simply connected.) Thickening S∪k, we obtain a 3–dimensional
submanifold U ofM bounded by an embedded 2–sphere S′. If S′ is not essential, the
closure of the complement of U in M is a 3–ball, and it is not too hard to see that M
is diffeomorphic to one of the two S2–bundles over the circle S1; the topological type
of the bundle so obtained depends on whether the arc k is orientation-preserving
or -reversing. Therefore, if M contains an essential sphere, either it contains a
separating essential sphere or it is diffeomorphic to one of the two S2–bundles over
S1. This enables us to focus our attention on separating essential 2–spheres.

Now, let us introduce the additional hypothesis that the 3–manifold M is of
finite type, namely is diffeomorphic to the interior of a compact manifold M with
(possibly empty) boundary.

Theorem 3.1 (Unique decomposition along 2–spheres). Let M be a 3–manifold of
finite type. Then, there is a compact 2–dimensional submanifold Σ of M such that:

(i) The components of Σ are separating 2–spheres in M .
(ii) If Σ is non-empty and if M0, M1, . . . , Mn are the closures of the components

of M − Σ, then M0 is diffeomorphic to a 3–sphere minus n finitely many disjoint
open 3–balls; for every i > 1, Mi contains a unique component of Σ and every
separating essential sphere in Mi is parallel to this component of Σ.

(iii) If M is non-orientable, no Mi is diffeomorphic to S1 × S2 minus an open
3–ball.
The family Σ is empty when M is the 3–sphere S3, and consists of a single sphere
(bounding the 3–ball M0) when M contains no separating essential 2–sphere. If Σ
has at least two components, each of its components is an essential 2–sphere.

In addition, the list of the Mi is unique up to diffeomorphism. Namely, if Σ′

is another family satisfying the same conditions and we use primes to denote the
data associated to Σ′, there are as many M ′

i′ as Mi, and we can index these pieces
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so that each M ′
i is diffeomorphic to the corresponding Mi. A stronger uniqueness

property holds when M is orientable: If M is orientable, there exists an orientation-
preserving diffeomorphism ϕ : M → M such that ϕ (Σ) = Σ′ and such that ϕ
coincides with the identity outside of a certain compact subset of M .

In (ii), two surfaces Σ1 and Σ2 in M are parallel if they are separated by a
component of M−Σ1∪Σ2 whose closure is diffeomorphic to the product Σ1× [0, 1].

A proof of the stronger uniqueness property of Theorem 3.1 for the orientable
case, which the author learned from M. Scharlemann, can be found in Bonahon [15,
Appendix A]. The rest of the statement is proved in Hempel [50, Chap. 3]. The
existence of Σ was originally proved by Kneser [70], and the key ingredient is that
there is a number n0, depending only on the rank ofH2 (M ; Z/2) and on the number
of simplices in a triangulation of M , which bounds the number of components of a
family Σ1 of disjoint essential 2–spheres in M which are pairwise non-parallel. The
uniqueness of the Mi was proved by Milnor [94].

The decomposition of a 3–manifold into simpler pieces which is provided by
Theorem 3.1 has an inverse construction, defined by the operation of connected
sum. More precisely, in the situation of Theorem 3.1, consider each piece Mi with
i > 1, and let M̂i be obtained from Mi by gluing a 3–ball along the 2–sphere Σ∩Mi;
since every diffeomorphism of the 2–sphere extends to the 3–ball (see for instance

[131, 45]), this M̂i does not depend on the gluing map, up to diffeomorphism.

Note that Mi is not a 3–ball since the 2–sphere ∂Mi is essential in M , and that M̂i

consequently cannot be diffeomorphic to the 3–sphere (by Alexander’s theorem [4]).
Also, by the hypothesis that every essential separating 2–sphere in Mi is parallel
to Σ ∩Mi, the manifold M̂i contains no separating essential 2–sphere. Therefore,
Theorem 3.1 associates to any 3–manifold a finite collection of 3–manifolds M̂i,
i = 1, . . . , n, which contain no essential separating 2–sphere and which are not
diffeomorphic to the 3–sphere.

Conversely, if we are given a finite collection of 3–manifolds M̂1, . . . , M̂n of finite
type, we can reconstruct a manifold M as follows. First remove the interior of a
closed 3–ball Bi from each M̂i, to obtain a manifold Mi bounded by a 2–sphere
∂Mi = ∂Bi; in addition, choose an orientation for each ball Bi. Then, remove from
the 3–sphere the interiors of n disjoint closed balls B′

1, . . . , B
′
n to obtain a manifold

M0 bounded by n 2–spheres. And, finally, glue each Mi to M0 by identifying each
∂Bi ⊂ ∂Mi to ∂B′

i ⊂ ∂M0 via an orientation-reversing diffeomorphism. Since any
two orientation-preserving diffeomorphisms of the 2–sphere are isotopic (see for

instance [131, 45]), the resulting manifold M depends only on the manifold M̂i and

on the oriented 3–balls Bi and B′
i. If at least one of the M̂i is non-orientable, sliding

the balls around easily shows that M actually depends only on the manifolds M̂i,
up to diffeomorphism; by definition, M is the connected sum of the manifolds M̂1,
. . . , M̂n. If all of the M̂i are orientable, some more care is required, and we need
to choose an orientation for each of the M̂i; then, if we insist that the balls Bi

and B′
i are oriented by restriction of the orientations of M̂i and of the 3–sphere S3,

the oriented manifold M does not depend on any other choice up to orientation-
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preserving diffeomorphism; by definition, the oriented manifold M is the connected
sum of the oriented manifolds M̂i. Reversing the orientation of one of the M̂i may
change the diffeomorphism type of the resulting connected sum; see Hempel [50,
Example 3.22].

The above operation of connected sum, combined with Theorem 3.1, provides
a unique factorization of each 3–manifold of finite type as the connected sum of
finitely many (oriented, if applicable) 3–manifolds M̂i which contain no essential
separating 2–sphere and which are not diffeomorphic to the 3–sphere.

The classification problem is of course not the only problem topologists can be
interested in. For instance, one is often led to analyze the topology of the group of
all diffeomorphisms of a given manifold. We refer to Laudenbach [72] or Hendricks-
Laudenbach [52] for an analysis of the diffeomorphism group of a 3–dimensional
connected sum in terms of the diffeomorphism groups of its prime factors.

Having analyzed essential 2–spheres, we now turn our attention to essential pro-
jective planes. By the previous step, we can restrict the analysis to 3–manifolds
that contain no essential 2–spheres. It turns out that we then have a much stronger
uniqueness property for essential projective planes than for essential 2–spheres.

Theorem 3.2 (Characteristic family of 2–sided projective planes). Let M be a 3–
manifold of finite type that contains no essential 2–sphere. Then, there is a compact
2–dimensional submanifold Π of M such that:

(i) Every component of Π is a 2–sided projective plane.
(ii) No two components of Π are parallel.
(iii) Every 2–sided projective plane in M − Π is parallel in M to a component

of Π.
In addition, such a Π is unique up to isotopy of M .

A proof of Theorem 3.2 can be found in Negami [99].
If we split M open along the submanifold Π, we obtain a 3–manifold M ′ bounded

by finitely many projective planes such that, by Condition (iii), every 2–sided pro-
jective plane in M ′ is parallel to a boundary component. However, in contrast to
what we were able to do after splitting a 3–manifold along essential 2–spheres in
Theorem 3.1, there is no way we can plug the boundary projective planes of M ′

to obtain a 3–manifold with no essential projective plane. Indeed, Poincaré duality
with coefficients in Z2 (for instance) shows that there is no compact 3–manifold
whose boundary consists of a single projective plane.

There is a way to overcome this difficulty, but it involves leaving the category
of 3–manifolds and enlarging the scope of the analysis to 3–dimensional orbifolds.
Although the projective plane RP2 does not bound any compact 3–manifold, it
does bound a relatively simple orbifold. Namely considering RP2 as the quotient
of the 2–sphere S2 ⊂ R3 by the map x 7→ −x, it bounds the 3–orbifold quotient
of the 3–ball B3 ⊂ R3 by the same map x 7→ −x. This orbifold has underlying
topological space the cone over RP2, and its singular set consists of a single point,
corresponding to the origin. If we plug each boundary component of M ′ with a
copy of this 3–orbifold, the orbifold M̂ ′ obtained in this way does contain 2–sided
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projective planes, but these projective planes are inessential in the framework of
the connected sum factorization of 3–orbifolds discussed in Section 3.6.

Therefore, Theorems 3.1 and 3.2 essentially reduce the study of finite type 3–
manifolds to that of 3–orbifolds that contain no essential 2–sphere or projective
plane. At this point, the switch to orbifolds is necessary only when the 3–manifold
considered is non-orientable. We will first restrict attention to manifolds containing
no essential 2–spheres or projective planes, and return to orbifolds in Section 3.6.

We also refer to Kalliongis-McCullough [67, 68] for an analysis of the connected
components of the diffeomorphism group of a 3–manifold which contains essential
projective planes, in terms of the groups similarly associated to the pieces of the
decomposition of Theorem 3.2.

As an aside, we should mention that we could have discussed singular 2–spheres
in 3–manifolds, in the same way as we considered essential 2–tori and annuli in
Section 2.4. More precisely, a singular 2–sphere in the 3–manifoldM is a continuous
map S2 → M , and it is essential precisely when it is not homotopic to a constant
map. In particular, the existence of an essential singular 2–sphere is equivalent to the
non-triviality of the second homotopy group π2 (M). The reason for the omission
is the celebrated Sphere Theorem of C.D. Papakyriakopoulos [108] (extended to
the non-orientable case by D.B.A. Epstein [33]; see also [50, Sect. 4.12]), which
states that the existence of an essential singular 2–sphere implies the existence of
an essential embedded 2–sphere or projective plane.

Theorem 3.3 (Sphere Theorem). If the 3–manifold M contains an essential sin-
gular 2–sphere, then it contains an essential (embedded) 2–sphere or a 2–sided pro-
jective plane.

Note an unfortunate pitfall in this terminology if the Poincaré Conjecture does
not hold: If there indeed exists a 3–manifold P which is homotopy equivalent to
but not diffeomorphic to S3 and if M is an arbitrary 3–manifold which is not
diffeomorphic to S3 then, in the connected sum of M and P , the connected sum 2–
sphere is essential as an embedded 2–sphere but inessential as a singular 2–sphere.
However, this phenomenon occurs only in this situation, and most likely never
occurs in view of the strong evidence in favor of the Poincaré Conjecture.

3.2. The characteristic torus decomposition

In view of the previous section, consider now a 3–manifold M that contains no
essential 2–sphere or projective plane. In Theorem 2.9, we saw that M must contain
no essential singular 2–torus to admit a hyperbolic structure.

Theorem 3.4 (Characteristic torus decomposition). Let M be a 3–manifold of fi-
nite type which contains no essential sphere or projective plane. Then, up to isotopy,
there is a unique compact 2–dimensional submanifold T of M such that:

(i) Every component of T is 2–sided, and is an essential 2–torus or Klein bottle.
(ii) Every component of M − T either contains no essential embedded 2–torus

or Klein bottle, or else admits a Seifert fibration.
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(iii) Property (ii) fails when any component of T is removed.

Here, a 2–torus T embedded in the 3–manifold M is essential if the inclusion
map T → M is an essential singular 2–torus in M , in the sense of Section 2.4. A
Klein bottle K embedded in M is essential if the composition of the orientation
covering T2 → K and of the inclusion map K →M is an essential singular 2–torus.

When M is orientable, all components of the submanifold T are 2–tori, and The-
orem 3.4 is therefore known as the Characteristic Torus Decomposition Theorem.

Theorem 3.4 was first announced by F. Waldhausen [147], and a complete proof
was published by K. Johannson [62], W. Jaco and P. Shalen [59]; see also [57].
Actually, these authors are only considering the orientable case, but a proof of the
general case (with no significant difference) can be found in Bonahon-Siebenmann
[20]. The existence of the submanifold T is an easy consequence of the finiteness
argument of Kneser [70] which we already encountered in Theorem 3.1; what is
really important in Theorem 3.4 is its uniqueness up to isotopy. From a historical
point of view, we should also mention H. Schubert’s unique decomposition of a
knot into its satellites [122], where a precursor of the 2–torus decomposition for
knot complements first appeared.

It turns out that the Seifert pieces of the above decomposition ‘absorb’ all essen-
tial singular 2–tori in M , in the following sense:

Theorem 3.5 (Classification of essential singular tori). Let M and T be as in
Theorem 3.4. Then, every essential singular 2–torus ϕ : T2 → M can be homo-
toped so that one of the following holds:

(i) The image of ϕ is contained in a Seifert fibered component of M − T , and
ϕ is vertical with respect to the Seifert fibration in the sense that, at each x ∈ T2,
the differential of ϕ at x sends the tangent plane TxT2 to a plane in Tϕ(x)M that
is tangent to the fiber passing through ϕ (x); in this case, it is possible to choose a
diffeomorphism between T2 and S1 ×S1 such that the restriction of ϕ to each circle
{x} × S1 is a covering map onto a fiber of the Seifert fibration.

(ii) M admits a Seifert fibration, and ϕ is horizontal with respect to the Seifert
fibration in the sense that, at each x ∈ T2, the differential of ϕ at x sends the
tangent plane TxT2 to a plane in Tϕ(x)M which is transverse to the fiber passing
through ϕ (x). In this case, the composition of ϕ : T2 → M with the projection
M → Σ to the base orbifold Σ of the Seifert fibration is an orbifold covering map;
in particular, M is compact and Σ has orbifold Euler characteristic χorb (Σ) = 0.
In addition, the Euler number e0 of the Seifert fibration is either undefined (when
M is non-orientable) or 0.

(iii) The image of ϕ is contained in a component T0 of T , and ϕ factors as the
composition of a covering map T2 → T0 and of the inclusion map T0 →M .

The prof of Theorem 3.5 is significantly more difficult than that of Theorem 3.4.
In the case where M is a Haken 3–manifold (see Section 3.5 for a definition of Haken
3–manifolds), Theorem 3.5 was, again, first announced by F. Waldhausen [147], and
a complete proof was published by K. Johannson [62], W. Jaco and P. Shalen [59]
(see also Feustel [37] for a related result, and [57]). However, the case where M is
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non-Haken was settled only recently, following work of P. Scott [123, 124], G. Mess
[91], D. Gabai [39], A. Casson and D. Jungreis [26].

An immediate corollary is the so-called Torus Theorem:

Corollary 3.6 (Torus Theorem). Let M be a 3–manifold of finite type that con-
tains no essential 2–sphere or projective plane. Suppose that there exists an essen-
tial singular 2–torus ϕ : T2 →M . Then, M contains an essential embedded 2–torus
or Klein bottle, or else M admits a Seifert fibration (or both).

3.3. The characteristic compression body

We now return to the case with boundary. Let M be a 3–manifold with boundary,
and assume that it is of finite type. This now means that M is obtained from a
compact manifold M with boundary by removing a 2–dimensional compact sub-
manifold (with boundary) of ∂M . We use here the convention that a codimension
0 submanifold is any subset bounded by a codimension 1 submanifold.

The analysis of Section 3.1 carries over without modifications, and we can there-
fore restrict attention to the case where M contains no essential 2–sphere or pro-
jective plane.

In Section 2.5, we saw that one restriction to the existence of a hyperbolic struc-
ture with totally geodesic boundary on M is that its boundary ∂M should not
admit any essential compression disk. There is a theory of connected sums along
disks which is very analogous to the connected sum factorization of Theorem 3.1.
However, the uniqueness part of this factorization is here much improved, because it
leads to a uniqueness up to isotopy. Indeed, in close analogy with the characteristic
torus decomposition of the previous section, there is a characteristic submanifold
of M which absorbs all compression disks of M .

Let a compression body be a 3–manifold obtained from a product V0 = S ×
[0, 1] by gluing 2–handles along S × {1}, and capping off with a 3–handle some
of the boundary 2–spheres which may have appeared in the process. Namely, we
start from S × [0, 1], where S is a surface of finite type, not necessarily connected.
Then, we glue n copies of the product B1 × B2 (= 2–handles) along n disjoint
embeddings of the annulus B1 × ∂B2 in S × {1}; there is a natural way to smooth
the corners in this construction to obtain a differentiable 3–manifold V1 with the
same homeomorphism type. Finally, we can glue 3–balls (= 3–handles) along some
boundary components of V1 which are 2–spheres and are not contained in S ×{0}.
By definition, a compression body is any 3–manifold V obtained in this way.5

The boundary of a compression body V can be split into two pieces: the external
boundary ∂eV , which corresponds to S × {0}, and the internal boundary ∂iV =

5 The author often gets credited with the introduction of the term “compression body”. This
expression was actually coined by Larry Siebenmann, as a replacement for the inelegant “product
with handles” used in preliminary versions of [15]. In retrospect, the term “hollow handlebody”,
reminiscent of the “hohlbretzel” already used by Waldhausen in [146], would probably be more
appropriate to deal with situations where a compression body does not occur as a classifying
object for compression disks.
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∂V − ∂eV . It is relatively easy to see that, for a connected compression body
V with non-empty internal boundary ∂iV 6= ∅, the above description of V as a
thickened surface with handles can be chosen so that it involves only 2–handles and
no 3–handles.

Consider a 3–manifold M of finite type with boundary. In addition, we assume
that M contains no essential 2–sphere or projective plane.

If M admits any essential compression disk for its boundary ∂M , the argument
of Kneser [70] provides a compact 2–submanifold D of M , whose components are
compression disks for ∂M , and such that any compression disk for ∂M that is
disjoint from D must be parallel to a component of D. This submanifold D is in
general far from being unique. However, if we thicken the union ∂M ∪ D, we get
a compression body V1 ⊂ M whose external boundary ∂eV1 is equal to ∂M and
whose internal boundary ∂iV1 admits no compression disk. Some components of the
internal boundary ∂iV1 may be 2–spheres, which necessarily bound components
of the closure of M − V1 which are 3–balls by hypothesis on M . Let V be the
compression body union of V1 and of all these 3–balls components of the closure of
M − V1.

Theorem 3.7 (Characteristic compression body). Let M be a 3–manifold with
boundary, which is of finite type and contains no essential 2–sphere or projec-
tive plane. Then, up to isotopy, M contains a unique compression body V such
that the external boundary ∂eV is equal to ∂M , such that the closure M − V
contains no essential compression disk for its boundary ∂iV , and such that no
component of M − V is a 3–ball. In addition, any singular compression disk(
B2,∂B2

)
→ (M,∂M) can be homotoped inside V by a homotopy keeping the image

of ∂B2 in ∂M .

Theorem 3.7 is proved in Bonahon [15] in the orientable case, and the proof
automatically extends to the non-orientable case. Note that, when M contains no
essential compression disk and is not a 3–ball, the characteristic compression body
V is just a collar neighborhood of the boundary, diffeomorphic to ∂M × [0, 1].

In the situation of Theorem 3.7, let M0 the the closure of the complement M−V
in M . Then, M0 contains no essential 2–sphere, projective plane, or compression
disk for its boundary.

Conversely, let M0 be a possibly disconnected 3–manifold of finite type that con-
tains no essential 2–sphere, projective plane, or compression disk for its boundary.
If we are given n disjoint embeddings of the two disks B2 ×∂B1 in ∂M0, we can use
these pairs of disks to glue n copies of the product B2 × B1 (= 1–handles) to M0.
We then obtain a new 3–manifold M . It is not very hard to check that M contains
no essential 2–sphere or projective plane. Note that each 1–handle B2×B1 provides
a compression disk B2 × {0} for ∂M . It immediately follows from the construction
that, if V is the characteristic compression body associated to M by Theorem 3.7,
the closure of M −V is diffeomorphic to M0. This provides an inverse construction
to the splitting defined by Theorem 3.7.
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3.4. The characteristic torus/annulus decomposition

The previous characteristic splittings enable us to analyze essential 2–spheres, pro-
jective planes, singular 2–tori and compression disks in 3–manifolds with boundary.
It remains to consider essential singular annuli.

Theorem 3.8 (Characteristic torus/annulus decomposition). Let M be a 3–manifold
of finite type with boundary, which contains no essential 2–sphere, projective plane,
or compression disk for its boundary. Then, up to isotopy, there is a unique compact
2–dimensional submanifold F of M such that:

(i) Every component F1 of F is 2–sided, and is an essential 2–torus, Klein
bottle, annulus or Möbius strip with F1 ∩ ∂M = ∂F1.

(ii) For every component W of M−F , either W contains no essential embedded
2–torus, Klein bottle, annulus or Möbius strip, or W admits a Seifert fibration for
which W ∩ ∂M is a union of fibers, or else W admits the structure of a B1–bundle
over a surface of finite type such that the corresponding ∂B1–bundle is equal to
W ∩ ∂M .

(iii) Property (ii) fails when any component of F is removed.
In addition, note that the ends of a Seifert fibered component W of M −F all are

of toric type, and can be delimited by 2–tori and Klein bottles in W ; let TW be the
union of 2–tori and Klein bottles delimiting those ends of W whose closure contain
at least one annulus or Möbius strip component of F . Let T be the union of all 2–
torus and Klein bottle components of F , and of all TW as W ranges over all Seifert
fibered components of M − F . Then, T is the characteristic 2–submanifold of the
Characteristic Torus Decomposition Theorem 3.4 of the interior int (M) = M−∂M .

Again, an annulus A in M is essential if the inclusion map A→M is an essential
singular annulus, in the sense of Section 2.5. A Möbius strip A in M is essential
if the composition of the orientation covering A2 → A and of the inclusion map
A→M is an essential singular annulus.

When M is orientable, all components of the submanifold F are tori and annuli,
and the above theorem is therefore known as the Characteristic Torus/Annulus
Decomposition Theorem.

As in the case of the Characteristic Torus Decomposition Theorem 3.4, Theo-
rem 3.8 was first announced by F. Waldhausen [147], and a complete proof was
published by K. Johannson [62], W. Jaco and P. Shalen [59] (and see Bonahon-
Siebenmann [20] for the details of a proof in the non-orientable case, where Theo-
rem 3.8 is interpreted as a generalization of Theorem 3.4 to certain 3–orbifolds).

The fibered parts of the characteristic torus/annulus decomposition of Theo-
rem 3.8 absorb all essential singular annuli, as indicated by the following theorem,
whose proof can be found in [62, 59, 57].

Theorem 3.9 (Classification of essential singular annuli). Let M and F by as in
Theorem 3.8. Then, every essential singular annulus ϕ :

(
A2,∂A2

)
→ (M,∂M) can

be homotoped so that one of the following holds:
(i) The image of ϕ is contained in a Seifert fibered component of M − F , and

is vertical with respect to the Seifert fibration in the sense that the restriction of ϕ
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to each circle S1 × {y} ⊂ S1 × B1 = A2 is a covering map onto a generic fiber of
the Seifert fibration.

(ii) The image of ϕ is contained in a B1–bundle component of M − F , and is
vertical with respect to this bundle in the sense that the restriction of ϕ to each arc
{x} × B1 ⊂ S1 × B1 = A2 is a diffeomorphism onto a fiber of the B1–bundle.

(iii) The image of ϕ is contained in an annulus or Möbius strip component A of
F , and ϕ factors as the composition of a covering map A2 → A and of the inclusion
map A→M .

Again a corollary of Theorem 3.9 is the following Annulus Theorem:

Corollary 3.10 (Annulus Theorem). Let M be a 3–manifold of finite type which
contains no essential 2–sphere or projective plane. Suppose that there exists an es-
sential singular annulus ϕ :

(
A2,∂A2

)
→ (M,∂M). Then, M contains an essential

embedded annulus or Möbius strip.

Indeed, if M contains an essential singular annulus and if V is its characteristic
compression body, an easy cut and paste argument shows that the closure of M−V
also contains an essential singular annulus, and enables us to reduce the analysis
to the case where M contains no essential compression disk for its boundary. Then
Theorem 3.9 shows that, either the characteristic torus/annulus 2–submanifold F
of Theorem 3.8 has a component which is an annulus or a Möbius strip, or F is
disjoint from ∂M and at least one component V of M − F is a B1–bundle or a
Seifert fibered manifold with V ∩ ∂M 6= ∅. In the second case, a suitable closed
curve in the base of the B1–bundle, or a suitable arc in the base orbifold of the
Seifert fibration, provides an essential embedded annulus or Möbius strip.

3.5. Homotopy equivalences between Haken 3–manifolds

Originally, the characteristic torus/decomposition was not developed as an obstruc-
tion to the existence of geometric structures, but as a tool to analyze homotopy
equivalences between 3–manifolds. This important topic deserves a little digression
here. The survey article of Waldhausen [146] is a good reference for this material.

We begin by defining a technically important class of 3–manifolds, called Haken
manifolds. Let M be a compact 3–manifold with boundary, and let F be a compact
2–submanifold of M , so that F ∩ ∂M = ∂M . When F is a 2–sphere, a projective
plane or a compression disk, we already defined what it means for F to be essential.
For all other types of surfaces, we say that F is essential if it is 2–sided and if the
homomorphisms π1 (F ) → π1 (M) and π1 (F,∂F ) → π1 (M,∂M) induced by the
inclusion map are all injective, and this for all choices of base points. Note that this
is consistent with the definition used for 2–tori, Klein bottles, annuli and Möbius
strips in previous sections.

By definition, a compact Haken 3–manifold is a compact 3–manifold with bound-
ary which contains no essential 2–sphere or projective plane but which contains at
least one essential surface. It can be shown that the last condition is unnecessary
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if the boundary ∂M is non-empty: If the compact 3–manifold M has non-empty
boundary, it necessarily contains an essential surface, unlessM is a 3–ball; see for in-
stance [50, Chap.13]. The crucial technical property of compact Haken 3–manifolds
is that they give rise to a finite sequence M = M0, M1, . . . , Mn of manifolds with
boundary such that each Mi is obtained by splitting Mi−1 along an essential surface
and such that the last manifold is a disjoint union of 3–balls. Such a finite sequence
lends itself well to inductive procedures, which makes it a very useful technical tool.

The starting point is the following result of Waldhausen [145], extended to non-
orientable 3–manifolds by W. Heil [48, 49] (see also Hempel [50]).

Theorem 3.11. Let f : M → N be a homotopy equivalence between compact 3–
manifolds with boundary such that f restricts to a homeomorphism f|∂M

: ∂M →

∂N . Assume that M is Haken and that N contains no essential 2–sphere or pro-
jective plane. Then, f is homotopic to a diffeomorphism, by a homotopy fixing the
restriction of f to the boundary.

When M admits no essential compression disk for its boundary and N is not a
trivial interval bundle over a surface, the requirement that f restricts to a home-
omorphism between boundaries can be replaced by the weaker hypothesis that
f (∂M) ⊂ ∂N ; the conclusion is then also weaker, and only provides a homotopy
from f to a diffeomorphism (with no control on the boundary).

We should also mention the following related result, also proved by Waldhausen
in [145].

Theorem 3.12. Let f0, f1 : M → M be two diffeomorphisms of a compact Haken
3–manifold which are homotopic. If M admits essential compression disks for its
boundary, assume in addition that each stage of the homotopy sends ∂M to ∂M .
Then, f0 and f1 are isotopic.

Theorem 3.12 is the extension to Haken 3–manifolds of a celebrated result of
Baer for surfaces (see for instance Epstein [33]). The combination of Theorems 3.11
and 3.12 says that, for two compact Haken 3–manifolds M and N , the space of
diffeomorphisms f : M → N has the same number of connected components as the
space of homotopy equivalences f : M → N (sending boundary to boundary in the
presence of compression disks). This was later extended by A. Hatcher [47], who
proved that these two spaces have the same homotopy type.

In Theorem 3.11, the requirement that f (∂M) ⊂ ∂N is crucial. Indeed, suppose
that M contains an essential 2–sided annulus A with A∩ ∂M = ∂A. Split M along
A and, in the split manifold, glue the two sides of A back together through the
diffeomorphism (x, t) 7→ (x, 1 − t) of A ∼= S1 × [0, 1] to obtain a new 3–manifold N .
The two manifolds M and N are both homotopy equivalent to the space obtained
from M by collapsing each arc {x}× [0, 1] of A ∼= S1× [0, 1] to a point. However, M
and N are in general not diffeomorphic; for instance, if the two boundary compo-
nents of A lie in different boundary components of M , the two manifolds M and N
will have a different number of boundary components. Note that this construction
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is analogous to the homotopy equivalence between the annulus and the Möbius
strip.

This construction can be slightly generalized in the following way. Let A be a
2–sided 2–submanifold of M such that each component of A is an essential annulus
or Möbius strip, and such that the closure V of some component of M − A is
homeomorphic to a B2–bundle over S1. Let N be obtained by replacing V in M by
another B2–bundle W over S1, such that the components of A wrap around the S1

factor of the bundle the same number of times as in V . Then, M and N are both
homotopy equivalent to the space obtained from M by collapsing each fiber of the
B2–bundle structure of V to a point, but M and N are in general not diffeomorphic.
Call such a homotopy equivalence M → N a flip homotopy equivalence. Johannson
[62] proved that this is essentially the only counter-example:

Theorem 3.13 (Homotopy equivalences between Haken 3–manifolds). Let M and
M ′ be two compact Haken 3–manifolds which admit no essential compression disk
for their boundaries, and let f : M → M ′ be a homotopy equivalence. Consider
the characteristic decomposition of M along a family F of 2–tori, Klein bottles,
annuli and Möbius strips, as in Theorem 3.8, and let W be the union of a small
tubular neighborhood of the annulus and Möbius strip components of F and of those
components of M−F which touch ∂M and admit the structure of a Seifert fibration
or a B1–bundle. Let F ′ and W ′ be similarly defined in M ′. Then, f can be homotoped
so that:

(i) f−1 (W ′) = W and f−1 (M ′ −W ′) = M −W ;
(ii) f induces a homeomorphism from M −W to M ′ −W ′.
(iii) f induces a homotopy equivalence from W to W ′;

In addition, f is homotopic to a product of flip homotopy equivalences M = M0 →
M1 → . . . →Mn = M ′ as above.

An immediate corollary is the following.

Corollary 3.14. If f : M → N is a homotopy equivalence between compact Haken
3–manifolds and if M contains no essential disk, annulus or Möbius strip, then f
is homotopic to a homeomorphism.

Finally, to completely analyze homotopy equivalences between compact Haken
3–manifolds, we need to understand what happens in the presence of essential
compression disks.

First, note that the fundamental group π1 (M) is the only non-trivial homotopy
group of a Haken manifold M . Indeed, since M contains no essential 2–sphere or
projective plane, the Sphere Theorem 3.3 shows that π2 (M) = 0. Since M contains

an essential surface, its fundamental group is infinite, and its universal covering M̃ is
a non-compact 3–manifold with π1

(
M̃

)
= 0 and π2

(
M̃

)
= π2 (M) = 0. This implies

that M̃ is contractible by the Hurewicz Theorem, and that πn (M) = πn

(
M̃

)
= 0

for every n.
In particular, the data of a homotopy equivalence f : M → M ′ between Haken

3–manifolds is equivalent to the data of the induced isomorphism f∗ : π1 (M) →
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π1 (M ′).
If M is a compact Haken 3–manifold which contains essential compressions disks

and if V is its characteristic compression body, π1 (M) is isomorphic to the free
product of the fundamental groups of the components ofM − V and of some infinite
cyclic groups. Note that each component of M − V is a compact Haken 3–manifold
which admits no essential compression disk. Also, no component of M − V can have
an infinite cyclic fundamental group by, for instance, Theorem 3.11.

As a consequence, it follows from Kurosh’s theorem on the uniqueness of free
product decompositions (see [80]) that a homotopy equivalence f : M → M ′ be-
tween compact Haken 3–manifolds, with respective characteristic compression disks
V and V ′, induces a homotopy equivalence g : M − V → M ′ − V ′. The homotopy
equivalence g : M − V →M ′ − V ′ is analyzed by Theorem 3.13. Then, understand-
ing f is essentially a matter of comparing the way the handles of V and V ′ fit with
respect to the components of M − V and M ′ − V ′.

A typical example is the following. Let S be a compact surface without boundary,
not a 2–sphere or a projective plane, and let M be a 3–manifold with boundary
obtained from the disjoint union of S × [0, 1] and of a 1–handle B1 × [0, 1] by
identifying B1 × {0, 1} to two disjoint disks in S × {0, 1}. Up to diffeomorphism,
there are four manifolds M which are obtained in this way, according to whether
M is orientable or not and to whether ∂M is connected or not. However, these four
Haken 3–manifolds have the same homotopy type.

These homotopy equivalences between compact Haken 3–manifolds with essential
compression disks or, more generally, homotopy equivalences of connected sums of
such 3–manifolds, are analyzed in detail in Kalliongis-McCullough [65, 66].

3.6. Characteristic splittings of 3–orbifolds

There is, for 3–dimensional orbifolds, a theory of characteristic splittings which
closely parallels the one for 3–manifolds which we described in the preceding sec-
tions. There are several motivations for such an extension.

In Section 3.1, we already mentioned that 3–orbifolds constitute the natural
framework for a theory of connected sums along projective planes. Namely, after
splitting a non-orientable 3–manifold along characteristic 2–sided projective planes
as in Theorem 3.2, we can plug the boundary projective planes so obtained with
copies of the 3–orbifold B3/Z2, where Z2 acts by the antipodal map x 7→ x to ob-
tain a 3–orbifold N . The methods of this section will then enable us to obtain for
N characteristic splittings analogous to those of Sections 3.2, 3.3 and 3.4, which
enable us to analyze essential 2–tori, compression disks and annuli in N and M .

Another reason is that we will see in Section 4.5 that there is an existence theorem
for geometric structures on 3–orbifolds which is somewhat stronger than the current
existence theorems for 3–manifolds. This existence theorem for 3–orbifolds requires
the vanishing of certain topological obstructions, analogous to those of Section 2.4.
As in the case of manifolds, when these topological obstructions do not vanish,
they are best understood in terms of characteristic splittings similar to those of the
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preceding sections.
Also, we will see that the switch to orbifolds enables us to unify the cases with and

without boundary, and in particular to consider the Torus/Annulus Decomposition
of Section 3.4 as a special case of the simpler Torus decomposition of Section 3.2.

However, the main benefit of these characteristic splittings of 3–orbifolds, and
of the subsequent existence theorems for geometric structures, is that they provide
more insight on properly discontinuous group actions on 3–manifolds.

The splitting theorems for 3–orbifolds are usually obtained by a simple word-
by-word translation of the corresponding statements for manifolds. The guiding
principle in establishing the dictionary is the following. The orbifold equivalent of
an object of type T is such that, in an orbifold M/Γ which is the quotient of a
3–manifold M by a finite group Γ, an orbifold object of type T in the orbifold M/Γ
is exactly the image of a Γ–invariant family of disjoint objects of type T in the
manifold M . This principle will probably become clearer to the reader after we put
it in practice.

Let a sphere 2–orbifold be the orbifold quotient of the unit 2–sphere S2 by a finite
group of diffeomorphisms. By inspection or by using Proposition 2.6 on the ge-
ometrization of 2–orbifolds, this finite subgroup of diffeomorphisms is conjugate to
a subgroup of the orthogonal groupO (3). It is an easy exercise to list all such sphere
2–orbifolds. For instance, exactly two of them have no singular points, namely the
2–sphere S2 and the projective plane RP2. The quotient of S2 by Zp acting by rota-
tions gives the orbifold whose underlying topological space is a 2–sphere, and whose
singular set consist of two points each with isotropy group Zp acting by rotations.
Another example includes the quotient of S2 by the full symmetry group of the
regular dodecahedron; its underlying topological space is a disk, its singular set is
the boundary of this disk, and the non-trivial isotropy groups are all Z2 acting by
reflection, except for exactly three singular points where the isotropy groups are
the dihedral groups of respective orders 4, 6 and 10, acting in the standard way.

Similarly, a ball 3–orbifold is the orbifold quotient of the closed unit ball B3 by
a finite group of diffeomorphisms. It follows from a deep theorem, the proof of
the Smith conjecture [133] (see in particular [90]) that this finite group of diffeo-
morphisms is conjugate to a finite subgroup of the orthogonal group O (3). As a
consequence every ball 3–orbifold is, in a suitably defined sense, a cone over its
boundary, which is a sphere 2–orbifold.

Recall that an orbifold is uniformizable if it is isomorphic to the orbifold quo-
tient of a manifold by a properly discontinuous group action. Otherwise, it is non-
uniformizable. In Lemma 2.3, we saw that an orbifold which admits a complete
geometric structure is necessarily uniformizable.

By an easy covering space argument (and compare Proposition 2.6), the only
non-uniformizable 2–orbifolds Σ are those of the following list:

(i) the underlying space of Σ is a 2–sphere, and its singular set consists of a
single point, where the isotropy group is Zp acting by rotations with p > 2;

(ii) the underlying space of Σ is a 2–sphere, its singular set consists of two
points, and their isotropy groups are Zp and Zq acting by rotations, with p, q > 2
distinct;
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(iii) the underlying space of Σ is a 2–ball, the singular set is the boundary of
this 2–ball, and all non-trivial isotropy groups are Z2 acting by reflection except at
one point, where the isotropy group is the dihedral group of order 2p acting in the
usual way, with p > 2;

(iv) the underlying space of Σ is a 2–ball, the singular set is the boundary of
this 2–ball, and all non-trivial isotropy groups are Z2 acting by reflection except at
two points, where the isotropy groups are the dihedral groups of order 2p and 2q
acting in the usual way, with p, q > 2 distinct.

The existence of a geometric structure on the 3–orbifold M imposes restrictions
on the 2–suborbifolds of M , where suborbifolds are defined in the obvious way: A
suborbifold of the orbifold O is a subset S of the topological space underlying O
such that, for every folding chart f : Ũ → U of the orbifold atlas O, f−1

(
Ũ ∩ S

)
is

a submanifold of U . Note that S inherits an orbifold structure by restriction of the
charts of O.

By analogy with the case of 3–manifolds, a sphere 2–suborbifold S of M (namely
a 2–dimensional suborbifold of M which is a sphere 2–orbifold) is essential if it is
2–sided and if it does not bound a ball 3–orbifold in M . Here, S is 2–sided if it
admits a neighborhood that is isomorphic to the orbifold S × B1 or, equivalently,
if its (suitably defined) orbifold normal bundle is trivial.

Theorem 3.15. If the 3–orbifold M admit a complete geometric structure, then
every 2–suborbifold of M is uniformizable. If in addition, the geometric structure
is modelled over any of the eight geometries of Section 2 except S1 × S2, then M
contains no essential sphere 2–suborbifold.

The first statement comes from Lemma 2.3. Indeed, this result asserts that M
is uniformizable, and any uniformization for M (namely an isomorphism between
M and the orbifold X/Γ where the group Γ act properly discontinuously on the
manifold X) provides a uniformization for any suborbifold of M .

The second statement is analogous to Theorem 2.2 and follows from the fact
that the remaining model spaces X are irreducible. Indeed, Lemma 2.3 shows that
M is isomorphic to the quotient orbifold X/Γ of the model space X by a properly
discontinuous action of a group Γ of isometries. If S is a 2–sided sphere 2–suborbifold
S of M = X/Γ, its pre-image in X is a Γ–invariant family of disjoint 2–spheres Si

in X . Since X is diffeomorphic to R3 or S3, an arbitrary component S1 of this pre-
image bounds a 3–ball B1 in X . Then, if Γ1 denotes the stabilizer of B1 in Γ, the
2–suborbifold S bounds the ball 3–suborbifold B1/Γ1 in M . This shows that every
2–sided sphere 2–suborbifold of M bounds a ball 3–orbifold in M , and completes
the proof of Theorem 3.15.

The requirement that the 3–orbifoldM contains no essential sphere 2–suborbifold
is stronger than might appear at first glance. When M is a manifold, namely when
its singular set is empty, this condition holds if and only if it contains no essential
2–sphere and no 2–sided projective plane. Another fundamental case is when M is
the mirror orbifold DN/Z2 associated to a 3–manifold N with boundary where, as
in Section 2.5, DN is the double obtained by gluing two copies of N along their
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boundary and where Z2 acts on DN by exchange of these two copies. Then, the
orbifold M = DN/Z2 satisfies this condition if and only if N admits no essential
compression disks, 2–spheres, or projective planes.

There is no convenient characteristic splitting which would reduce the analysis
of 3–orbifolds to those which contain no non-uniformizable 2–suborbifolds. Con-
sequently, we have to introduce this hypothesis right away, and exclude from the
analysis those 3–orbifolds which contain non-uniformizable 2–suborbifolds.

Let M be a 3–orbifold of finite type which contains no non-uniformizable 2–
suborbifolds. Then M has a natural splitting as a connected sum of 3–orbifolds
without essential sphere 2–suborbifolds, which closely parallels the splitting dis-
cussed in Section 3.1. Indeed, we can consider in M a finite family Σ of 2–sided
sphere 2–suborbifolds which are pairwise disjoint, do not bound any ball 3–orbifold
in M , and are pairwise not parallel in the sense that no two components of Σ are
separated by a component of M − Σ which is (orbifold) isomorphic to the product
of a sphere 2–orbifold and of an interval. If the orbifold M is of finite type, namely
is isomorphic to the interior of a compact 3–orbifold with boundary, the argument
of Kneser again shows that there exists such a finite family Σ which is maximal for
these properties. Then, cut M open along Σ, and glue a ball 3–orbifold B over each
boundary component S of the 3–orbifold so obtained; namely B is a cone over S.
By construction the (possibly disconnected) 3–orbifold M̂ so obtained contains no
essential sphere 2–orbifold. The proof of Theorem 3.1 immediately generalizes to
show:

Theorem 3.16. If M is a 3–orbifold of finite type which does not contain any non-
uniformizable 2–suborbifold, the irreducible 3–orbifold M̂ associated to M by the
above construction (and containing no essential sphere 2–suborbifold) is independent
of the choice of Σ, up to orbifold isomorphism.

(As indicated in Section 3.1, if we apply this splitting-gluing process to a 3–

manifold M that contains 2–sided projective planes, the orbifold M̂ provided by
Theorem 3.16 will have singular points, precisely two for each projective plane.)

Conversely, it is possible to reconstruct M from the orbifold M̂ through con-
nected sum operations, although the situation is slightly more complicated than for
manifolds. The connected sum of the 3–orbifolds M1 and M2 is defined as soon as
we are given ball 3–suborbifolds B1 ⊂ M1, B2 ⊂ M2 and an isomorphism between
B1 and B2. Then the connected sum M1#M2 is defined by gluing the orbifolds
M ′

i = Mi− int (Bi) along their boundaries, using the restriction of the isomorphism
B1

∼= B2. In the case of manifolds, we only had to worry about orientations. The sit-
uation is somewhat more complex for orbifolds, because a finite type 3–orbifold M
can contain several ball 3–suborbifolds which are isomorphic, but not equivalent by
an ambient orbifold isomorphism of M , and because there usually are more isotopy
classes of isomorphisms between ball 3–orbifolds than between ball 3–manifolds.
However, there are only finitely many such ambient isomorphism types of ball 3–
orbifolds in M , and finitely many isotopy classes of isomorphisms between them.
Therefore, there are only finitely many possible connected sums M1#M2 of the
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finite type 3–orbifolds M1 and M2, and the combinatorics of these finitely many
possibilities are easy to analyze. We also have to consider self-connected sums where
M1 = M2, for instance to deal with a manifold M that contains a non-separating
2–sided projective plane, but this presents no significant difficulty. In particular, in
Theorem 3.16, the 3–orbifold M can be recovered from M̂ up to a finite number of
ambiguities, which are easily analyzed.

Because of this, we can now restrict attention to 3–orbifolds which contain no
non-uniformizable 2–suborbifolds and no essential sphere 2–suborbifolds.

In Section 2.4, we saw that a geometric structure of Seifert type on a manifold
often leads to Seifert fibration on the manifold. A similar phenomenon occurs for
orbifolds. Actually, the situation is much simpler in the orbifold framework, because
Seifert fibrations just correspond to locally trivial S1–bundles in the category of
orbifolds, as we now explain.

Let F be a manifold (to simplify; a similar definition could be made where F
is an orbifold). A (locally trivial) orbifold F–bundle consists of two orbifolds M
and B and of a continuous map p : M → B between their underlying topological
spaces such that, for every x ∈ B, there exists a neighborhood U of x in the
topological space underlying B, a folding chart f : Ũ → U of B, and a folding chart
g : Ũ×F → p−1 (U) of M for which: the folding group Gg of g respects the product

structure of Ũ × F ; the folding group Gf of f consists of those automorphisms of

Ũ which are induced by elements of Gg; the map p coincides with the map from

p−1 (U) = Ũ × F/Gg to U = Ũ/Gf that is induced by the projection Ũ × F → Ũ .
Note that the folding groups Gf and Gg may be different since some elements of

Gg may act by the identity on Ũ .
For such an orbifold F–bundle, the pre-images p−1 (x) are the fibers of the bundle.

Note that each fiber has a natural orbifold structure, and is orbifold covered by the
manifold F . If x is a regular point of B, namely if the isotropy group of x is
trivial, the fibers above nearby points are all orbifold isomorphic to p−1 (x). If B
is connected, the set of its regular points is connected, and we conclude that all
fibers over regular points are isomorphic. By definition, the orbifold p−1 (x) with x
regular is the generic fiber of the bundle.

In particular, if we go back to the definition of a Seifert fibration, we see that
a Seifert fibration on a 3–manifold M gives an orbifold S1–bundle over the base
2–orbifold B of the Seifert fibration. Conversely, by inspection of all possible local
types, one easily sees that an orbifold S1–bundle p : M → B where M is a 3–
manifold (with all isotropy groups trivial) defines a Seifert fibration on M .

Another important example occurs when we have a 3–manifoldM with boundary
and we consider the orbifold DM/Z2, where DM is the double obtained by gluing
two copies of M along their boundary and where Z2 acts by exchange of the two
copies. If this 3–orbifold DM/Z2 is endowed with the structure of an S1–bundle,
then inspection now shows that there are two cases: Either the generic fiber is the
manifold S1, and the bundle structure induces a Seifert fibration on M for which
∂M is a union of fibers and for which the base orbifold is a 2–orbifold B with
boundary; in this case, the base orbifold of the S1–bundle is the quotient orbifold
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DB/Z2 where DB is the double obtained by gluing two copies of B along their
boundary and Z2 acts by exchange of the two copies. Or the generic fiber is the
1–orbifold S1/Z2 where Z2 acts on S1 by reflection, the base orbifold B of the S1–
bundle is a manifold, and the bundle structure induces a locally trivial (manifold)
bundle on M with base the 2–manifold B and with fiber the interval B1, in such a
way that ∂M corresponds to the ∂B1–sub-bundle.

The orbifold S1–bundles over a given 2–orbifold B are classified in Bonahon-
Siebenmann [19]. The classification is very much in the spirit of Seifert’s classifi-
cation of Seifert fibrations [127]. It involves the consideration of the possible local
types for such a bundle, plus certain global and semi-global invariants. The classi-
fication and its proof are not intrinsically more difficult than in the case of Seifert
fibrations, but they are considerably more tedious because of the large number of
possible local types.

As in Section 2.4, the existence of a complete Seifert-type geometry on a 3–
orbifold M usually leads to a fibration on M . For simplicity, we restrict attention
to finite volume structures.

Theorem 3.17. If the 3–orbifold M admits a complete geometric structure of finite
volume modelled over S2 ×E1, H2 ×E1, H2×̃E1 or E2×̃E1, then at least one of the
following occurs:

(i) The foliation of M by the E1 factors defines an orbifold S1–bundle structure
on M with base orbifold a 2–orbifold B. In this case, the metric of the S2, H2 or E2

factors projects to a complete spherical, hyperbolic or euclidean structure of finite
area on the base orbifold B.

(ii) The model space is S2×E1, and the S2–factors define an orbifold S2–bundle
structure on M with base orbifold a compact 1–orbifold B.

The proof is identical to that of the similar statement for manifolds, namely
Theorem 2.5 in Section 2.4. The reader may want to back-track to that statement,
and see how the list of compact exceptions in (iii) of Theorem 2.5 coincides with
the list of all manifolds that correspond to the orbifold bundles of (ii) in the above
Theorem 3.17.

The lucky coincidence which occurred for manifolds does not repeat for orbifolds:
A geometric structure modelled on E3 or S3 for a 3–orbifold M does not necessarily
produce a fibration. For instance, if Γ is the group consisting of all isometries of E3

that respect the lattice Z3 ⊂ R3 = E3, there is no identification of E3 with E1 ×E2

for which the E1 factors induce a fibration of the orbifold E3/Γ.
However, in the case of E3, the 3–dimensional crystallographic groups, namely

the groups of isometries of E3 that act properly discontinuously and with compact
quotient, were classified in the XIX-th century; see for instance Janssen [60] or
Opechovski [102]. This classification is equivalent to the classification of all com-
pact 3–orbifolds which admit a geometric structure modelled on E3. Up to orbifold
isomorphism, there are 219 such compact euclidean 3–orbifolds (230 if we fix an
orientation on orientable orbifolds). For non-compact euclidean 3–orbifold, one can
rely on the celebrated theorem of Bieberbach [11, 9] which asserts that, for every
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properly discontinuous group Γ of isometries of En, there is an isometric split-
ting En ∼= Ep × Eq such that Γ respects some slice Ep × {x0} and Ep × {x0} /Γ
is compact. Therefore, every non-compact euclidean 3–orbifold is an orbifold E1–
of E2–bundle over a compact euclidean 2– or 1–orbifold. Since the 17 compact eu-
clidean 2–orbifolds have been known for centuries (see for instance Montesinos [96])
and since there are only two compact euclidean 1–orbifolds (S1 and S1/Z2, where Z2

acts by reflection), this makes it an easy exercise to list all non-compact euclidean
3–orbifolds.

There is a similar classification for finite groups of isometries of S3; see Goursat
[44], Threlfall-Seifert [137] and Du Val [31]. This is again equivalent to the clas-
sification of all spherical 3–orbifolds. For most of these spherical 3–orbifolds, the
splitting S3 = S2×̃S1 induces an orbifold S1–bundle on this 3–orbifold, with basis
a spherical 2–orbifold. However, several spherical 3–orbifolds admit no S1–bundle
structure; see Dunbar [30].

Theorem 3.18. If the 3–orbifold M admits a complete geometric structure mod-
elled over H3, it contains no essential 2–sided torus 2–suborbifold. In addition, it
admits no structure as an orbifold S1–bundle, except in the case where the base
2–orbifold of the bundle is an open disk 2–orbifold or an open annulus 2–orbifold;
this case cannot occur if the hyperbolic structure has finite volume.

We have here used the automatic translation convention: A torus 2–suborbifold of
M is a suborbifold which is isomorphic to the quotient of a 2–torus by a finite group
action. Such a torus 2–suborbifold T is incompressible if, for every disk 2-suborbifold
D (namely isomorphic to the quotient of a disk by a finite group action) in M with
∂D contained in T , there is a disk 2–suborbifold D′ of T such that ∂D′ = ∂D. A
torus 2–suborbifold T of M is essential is it is incompressible and if it does not
bound any end of M , namely if the closure of no component of M−T is isomorphic
to the orbifold T × [0,∞[. Incidentally, when M is a manifold, these conditions may
seem weaker than the ones we considered in Section 2.4. However, for a 2–torus
embedded in the 3–manifold M , they are actually equivalent by the Loop Theorem
[108], Waldhausen’s classification of incompressible surfaces in interval bundles [145,
Proposition 3.1], and another lemma of Waldhausen [145, Proposition 5.4] which
says that two disjoint incompressible surfaces are homotopic if and only if they are
separated by the product of a surface with the interval.

For the Sol geometry, the same proof as in the manifold case of Theorem 2.11
yields the following result. See Scott [125] or Dunbar [29].

Theorem 3.19. If the 3–orbifold M admits a finite volume complete geometric
structure modelled over Sol, it admits an orbifold fibration over the manifold S1 with
generic fiber the 2–torus T2 or the orbifold T2/Z2 where Z2 acts on T2 = S1 × S1

by reflection on both S1–factors.

In Theorem 3.18, we saw that essential sphere and torus 2–orbifolds are topo-
logical obstructions to the existence of hyperbolic structures on an orbifold. In this
context, a quasi-automatic translation of the Torus Decomposition Theorem 3.4,
proved in Bonahon-Siebenmann [20], gives:
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Theorem 3.20 (Characteristic torus decomposition for orbifolds). Let M be a 3–
orbifold of finite type which contains no non-uniformizable 2–suborbifold and no
essential sphere 2–suborbifold. Then, up to orbifold isomorphism, there is a unique
compact 2–dimensional suborbifold T of M such that:

(i) Every component of T is 2–sided, and is an essential torus 2–suborbifold.
(ii) Every component of M −T either contains no essential torus 2–suborbifold,

or admits an S1–bundle structure.
(iii) Property (ii) fails when any component of T is removed.

As indicated earlier, in the case of a manifold M with boundary, applying this
theorem to the double orbifold DM/Z2 subsumes both the Torus Decomposition
Theorem 3.4 and the Torus/Annulus Decomposition Theorem 3.8 of Sections 3.2
and 3.4.

The same doubling trick allows us to avoid the study of 3–orbifolds with bound-
ary.

Many other properties of 3–manifolds can be generalized to 3–orbifolds. For in-
stance, see [136] for a generalization of Theorem 3.11 (on homotopy equivalences
between Haken 3–manifolds) to a certain class of 3–orbifolds.

4. Existence properties for geometric structures

4.1. The Geometrization Conjecture

The central conjecture is that, for a 3–manifold of finite type, the topological ob-
structions considered in Sections 2.4 and 2.5 are the only obstructions to the exis-
tence of a complete geometric structure. If we combine this with the characteristic
splittings of Section 3, this gives:

Conjecture 4.1 (Geometrization Conjecture for 3–manifolds). Let M be a 3–
manifold of finite type with boundary which contains no essential 2–sphere, projec-
tive plane or compression disk. Let F be the 2–submanifold provided by the Char-
acteristic Torus/Annulus Decomposition Theorem 3.8. Then, every component of
M − F admits a complete geometric structure with totally geodesic boundary.

If, in addition, M consists of a compact part and of finitely many toric or annular
ends, then the geometric structures of the components of M − F can be chosen to
have finite volume, except in the following cases:

(i) F = ∅, M is non-compact, and M is diffeomorphic to an (open, closed or
semi-open) interval bundle over a plane, an open annulus, an open Möbius strip, a
2–torus or a Klein bottle;

(ii) F consists of a single 2–torus, and M − F is diffeomorphic to F × E1; in
this case, M is compact and admits a geometry modelled over Sol.

We will see in later sections that this conjecture is now proved in many important
cases.
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However, we should probably mention that the situation is still very unclear
for 3–manifolds whose topological type is not finite. Indeed, some new topological
obstructions then occur. For instance, the Whitehead manifold, a contractible 3–
manifold which is not homeomorphic to E3 (see for instance Rolfsen [115, Sect. 3.I]),
cannot admit a complete geometric structure since it is simply connected but is not
homeomorphic to any of the model spaces. Some more topological obstructions
related to finite topological type are discussed in Section 6.3. For 3–manifolds with
finitely generated fundamental groups, it seems reasonable to conjecture that they
can admit a complete geometric structure only if they have finite topological type
(the so-called Marden Conjecture), which reduces the question to Conjecture 4.1.
However, there is no clear conjecture for the manifolds with infinitely generated
fundamental groups. This is in contrast to the case of surfaces, where complex
analysis always provided a complete geometric structure.

4.2. Seifert manifolds and interval bundles

For the fibered pieces of the torus/annulus decomposition, the conclusions of the
Geometrization Conjecture 4.1 can be proved by a relatively explicit construction;
see Scott [125] or Kojima [71]. The proof is fairly simple for a Seifert fibration where
the Euler number e0 is undefined or 0, and requires just a little more care when
e0 6= 0. It is convenient to consider, in addition to the four Seifert type geometries
of Section 2.2, the non-maximal geometries of E2 × E1 (contained in the geometry
of E3) and S2×̃S1 (contained in the geometry of S3).

Theorem 4.1 (Geometrization of Seifert fibered 3–manifolds). Let the 3–manifold
M with boundary admit a Seifert fibration with base 2–orbifold Σ. Let the orbifold Σ
be endowed with a complete geometric structure. Let l > 0 be equal to |e0| area (Σ) if
the Euler number e0 is defined (modulo a choice of orientation) and non-zero, and
let l > 0 be arbitrary otherwise. Then, M admits a complete geometric structure
modelled over S2 × E1, S2×̃S1, E2 × E1, E2×̃E1, H2 × E1 or H2×̃E1, with totally
geodesic boundary, in such a way that the E1 or S1 factors correspond to the fibers
of the Seifert fibration, such that all generic fibers have length l, and such that the
other factors project to the original geometric structure on the base orbifold Σ. In
addition, if M is compact and oriented with e0 6= 0, the geometry is necessarily
twisted. If M is compact and oriented with e0 = 0, or compact and non-orientable,
then the geometry is necessarily untwisted. If M is non-compact, the geometry can
arbitrarily be twisted or untwisted.

Note that the hypotheses of Theorem 4.1 are also necessary by Theorem 2.5.
Topologically, one might think that some Seifert fibered 3–manifolds are missing,

namely those where the base 2–orbifold Σ admits no complete geometric structure.
However, by Proposition 2.6, Σ then has underlying topological space a 2–sphere
with 1 or 2 singular points. In this case, M is a lens space, and consequently admits
a geometric structure modelled over S2×̃S1 for a different Seifert fibration; see
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[125, 127, 103, 96].
Therefore, for the torus/annulus decomposition F of a finite type manifold M ,

any Seifert fibered component of M − F really admits a complete geometric struc-
ture.

The proof of the similar statement for interval bundles is much simpler.

Theorem 4.2 (Geometrization of 3–dimensional interval bundle). Let the 3–manifold
M with boundary admit the structure of an interval bundle over a surface S. Let
Σ be endowed with a complete geometric structure. Then, M admits a complete
geometric structure modelled over S2×E1, E2×E1 or H2×E1, with totally geodesic
boundary, in such a way that the E1 factors correspond to the fibers of the bundle,
and such that the other factors project to the original geometric structure on the
base orbifold Σ.

4.3. The Hyperbolization Theorem for Haken 3–manifolds

The most important theorem of this chapter certainly is the following existence
theorem for hyperbolic structures on 3–manifolds.

In Section 3.5, we encountered the notion of compact Haken manifold. More
generally, a Haken manifold is a 3–manifold which is obtained from a compact
Haken manifold M by removing a compact 2–submanifold from ∂M . In particular,
a Haken manifold is a 3–manifold of finite type with boundary.

Theorem 4.3 (Hyperbolization Theorem). Let M be a Haken manifold which con-
tains no essential 2–sphere, projective plane, 2–torus, compression disk or annulus.
Then, M admits a complete hyperbolic structure with totally geodesic boundary.

If, in addition, every end of M is toric or annular, then the complete hyperbolic
structure has finite volume, unless M is diffeomorphic to an (open, closed or semi-
open) interval bundle over a plane, an open annulus, an open Möbius strip, a 2–
torus or a Klein bottle.

In other words, for Haken 3–manifolds, the conditions of Theorems 2.9 and 2.14
are necessary and sufficient for the existence of a complete hyperbolic structure
with totally geodesic boundary (and possibly with finite volume). Combined with
Theorems 4.1 and 4.2, Theorem 4.3 provides a proof of the Geometrization Con-
jecture 4.1 for all Haken 3–manifolds.

This theorem was first announced by W. Thurston around 1977; see [139, 140].
The proof is very complex and, for a while, was not available in written form,
although partial expositions such as those by Thurston [138, 141, 142], Morgan [97]
or Sullivan [135] have been very influential in the further development of the field.
Some detailed expositions of the proof of Theorem 4.3 are now beginning to become
available. Technically, given an incompressible surface S in the Haken manifold M ,
the proof splits into two very distinct cases, according to whether or not a finite
cover of M admits a structure of bundle over the circle S1 for which the pre-image of
S is a union of fibers. The case of bundles over the circle is developed in detail in the
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monograph by Otal [105]. In the paper [106], Otal also gives a detailed proof of the
non-bundle case, using a simplification of Thurston’s original argument developed
by C. McMullen [75, 76]. The monograph by Kapovich [69] provides an exposition
of the non-bundle case, following Thurston’s original approach.

These proofs of the hyperbolization theorem are based on the idea, going back to
Haken and Waldhausen, of successively cutting the 3–manifold along incompressible
surfaces until one reaches a polyhedral ball. The characterization by Andreev [6,
7] of the topological type of acute angle polyhedra in H3 enables one to put a
hyperbolic structure on this polyhedral ball. The core of the proof is a difficult
gluing process which, when the polyhedral ball is glued back together to reconstruct
the original 3–manifold, progressively reconstructs a hyperbolic structure on the 3–
manifold. Altogether, this approach is very reminiscent of the second method we
used in Section 1.1 to construct hyperbolic structures on surfaces of finite type. A
more analytic approach to the geometrization conjecture of 3–manifolds, such as
the one proposed in [5] and in spirit closer to the first method of geometrization of
surfaces discussed in Section 1.1, would certainly be more attractive but does not
seem to be within reach at this point.

4.4. Hyperbolic Dehn filling

Hyperbolic Dehn filling is a method of constructing many hyperbolic manifolds by
deformation of the structure of a complete hyperbolic 3–manifold with cusps. In
addition to the original lecture notes by Thurston [138], the book by Benedetti and
Petronio [10] is a good reference for the material in this section.

We begin with some topological preliminaries. Let M be a 3–manifold which is
the interior of a compact 3–manifold M whose boundary ∂M consists of finitely
many 2–tori. Let M ′ be a 3–manifold without boundary obtained as follows: Glue
copies of the solid torus S1 ×B2 along some of the components of ∂M , and remove
the other components of ∂M . Such a manifold M ′ is said to be obtained from M
by Dehn filling.

For instance, a celebrated result of Lickorish and Wallace [73, 151] says that
every compact orientable 3–manifold can be obtained by Dehn filling along the
complement of a link (=1–submanifold) in the 3–sphere S3. See also the chapter by
S. Boyer [21] for a more extensive discussion of Dehn fillings.

There are many possible ways of gluing a copy of the solid torus S1 ×B2 along a
2–torus component T of ∂M . However, one easily sees that, up to diffeomorphism
inducing the identity on M , the resulting manifold is completely determined by the
isotopy class of the simple closed curve {∗} × ∂B2 in T . In addition, this isotopy
class is completely determined by the class of H1 (T ; Z) /± 1 defined by {∗}× ∂B2,
where ±1 acts by multiplication on the homology group H1 (T ; Z) and where the
ambiguity comes from the fact that the curve {∗} × ∂B2 is not oriented. See for
instance Rolfsen’s book [115, Chap. 9].

To specify a Dehn filling, one considers the boundary components T1,. . . , Tn of
M . The Dehn filling is then determined by the data of the Dehn filling invariants
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associated to these boundary 2–tori as follows: If a solid torus S1×B2 is glued along
the 2–torus Ti, the Dehn filling invariant is the element δi ∈ H1 (Ti; Z) /± 1 repre-
sented by the curve {∗}×∂B2; if no solid torus is glued along Ti, the corresponding
Dehn filling invariant is δi = ∞, by definition. The motivation for this convention
will become clear when we discuss the Hyperbolic Dehn Filling Theorem 4.4 below.
Note that every list of indivisible elements of {∞}∪H1 (Ti; Z) /±1 can be the list of
Dehn filling invariants of some Dehn filling (an element of δ ∈ H1 (Ti; Z) /±1 is indi-
visible if it cannot be written as pδ′ for some integer p > 2 and δ′ ∈ H1 (Ti; Z) /±1,
and ∞ is indivisible by convention).

After these topological preliminaries, consider an orientable 3–manifold M which
admits a complete hyperbolic metric of finite volume. By Theorem 2.9, it is dif-
feomorphic to the interior of a compact 3–manifold M whose boundary consists
of 2–tori. By Lemma 2.3, the hyperbolic 3–manifold M is isometric to a quotient
H3/Γ, where the group Γ acts properly discontinuously and by fixed point free
isometries on the hyperbolic 3–space H3. By the theory of covering spaces, the
group Γ is isometric to the fundamental group π1 (M), and we therefore have an
injective homomorphism ρ0 : π1 (M) → Isom+

(
H3

)
whose image is discrete, where

Isom+
(
H3

)
is the group of orientation-preserving isometries of H3.

We can actually put this in a more general framework. Consider on M a hyper-
bolic structure (or, more generally, an (X,G)–structure) which is not necessarily

complete. Lift this structure to the universal covering M̃ of M . Then, by following
paths in M̃ , a relatively easy argument shows that every isometry from a small
open subset of M̃ to an open subset of H3 uniquely extends to a locally isometric
map D : M̃ → H3; see Thurston [138] or Benedetti-Petronio [10], and compare
Singer [130]. This map D is a global isometry if and only if the hyperbolic metric
is complete. From the uniqueness of the extension, we see that there is a homomor-
phism ρ : π1 (M) → Isom+

(
H3

)
such that D (γx) = ρ (γ)D (x) for every x ∈ M̃

and γ ∈ π1 (M). The map D is a developing map for the hyperbolic structure
considered, and the homomorphism ρ is its holonomy.

Thurston observed that, if we consider the holonomy ρ0 : π1 (M) → Isom+
(
H3

)

of a complete hyperbolic structure, any homomorphism ρ : π1 (M) → Isom+
(
H3

)

that is sufficiently close to ρ0 is the holonomy of a usually incomplete hyperbolic
structure on M , which is of a very specific type near the ends of M . When this
geometric structure is incomplete, its completion (as a metric space) is usually not
a manifold. However, for some representations ρ near ρ0, the completion of the
geometric structure on M is a manifold, and, topologically, is obtained from M by
Dehn filling. This enabled Thurston to prove the following theorem.

Theorem 4.4 (Hyperbolic Dehn Filling Theorem). Let the orientable 3–manifold
M admit a finite volume complete hyperbolic structure. By Theorem 2.9, we know
that there exists a compact 3–manifold M such that M is diffeomorphic to the
interior of M and such that the boundary of ∂M consists of finitely many 2–tori
T1, . . . , Tn. Then, there is a finite subset Xi of each H1 (Ti; Z) /± 1 such that the
following holds: If the manifold N is obtained from M by Dehn filling in such a way
that the Dehn filling invariant δi ∈ {∞}∪H1 (Ti; Z) /±1 associated to each 2–torus
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Ti is not in Xi, then N admits a finite volume complete hyperbolic structure.

As indicated above, the proof of Theorem 4.4 can be found in [138] or [10].
The proof of Theorem 4.4 also provides additional geometric information on the

hyperbolic structure of the 3–manifold N . Then, for every compact subset K of M
and every ε > 0, the hyperbolic metric of N can be chosen so that it is ε–close to the
metric of M over K provided the Dehn filling invariants δi ∈ {∞}∪H1 (Ti; Z) /±1
are all sufficiently close to ∞. In addition, when δi 6= ∞, we can arrange that the
core S1 × {0} of the solid torus S1 × B2 glued along the 2–torus Ti is a closed
geodesic of N whose length tends to 0 as δi tends to ∞ in {∞} ∪H1 (Ti; Z) / ± 1
(for the topology of the 1–point compactification, for which the neighborhoods of
∞ are the complements of finite subsets of H1 (Ti; Z) /± 1).

The requirement that M is orientable is not crucial in Theorem 4.4. When
M is non-orientable and admits a finite volume complete hyperbolic metric, we
know from Theorem 2.9 that M is the union of a compact part and of finitely
many ends, each diffeomorphic to T2 × [0,∞[ or K2 × [0,∞[, where T2 and K2

respectively denote the 2–torus and the Klein bottle. Again, any homomorphism
ρ : π1 (M) → Isom

(
H3

)
near the holonomy of the complete hyperbolic structure

of M is the holonomy of a possibly incomplete hyperbolic structure on M , and we
can consider the completion of this metric. However, this completion can almost
never be a hyperbolic manifold near the Klein bottle ends of M . Nevertheless, this
method provides a complete finite volume metric on any 3–manifold N obtained
by sufficiently complicated Dehn filling on toric ends of M , leaving the Klein bottle
ends topologically untouched.

There is also a version of Theorem 4.4 where we allow the complete hyperbolic
metric of M to have infinite volume, provided we require the metric of M to be
“geometrically finite”; see Comar [27] or Bonahon-Otal [18]. Again, it enables one
to construct a complete hyperbolic metric on any 3–manifold N obtained by suffi-
ciently complicated Dehn filling on the toric ends of M .

One of the drawbacks of Theorem 4.4 is that it is not explicit. Namely, it does not
provide a method to determine the exceptional sets Xi, and not even an estimate on
their sizes. There is strong experimental evidence that these Xi should be relatively
small.

In some cases, it is possible to carry out explicitly the procedure of hyperbolic
Dehn filling. A celebrated example is that of the complement of the figure eight knot
in S3, investigated by Thurston in [139]. In this example, Thurston was able to an-
alyze a large portion of the space of homomorphisms ρ : π1 (M) → Isom

(
H3

)
, and

to show that certain ‘integer points’ in this space defined hyperbolic 3–manifolds
obtained Dehn filling on the figure eight knot complement. He also observed that, as
one approached some points of the boundary of this domain, the hyperbolic struc-
tures degenerated to Seifert-type geometric structures. The analysis of this example
was instrumental in the development of the Geometrization Conjecture 4.1. A sim-
ilar procedure is implemented for many link complements, as well as punctured
2–torus bundles over the circle, in the software SnapPea discussed in Section 6.1,
and gives explicit upper bounds for the exceptional sets Xi in the examples consid-
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ered.
There is also a more theoretical evidence for the Xi to be small, obtained by

leaving the world of geometric structures. Indeed, instead of trying to put a hy-
perbolic structure on the manifold N obtained from M by Dehn filling, we can
just try to endow it with a complete metric of negative curvature. M. Gromov and
W. Thurston provided a technique to achieve this for most Dehn fillings.

More precisely, let M be an orientable 3–manifold with a finite volume complete
hyperbolic structure. Then, each end of M has a neighborhood U which is isometric
to a model H/Γ0 where, in the hyperbolic 3–space H3 =

{
(u, v, w) ∈ R3;w > 0

}
, H

is a horoball of the form H =
{
(u, v, w) ∈ R3;w > w0

}
for some positive constant

w0, and where Γ0 is a group of horizontal translations in H3 ⊂ R3 which is isomor-
phic to Z2; see for instance [138, Chap. 5] or [10, Sect. D.3]. The 2–torus ∂U then is
isometric to the quotient under Γ0 of the plane of equation w = w0. The hyperbolic
metric of H3 induces a euclidean metric on this plane, and therefore on the 2–torus
∂U . Let M be the compact manifold with boundary obtained by removing from M
all the neighborhoods U1, . . . , Un so associated to the ends of M . Note that M is
diffeomorphic to the interior of M , so that we can use M to define Dehn fillings
along the ends of M . Let Ti denote the component Ti = ∂Ui of ∂M .

Note that, in the euclidean 2–torus Ti, every non-trivial homology class in
H1 (Ti; Z) can be realized by a closed geodesic and that all closed geodesics in
the same homology class have the same length.

Theorem 4.5 (2π–theorem). For M , M and ∂M =
⋃n

i=1 Ti as above, let N be ob-
tained from M by Dehn filling with Dehn filling invariants δi ∈ {∞}∪H1 (Ti; Z) /±
1. Suppose that, whenever the invariant δi is not ∞, the class δi ∈ H1 (Ti; Z) /± 1
can be realized in the euclidean 2–torus Ti by a closed geodesic of length strictly
greater than 2π. Then, the 3–manifold N obtained by Dehn filling M according to
the Dehn filling invariants δi admits a complete Riemannian metric whose curva-
ture is bounded between two negative constants.

The proof of Gromov and Thurston [46] is based on an explicit construction
which extends the hyperbolic metric on M ⊂ M to a negatively curved metric on
N .

A packing argument shows that the neighborhoods Ui of the ends of M can be
chosen so that no closed geodesic of Ti = ∂Ui has length less than 1. An elementary
argument then bounds the number of homology classes of H1 (Ti; Z) whose closed
geodesic representatives have length at most 2π. This argument eventually gives the
following corollary of Theorem 4.5, whose proof can be found in Bleiler-Hodgson
[12].

Theorem 4.6. Let M be any orientable 3–manifold with a complete hyperbolic
structure of finite volume, diffeomorphic to the interior of a compact manifold M
and let the 2–tori T1, . . . , Tn be the boundary components of M . Then, there are
finite subsets Xi ⊂ H1 (Ti; Z) / ± 1, each with at most 48 elements, such that any
manifold obtained from M by Dehn filling whose Dehn filling invariants are not
in the Xi admits a complete Riemannian metric of negative curvature. When the
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boundary of M is connected, the exceptional set X1 can be chosen to have at most
24 elements.

The proof of Theorem 4.6 gives some additional information on the shape of the
exceptional sets Xi; see Bleiler-Hodgson [12].

The main interest of Theorems 4.5 and 4.6 is that if a 3–manifold N admits
a complete Riemannian metric whose curvature is bounded between two negative
constants, then N must satisfy the same topological restrictions as those given in
Theorem 2.9 for the existence of a complete hyperbolic structure. Therefore, if the
Geometrization Conjecture is true, any 3–manifold obtained by Dehn surgery as in
Theorems 4.5 and 4.6 will also admit a complete hyperbolic metric. This gives a
conjectural estimate on the size of the exceptional sets Xi in the Hyperbolic Dehn
Filling Theorem 4.4.

There is evidence that the exceptional sets should actually be smaller than pre-
dicted by Theorem 4.6. See the chapter by S. Boyer [21] for a summary of what is
currently known in this direction.

4.5. Geometrization of 3–orbifolds

In 1982, Thurston announced a proof of the following result.

Theorem 4.7 (Geometrization Theorem for 3–orbifolds). Let M be a 3–orbifold
of finite type, which contains no non-uniformizable 2–suborbifold and no essential
sphere 2–suborbifold, and let T be the characteristic torus 2–suborbifold provided by
Theorem 3.20. Assume in addition that the singular set of M is non-empty and has
dimension at least 1. Then, every component of M−T admits a complete geometric
structure.

Corollary 4.8. Let M be a 3–orbifold of finite type which contains no non-
uniformizable 2–suborbifold, and no essential sphere or torus 2–suborbifold. Assume
in addition that the singular set of M is non-empty and has dimension at least 1.
Then, M admits a complete geometric structure, modelled over one of the eight
3–dimensional geometries of Section 2.

Expositions of Theorem 4.7 have only begun to appear in recent months. A
complete exposition can be found in Cooper-Hodgson-Kerckhoff [28], while Boileau-
Porti [14] is restricted to the important case where the singular locus consists of
disjoint circles. Earlier partial results can be found in [54], [134], [156]; see also [86]
for the case where the orbifold admits a finite orbifold covering which is a Seifert
fibered manifold.

Theorem 4.7 has the following important corollary.

Corollary 4.9 (Geometrization of 3–manifolds with symmetries). Let M be a 3–
manifold of finite type which contains no essential 2–sphere, projective plane or
2–torus. Suppose that there exists a periodic diffeomorphism f : M → M whose
fixed point set has dimension at least 1. Then, M admits a complete geometric
structure.
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Corollary 4.9 follows by application of Theorem 4.7 to the orbifold M/Zn, where
the action of the cyclic group Zn is generated by f .

5. Uniqueness properties for geometric structures

5.1. Mostow’s rigidity

The most important feature of hyperbolic structures is their uniqueness properties,
which follows from Mostow’s Rigidity Theorem [98]. This result deals with uni-
form lattices of Hn (or, more generally, of any rank 1 homogeneous space), namely
discrete groups Γ of isometries of Hn such that the quotient Hn/Γ has finite vol-
ume. The Rigidity Theorem of Mostow asserts that, for every group isomorphism
ϕ : Γ1 → Γ2 between two such uniform lattices Γ1 and Γ2, there is an isometry
F : Hn → Hn such that ϕ (γ1) = Fγ1F

−1 for every γ1 ∈ Γ1 ⊂ Isom (Hn). A proof
of this deep result can be found in the monograph by Mostow [98]. Other proofs
appear in Thurston [138] or Benedetti-Petronio [10].

We can apply this result to the case of a complete hyperbolic 3–manifold M with
totally geodesic boundary and with finite volume. As in Section 2.5, the hyperbolic
structure of M gives a hyperbolic structure on the double DM , obtained by gluing
two copies ofM along their boundary. In particular,DM is isometric to the quotient
of H3 by the properly discontinuous action of a group Γ′ of isometries. We can then
consider the uniform lattice Γ generated by Γ′ and by any lift of the isometric
involution which exchanges the two copies of M in DM ∼= H3/Γ′. By construction,
M is isometric to the quotient H3/Γ.

When we have two such 3–manifolds M1
∼= H3/Γ1 and M2

∼= H3/Γ2, any diffeo-
morphism ϕ : M1 → M2 lifts to a diffeomorphism Φ : H3 → H3 which conjugates
the action of Γ1 to the action of Γ2. Mostow’s Rigidity Theorem provides an isome-
try F : H3 → H3 which also conjugates Γ1 to Γ2 and induces the same isomorphism
Γ1 → Γ2. In particular, F induces an isometry f : M1 → M2. If we identify M1

to one of the two halves of the double DM1, the fact that F and Φ act similarly
on the corresponding subgroup π1 (M1) ⊂ Γ1 shows that f is homotopic to ϕ. This
proves:

Theorem 5.1 (Hyperbolic Rigidity Theorem). Let M1 and M2 be two complete
hyperbolic 3–manifolds with totally geodesic boundary and with finite volume. Then,
every diffeomorphism ϕ : M1 →M2 is homotopic to an isometry f .

We can complement this theorem by adding that f and ϕ are actually isotopic.
This follows from Waldhausen’s Isotopy Theorem 3.12 when M is Haken, and in
particular when M is non-compact or has non-empty boundary, and from the recent
work of D. Gabai and collaborators which will be discussed in Section 6.4 in the
general case.

An important practical corollary of Theorem 5.1 is that, if the 3–manifold M
admits a finite volume complete hyperbolic metric with totally geodesic boundary,
any geometric invariant of this hyperbolic metric is actually a topological invariant
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of M . Simple examples of such geometric invariants include the volume, or the
(locally finite) set of lengths of the closed geodesics of the metric. More elaborate
examples involve the Chern-Simons invariant [92], its refinement the eta-invariant
[155, 93, 107], or the Ford domain discussed in Section 6.1.

5.2. Seifert geometries and Sol

We now consider the Seifert geometries. Given a 3–manifold M , we would like to
classify the complete geometric structures modelled over S2 ×E1, H2 ×E1, H2×̃E1

or E2×̃E1 with which M can be endowed, up to isotopy. Namely, such a geometric
structure is identified to an atlas which locally models M over the model space, and
is maximal among all atlases with this property. We identify two such geometrical
structures when the corresponding maximal atlases differ only by composition with
a diffeomorphism of M which is isotopic to the identity.

We first restrict attention to the cases where, as in Theorem 2.5, the E1 factors
of these geometries induce a Seifert fibration or a locally trivial bundle with fiber
E1. We then split the problem in two parts: Classify all such fibrations of M , up
to isotopy, and then, for a given fibration, classify the geometric structures which
give this fibration. We can also add the model spaces E2 × E1 and S2×̃S1 to the
geometries considered since, by Theorems 2.7 and 2.8, such geometric structures
usually arise from geometric structures modelled over E3 and S3.

When a 3–manifold admits a Seifert fibration, this fibration is usually unique.

Theorem 5.2 (Topological uniqueness of Seifert fibrations). Let the finite type 3–
manifold M admit a Seifert fibration with base 2–orbifold Σ. Suppose that the orb-
ifold Euler characteristic χorb (Σ) of Σ is non-positive; when χorb (Σ) = 0, suppose
in addition that the manifold M is compact and orientable, and that the Euler num-
ber e0 ∈ Q is non-trivial. Then, the Seifert fibration of M is unique up to isotopy.

Theorem 5.2 was proved by Waldhausen [144] for Haken manifolds, by Scott [126]
for most non-Haken manifolds and by Boileau-Otal [13] for the remaining cases.

The hypotheses that χorb (Σ) 6 0 and e0 6=0 when χorb (Σ) = 0 in Theorem 5.2 are
necessary because the corresponding 3–manifolds may admit several non-isotopic
Seifert fibrations. For instance, when the base 2–orbifold Σ has underlying topolog-
ical space the 2–sphere S2 with 6 2 singular points (in which case χorb (Σ) > 0),
the manifold M is a lens space and admits many Seifert fibrations of the same type.
Similarly, when Σ is the 2–torus manifold T2 with no singular point (in which case
χorb (Σ) = 0) and e0 = 0, M is the 3–torus T3 = S1 × S1 × S1, which admits many
non-isotopic fibrations as a locally trivial S1–bundle. A more exotic example occurs
when Σ has underlying topological space S2 with 3 singular points, two of which
have isotropy group Z2; in this case M admits another Seifert fibration, whose base
2–orbifold is the projective plane with 0 or 1 singular point.

However, in the cases where Theorem 5.2 does not apply, Orlik-Vogt-Zieschang
[104] proved a classification of the Seifert fibrations ofM up to diffeomorphism ofM
that is homotopic to the identity; see also Orlik [103]. The work of various authors
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[8, 13, 16, 55, 56, 117, 119] (see Boileau-Otal [13] for a historical guide through
these references) later proved that every diffeomorphism of M that is homotopic
to the identity is actually isotopic to the identity when M is orientable; when M
is non-orientable, then it contains a 2–sided essential 2–sphere, projective 2–plane,
2–torus or Klein bottle, and the machinery used in the proofs of Theorems 3.1, 3.2
and 3.4 easily proves the same result in this case. Therefore, the classification of
[104] is actually a classification of Seifert fibrations up to isotopy. This classification
has too many cases to be listed here, and we can only refer the reader to [104] and
[103] for precise statements.

The situation is simpler for E1–fibrations. The only minor complication occurs
when the base of the fibration is non-compact. The example to keep in mind here
is that the trivial E1–bundles over the 2–torus minus 1 point and over the 2–sphere
minus 3 points have diffeomorphic underlying spaces. To deal with this problem, it
is convenient to consider the compact interval Ê1 obtained by adding an end point
to each of the two ends of E1. Then, if M admits a (locally trivial) E1–fibration

with base a surface S, this fibration canonically extends to an Ê1–fibration with the
same base S, whose underlying space M̂ is the union of M and of a 2–fold covering
of S.

If the 3–manifold M has finite type, it is the interior of a compact 3–manifold
M with boundary. It is an easy consequence of Waldhausen’s collar lemma [145,
Lemma 3.5] that this compactification M is unique up to diffeomorphism whose
restriction to M is isotopic to the identity. Since π1 (S) = π1 (M) is finitely gener-
ated, S is also of finite type. Considering a compactification of S, we conclude from
the uniqueness of M that we can isotop the E1–fibration so that the associated
Ê1–fibration space M̂ is obtained from M by removing disjoint annuli and Möbius
strips from the boundary ∂M , one for each end of S. Note that M̂ = M when S is
compact.

Waldhausen [145, Lemma 3.5] proved the following uniqueness result.

Theorem 5.3 (Topological uniqueness of E1–fibrations). Let the 3–manifold M be
the interior of a compact 3–manifold M with boundary, and and consider two E1–
fibrations whose associated Ê1–fibration spaces M̂ , M̂ ′ ⊂ M are isotopic in M .
Then, these two E1–fibrations of M are isotopic.

In particular, if the 3–manifold M admits an E1–fibration over a compact surface
S, this fibration is unique up to isotopy.

As a summary, if the 3–manifold M admits a Seifert fibration or an E1–fibration,
this fibration is usually unique up to isotopy, except in a few cases which are well
understood.

Having analyzed the topological aspects of these fibrations, we can now investi-
gate the geometries corresponding to a given structure. Namely, for a fixed Seifert fi-
bration or E1–fibration of M , we want to analyze the complete geometric structures
on M modelled over S2 ×E1, H2 ×E1, H2×̃E1, E2×̃E1, E2 ×E1 or S2×̃S1 for which
the E1– or S1–factors give the fibration considered. We consider these geometric
structures modulo the natural equivalence relation of fibration-preserving isotopy,
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namely we identify two such geometric structure when one is the image of the other
by a fibration-preserving diffeomorphism (namely a diffeomorhism sending fiber to
fiber) of M which is isotopic to the identity through a family of fibration-preserving
diffeomorphisms. If M is such a fibered 3–manifold, let Gf (M ;X) be the moduli
spaces of such fibered equivalence classes of complete geometric structures on M ,
with model space X and whose associated fibration is the fibration considered.

Consider the case of a Seifert fibration on M , with base 2–orbifold Σ. Let M be
endowed with a geometric structure modelled over X ×E1 or X×̃E1, with X = S2,
E2 or H2, and such that the Seifert fibration is defined by the E1–factors. To unify
the notation, we write here S2×̃S1 = S2×̃E1, which is consistent since S2×̃S1 is
locally a twisted product of S2 and E1 although there is no globally defined space
S2×̃E1. The geometry ofM then projects to a complete geometric structure over the
orbifold Σ, modelled over the space X . Changing the geometric structure of M by a
fibration-preserving isotopy only modifies the geometric structure of Σ by an (orb-
ifold) isotopy. This defines a natural map from Gf

(
M ;X × E1

)
or Gf

(
M ;X×̃E1

)

to the space G (Σ;X) of isotopy classes of complete geometric structures on Σ,
modelled over X .

The moduli spaces G (Σ;X) are easy to determine. One way to do this is to
describe a geometric structure on Σ by gluing of elementary pieces, as in the second
construction of geometric structures on surfaces of finite type in Section 1.1, and
to keep track of the parameters involved. When Σ is a manifold (with no singular
point), this approach goes back to Fricke and Klein, and easily extends to the
framework of 2–orbifolds. In particular, this analysis is carefully worked out in
Ohshika [101] for compact 2–orbifolds Σ, and the analysis easily extends to all
2–orbifolds of finite type. If the base 2–orbifold Σ of a Seifert fibration has finite
type, recall that its underlying topological space |Σ| is a surface with (possibly
empty) boundary, where boundary points correspond to those points where the
isotropy group is Z2 acting by reflection. The orbifold Σ may also have s isolated
singular points, where the isotropy group is cyclic acting by rotation, c ends of
‘cylindrical type’, isomorphic to the manifold S1× [0,∞[, and r ends of ‘rectangular
type’, isomorphic to

(
S1/Z2

)
× [0,∞[ where S1/Z2 denotes the orbifold quotient

of S1 by Z2 acting by reflection. Let χ (|Σ|) denote the Euler characteristic of the
topological space |Σ| underlying Σ, which should not be confused with the orbifold
Euler characteristic χorb (Σ) of Σ which we encountered in Section 2.4.

Then, when X = H2 and the orbifold Euler characteristic χorb (Σ) is negative,
G

(
Σ; H2

)
is homeomorphic to R−3χ(|Σ|)−c+r+2s × [0,∞[

c+r
, where χ (|Σ|), c, r and

s are as above. The element of [0,∞[ associated to an end of Σ which is isomorphic
to S1× [0,∞[ or

(
S1/Z2

)
× [0,∞[ is the infimum of the lengths of all 1–suborbifolds

of Σ that are isotopic to S1 × {0} or
(
S1/Z2

)
× {0}, respectively; this infimum is 0

exactly when the end is a cusp of finite area. In the relatively degenerate cases where
the orbifold Euler characteristic of Σ is non-negative, the moduli space G

(
Σ; H2

)

is homeomorphic to the empty set, {0}, R or [0,∞[.
Similarly, when X = E2, G

(
Σ; E2

)
is homeomorphic to some Rn with n 6 3 or

is empty. For instance, G
(
Σ; E2

)
is homeomorphic to R3 when Σ is the 2–torus T2,
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to R2 for the Klein bottle, and to R when Σ is the 2–orbifold whose underlying
topological space is an open disk and whose singular set consists of two points with
isotropy group Z2.

When X = S2, the situation is much simpler since the moduli spaces G
(
Σ; S2

)

consist of at most one point.
Again, we refer to [101] for the details of this analysis of the moduli spaces

G (Σ;X) for geometric structures on base orbifolds of Seifert fibrations.
Let us return to our original problem. We have associated an element of G (Σ;X)

to each element of Gf

(
M ;X × E1

)
or Gf

(
M ;X×̃E1

)
. We also have another invariant

of the geometric structures considered, namely the length l of a generic fiber of the
Seifert fibration. By Theorems 2.5 and 4.1, this length l can take any positive value,
except when M is compact and orientable and the Euler number e0 ∈ Q is non-zero,
in which case l is necessarily equal to − |e0| area (Σ).

If two geometric structures m, m′ ∈ Gf

(
M ;X × E1

)
or Gf

(
M ;X×̃E1

)
have the

same generic fiber length l one can easily arrange, by an isotopy of m respecting
each fiber, that m and m′ induce the same metric on each fiber of the Seifert
fibration. The key point is that the space of oriented diffeomorphisms of the circle
has the homotopy type of the circle.

One could think that, if two geometric structures m, m′ ∈ Gf

(
M ;X × E1

)
or

Gf

(
M ;X×̃E1

)
induce the same geometric structure on the base 2–orbifold Σ and

the same metric on each fiber, then m and m′ coincide. However, there is an ad-
ditional invariant, which is best understood when the Seifert fibration is oriented ,
namely when we can and do choose an orientation of each fiber of the fibration
which varies continuously with the fiber.

Consequently, suppose that the Seifert fibration of M is oriented, and let m,
m′ ∈ Gf

(
M ;X × E1

)
or Gf

(
M ;X×̃E1

)
be two geometric structures which induce

the same metrics on the base Σ and on each fiber of the fibration. Note that, in
this situation, the metrics m and m′ coincide exactly when, at each point of M ,
the planes orthogonal to the fiber for m and, respectively, m′ coincide. We can
measure how far we are from this situation as follows. Let Σ0 be the 2–manifold
consisting of the regular points of the orbifold Σ. We then define a differential form
ωm,m′ ∈ Ω1 (Σ0) of degree 1 on Σ0 by the following property: if v is a vector in
Σ0, lift it to a vector ṽ in M which is m–orthogonal to the fiber; then, ωm,m′ (v)
is the m′–scalar product of ṽ and of the unit vector tangent to the oriented fiber;
it easily follows from the fact that m and m′ induce the same metric on all fibers
that this is independent of the choice of the lift ṽ. More geometrically, if α is an
arc in Σ0 and if we lift it to two arcs α̃ and α̃′ in M which are respectively m– and
m′–orthogonal to the fibers and which have the same starting point, the integral
of ωm,m′ over α is equal to the signed distance from the end point of α̃ to the end
point of α̃′, for the metric induced by m and m′ on the oriented fiber corresponding
to the end point of α.

If α is a closed loop which is homotopic to 0 in Σ0 and if we are considering an
untwisted geometry X × E1, the integral of ωm,m′ over α is 0 since the end points
of α̃ and α̃′ are both equal to their common starting point. For a twisted geometry
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X×̃E1 and if α is again a closed loop homotopic to 0, we saw in Section 2.2 that
the end points of α̃ and α̃′ are both obtained by shifting their starting point by an
amount of −A, where A is the signed area enclosed by α; as a consequence, these
end points coincide and it again follows that the integral of ωm,m′ over α is equal to
0. In both cases, it follows that the differential form ωm,m′ is closed. In particular,
it defines a cohomology class in H1 (Σ0; R). The integral of ωm,m′ over a loop in
Σ0 which goes around an isolated singular point of Σ is trivial; it follows that this
element of H1 (Σ0; R) comes from a cohomology class of H1 (|Σ| ; R), where |Σ|
denotes the topological space underlying the orbifold Σ.

If m′′ is another metric which is isotopic to m′ by an isotopy respecting each
fiber and which induces the same metric as m′ on each fiber, one easily sees that
ωm,m′′ = ωm,m′ + df where the function f : Σ0 → R measures the amount of
rotation of the isotopy on each fiber. It follows that the element of H1 (|Σ| ; R) that
is represented by ωm,m′ depends only on the classes of m and m′ in Gf

(
M ;X × E1

)

or Gf

(
M ;X×̃E1

)
.

The metric m′ can easily be recovered from the closed differential form ωm,m′ .
Therefore, the space of elements m′ ∈ Gf

(
M ;X × E1

)
or Gf

(
M ;X×̃E1

)
which have

the same generic fiber length and the same image in G (Σ;X) as m is naturally
identified to H1 (|Σ| ; R).

This analysis works when the Seifert fibration of M is oriented. However, it easily
extends to the general case, provided we replace H1 (|Σ| ; R) by the cohomology

group H1
(
|Σ| ; R̂

)
with coefficients twisted by the orientation cocycle of the Seifert

fibration. More precisely, consider the space M̂ of pairs (x, o) where x ∈ M and
o is a local orientation of the fiber of the Seifert fibration at x, with the natural
topology. This manifold M̂ is a 2–fold covering of M , and the Seifert fibration of
M lifts to a Seifert fibration of M̂ which is canonically oriented by choosing the
orientation o at each (x, o) ∈ M̂ . The 2–fold covering M̂ → M descends to a 2–

fold covering
∣∣Σ̂

∣∣ → |Σ| between the spaces underlying their base 2–orbifolds. The

twisted cohomology groupH1
(
|Σ| ; R̂

)
is defined by consideration of cochains on

∣∣Σ̂
∣∣

which are anti-equivariant with respect to the covering automorphism τ :
∣∣Σ̂

∣∣ →
∣∣Σ̂

∣∣
that exchanges the two sheets of the covering

∣∣Σ̂
∣∣ → |Σ|, namely of cochains c such

that τ∗ (c) = −c. As indicated, the extension of the above analysis to this twisted
context is automatic.

A careful consideration of the argument actually shows:

Theorem 5.4. Let the 3–manifold M be endowed with a Seifert fibration with base
2–orbifold Σ. For X = S2, E2 or H2, let Gf

(
M ;X × E1

)
and Gf

(
M ;X×̃E1

)
be the

space of complete geometric structures modelled over the spaces indicated, where the
E1–factors correspond to the fibers of the Seifert fibration, where these geometric
structures are considered up to fibration-preserving isotopy. Let G (Σ;X) denote the
space of isotopy classes of complete geometric structures on the orbifold Σ modelled
over X. Then, if the spaces Gf

(
M ;X × E1

)
or Gf

(
M ;X×̃E1

)
are non-empty (and

compare Theorems 2.5(i) and 4.1 for this), the natural maps Gf

(
M ;X × E1

)
→

G (Σ;X) and Gf

(
M ;X×̃E1

)
→ G (Σ;X) are trivial bundles with fiber H1

(
|Σ| ; R̂

)
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or H1
(
|Σ| ; R̂

)
× ]0,∞[, where H1

(
|Σ| ; R̂

)
is the twisted cohomology group defined

above, and where the factor ]0,∞[ corresponds to the length of the generic fiber and
occurs in all cases unless when M is compact orientable and the Seifert fibration
has non-trivial Euler number e0 ∈ Q.

For interval bundles, the same argument proves:

Theorem 5.5. Let the 3–manifold M be endowed with an (open) interval bundle
structure with base surface S. For X = S2, E2 or H2, let Gf

(
M ;X × E1

)
be the

space of complete geometric structures modelled over the spaces indicated, where
the E1–factors correspond to the fibers of the interval bundle, where these geometric
structures are considered up to fibration-preserving isotopy. Let G (Σ;X) denote the
space of isotopy classes of complete geometric structures on the orbifold Σ modelled
over X. Then, the natural map Gf

(
M ;X × E1

)
→ G (Σ;X) is a trivial bundle with

fiber H1
(
|Σ| ; R̂

)
, where H1

(
|Σ| ; R̂

)
is the twisted cohomology group defined above.

6. Applications of 3–dimensional geometric structures

We conclude with a discussion of a few purely topological applications of the use
of geometric (mostly, hyperbolic) structures on 3–manifolds. This selection is only
intended to give a sample of such applications. It clearly reflects the personal tastes
of the author, and is by no means intended to be exhaustive.

6.1. Knot theory

The area where the use of geometric structures, essentially hyperbolic geometry, has
had the greatest practical impact is probably knot theory. Let L be a link in the
3–sphere S3, meaning that L is a 1–dimensional submanifold of S3. A connected
link is also called a knot . Knot theory aims at classifying all such links up to
diffeomorphism of S3; see for instance the standard references [115, 22]. To show
that two links are different modulo diffeomorphism of S3, the traditional method is
to use algebraic topology to extract some algebraic invariants of these links; if the
invariants computed happen to be different, this shows that the links are different.

The consideration of hyperbolic structures provides a completely new type of
invariants. Indeed, the Hyperbolization Theorem 4.3 shows that the complement
S3−L of a link L ⊂ S3 admits a finite volume complete hyperbolic structure unless
one of the following holds:

(i) S3 − L contains an embedded essential 2–torus.
(ii) S3 − L admits a Seifert fibration.

In Case (ii), the Seifert fibration of S3 − L can be chosen so that it extends to a
Seifert fibration of S3, for which L consists of finitely many fibers of this fibration.
Such links are called torus links . Since the Seifert fibrations S3 are easily classified
[127, 103], torus links are easily classified.

In Case (i), L is said to be a satellite link . The Characteristic Torus Decomposi-
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tion of Theorem 3.4 provides a canonical factorization of a satellite link into links
which are, either torus links, or non-satellite links.

This reduces the analysis of all links to those whose complement admits a finite
volume complete hyperbolic structure. As observed in Section 5.1, Mostow’s Rigid-
ity Theorem 5.1 implies that any geometric invariant of this hyperbolic structure
is a topological invariant of the link complement S3 − L, and therefore of the link
L ⊂ S3. Among such geometric invariants, we already mentioned the volume of the
hyperbolic structure. A more powerful invariant of the hyperbolic structure is its
Ford domain, which we now briefly describe; see for instance Maskit’s book [82,
Chap. IV.F] for details.

Let M be a non-compact orientable hyperbolic 3–manifold of finite volume. We
saw in Theorem 2.9 and in our discussion of Theorem 4.5 that M has finitely many
ends and that each end e has a neighborhood Ue isometric to a model He/Γe, where
He ⊂ H3 is a horoball

{
(u, v, w) ∈ R3;w > we

}
and where the group Γe

∼= Z2 acts
by horizontal translations. Adjusting the constants we > 0, and in particular choos-
ing them large enough, we can arrange that these neighborhoods Ue are pairwise
disjoint and have the same volume. For every x ∈ M , consider those arcs which
join x to the union of the neighborhoods Ue and, among those arcs, consider those
which are shortest. The Ford domain of M consists of those x for which there is a
unique such shortest arc joining x to the Ue. One easily sees that the Ford domain
is independent of the cusp neighborhoods Ue, provided they are chosen sufficiently
small and of equal volumes.

To each end e of M is associated a component of the Ford domain, consisting
of those points which are closer to Ue than to any other Ue′ . This component
is isometric to int (Pe) /Γe where Pe is a locally finite convex polyhedron in H3

which is invariant under the horizontal translation group Γe
∼= Z2. Here, a locally

finite convex polyhedron in H3 is the intersection P of a family of closed half-
spaces bounded by totally geodesic planes in H3, such that every point of P has a
neighborhood which meets only finitely many of the boundaries of these half-spaces.
The reader should beware of a competing terminology, used by many authors, where
the Ford domain is defined as the collection of the polyhedra Pe.

By construction, the polyhedra Pe, endowed with the action of the group Γe
∼= Z2,

are uniquely determined modulo isometry of H3 =
{
(u, v, w) ∈ R3;w > 0

}
respect-

ing ∞, namely modulo homothety and euclidean isometry of R3 respecting H3. In
particular these polyhedra Pe, endowed with their action of Γe, are geometric invari-
ants of the hyperbolic metric of M , and therefore are topological invariants of M
by Mostow’s Rigidity Theorem 5.1. In particular, an invariant extracted from the
Ford domain is an invariant of M ; simple examples include the number of vertices,
edges and faces of ∂Pe/Γe, or the way these faces fit together (namely the combi-
natorial structure of the polyhedral decomposition of ∂Pe/Γe), or the geometry of
these faces.

The Ford domain is such a powerful invariant that it is possible to reconstruct
M from it. Indeed, it comes equipped with an isometric pairing of its faces. The
manifold M is then obtained from the disjoint union of Pe/Γe by gluing its faces
through this pairing. Actually, in the case where M is the complement S3 −L of a
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link L, reconstructing M from the Ford domain is not sufficient to characterize the
link L, since there are different links which have homeomorphic complements; see
for instance [115, Sect. 9.H]. However, L is completely determined if we specify the
meridians of the components of L, an information which is easily encoded in the
groups Γe associated to the ends of M ; again, see [115, Chap. 9]. For knots, this
meridian information is in fact unnecessary by a deep theorem of Gordon-Luecke
[43].

The problem is of course to be able to compute this invariant in practice. The
first problem is that the Hyperbolization Theorem 4.3 is only an abstract existence
theorem, and that the proofs available are non-constructive. The second problem is
that, even if we are given a hyperbolic structure on M , for instance under the form
of a free isometric properly discontinuous action of a group Γ on H3 such that H3/Γ
is diffeomorphic to M , it may be hard to explicitly determine the corresponding
Ford domain.

The pioneering work in this area was developed by R. Riley [113, 114]. For certain
links L in S3, he used a computer to find finitely many isometries A1, . . . , An of H3

such that the group Γ generated by the Ai acts freely and properly discontinuously
on H3 and such that Γ is abstractly isomorphic to the fundamental group of S3 −
L; Waldhausen’s Theorem 3.11 on homotopy equivalences of Haken 3–manifolds
then guarantees that M is diffeomorphic to H3/Γ. Riley also determined the Ford
domains of these hyperbolic manifolds. However, the use of a computer raises the
question of rounding errors: For instance, if we compute the isometry corresponding
to a word in the Ai and if the value provided by the computer is the identity, does
this mean that this isometry is really the identity (which is what we need to make
sure that the algebraic structure of Γ is the one expected), or does this just mean
that this isometry is very close to the identity (which could have dire consequences
for the proper discontinuity of the action)? In these examples, once the first set of
computations by the computer had provided him with appropriate conjectures on
what the generators Ai and the shape of the Ford domain should be, Riley was
able to justify these computations a posteriori by exact arithmetic computations
in a number field. Namely, he then rigorously proved that the Ai provided by
the computer could be approximated by isometries generating a group Γ with the
required properties, and that the Ford domain determined by the computer was
indeed an approximation of the exact Ford domain of Γ.

Riley’s group theoretic approach is unfortunately not very efficient from a com-
putational point of view. The software SnapPea [152], later developed by J. Weeks
(with collaborators for some additional features), uses a more geometric approach
and works incredibly well in practice. Given a link L in S3, SnapPea computes a
hyperbolic structure on the complement S3 − L, if it exists, and describes its Ford
domain. SnapPea also computes various invariants of this hyperbolic structure, as
well as hyperbolic structures on 3–manifolds obtained by ‘sufficiently complicated’
Dehn filling, as in the Hyperbolic Dehn Filling Theorem 4.4.

In practice, SnapPea works very fast for links with a reasonable number of cross-
ings. However, there is a drawback which has to do with rounding errors. Since
SnapPea works only with finite precision, its outputs can mathematically only be
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considered as conjectural approximations to the exact situation. In theory, it is pos-
sible to justify these guesses a posteriori by using exact arithmetic as in [113, 114],
but this is often not workable in practice. In any case, ever since the first versions of
SnapPea started circulating, it has established itself as an invaluable tool to study
examples, and make and disprove conjectures, in hyperbolic geometry and knot
theory. In particular, it has been extensively used to establish useful tables of links
and hyperbolic 3–manifolds, with the caveat about the theoretical reliability of the
output due to rounding errors; see for instance [1, 53, 153].

There is something interesting about the algorithm used by SnapPea to find a
hyperbolic structure on a link complement. It is a variation of the famous method
used by Thurston in [138] to construct a hyperbolic structure on the complement of
the figure eight knot. Namely it decomposes the link complement into finitely many
‘ideal simplices’, with all vertices at infinity, and tries to put a hyperbolic metric on
each of these ideal simplices, so that the metrics fit nicely along the faces and edges
of the decomposition. When SnapPea fails to find such hyperbolic structures on the
ideal simplices, it uses various combinatorial schemes to modify the decomposition
into ideal simplices until it reaches a solution. What is remarkable is that, although
this algorithm works extremely well in practice, there is, at this point, no general
proof of the Hyperbolization Theorem 4.3 for link complements which is based on
this strategy. Conversely, the proofs of Theorem 4.3 mentioned in Section 4.3 are
usually non-constructive.

6.2. Symmetries of 3–manifolds

One of the early successes in the use of hyperbolic geometry to study the topology
of 3–manifolds was the proof of the following conjecture of P.A. Smith.

Theorem 6.1 (Smith (ex-)Conjecture). Let f : S3 → S3 be an orientation-
preserving periodic diffeomorphism of the 3–sphere whose fixed point set is non-
empty. Then f is conjugate to a rotation of S3 = R3 ∪ {∞} by a diffeomorphism of
S3.

The original proof, expounded in [133], is a combination of various ingredients,
coming from different branches of mathematics. The main idea is to consider the
fixed point set L of f , which is a knot in S3 (the connectedness of L was Smith’s
original result in [132]). Various minimal surface arguments reduce the problem to
the case where the complement S3 − L contains no f–invariant essential surface.
If there is no such essential surface, the Hyperbolization Theorem 4.3 provides
either a Seifert fibration or a finite volume hyperbolic structure on S3 − L. An
easy fundamental group computation in the case of a Seifert fibration, and the use
of much more subtle algebraic and number theoretic properties of subgroups of
PSL2 (C) in the case of a hyperbolic structure, then enable one to complete the
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proof.
This original proof of the Smith Conjecture is now superseded by the Orbifold

Geometrization Theorem 4.7.
Other topological applications involve the symmetry group of a 3–manifold M

with (possibly empty) boundary, defined as the group π0Diff (M) of isotopy classes
of diffeomorphisms of M .

If M is endowed with complete hyperbolic metric with finite volume and with
totally geodesic boundary, Mostow’s Rigidity Theorem 5.1 says that every diffeo-
morphism f of M is homotopic to an isometry of the metric. Theorem 3.12 for the
case when M is Haken, and Theorem 6.11 of the next section for the general case,
show that f is actually isotopic to an isometry. In addition, it is not hard to see that
two distinct isometries of M cannot be homotopic. This proves that, if Isom (M)
is the isometry group of M , the natural map from Isom(M) to π0Diff (M) is a
bijection.

Theorem 6.2. Let the 3–manifold M admit a complete hyperbolic structure with
finite volume and with totally geodesic boundary (compare Theorems 2.14 and 4.3).
Then, there is a finite group G acting on M such that the natural map from G to
π0Diff (M) is a bijection. In particular, the group π0Diff (M) is finite.

This improves a result of K. Johannson, who had proved in [63] that π0Diff (M)
is finite when the compact 3–manifold M with boundary is Haken and contains no
essential disk, 2–torus or annulus. When M contains an embedded essential disk, 2–
torus or annulus, the consideration of Dehn twists along this surface usually implies
that π0Diff (M) is infinite.

In Theorem 6.2, the fact that π0Diff (M) can be realized by the action of the
finite group is a powerful tool. See [15] or [38] for a few applications to problems in
classical topology.

Another important property comes from the Orbifold Geometrization Theo-
rem 4.7. Let the 3–manifold M admit a finite volume hyperbolic structure, and
let G be a finite group acting on M . We can then consider the 3–orbifold M/G.
Suppose that the fixed point set of some non-trivial element of G has dimension at
least 1, namely that the singular set of the orbifold M/G is at least 1–dimensional.

The orbifold M/G then satisfies the hypotheses of the Orbifold Geometrization
Theorem 4.7. Indeed, every 2–suborbifold ofM/G is uniformized by its pre-image in
M , and is therefore uniformizable. An essential sphere or torus 2–suborbifold would
lift to a 2–sphere, projective plane, 2–torus or Klein bottle in M , which would have
to be essential by the fact that all finite group actions on B3 are standard [90] or
by the Equivariant Dehn Lemma [88, 89]; but this would contradict the existence
of the hyperbolic structure of M , by Theorem 2.9. See for instance [20, Sect. D]
for details.

At this point, Theorem 4.7 asserts that the orbifold M/G admits a finite volume
geometric structure. This geometric structure of M/G lifts to a G–invariant geo-
metric structure on the manifold M . Since we already know that M admits a finite
volume hyperbolic structure, this G–invariant geometric structure is necessarily hy-
perbolic by Theorem 2.10. In addition, Mostow’s Rigidity Theorem 5.1, together
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with Theorems 3.12 and 6.11, show that this G–invariant hyperbolic structure is
isotopic to the original one. If we use the isotopy to conjugate the group action
instead of changing one hyperbolic metric to the other, this proves:

Theorem 6.3. Let the finite group G act on a 3–manifold M which admits a fi-
nite volume hyperbolic structure with totally geodesic boundary. Then the action is
conjugate to an isometric action by a diffeomorphism of M which is isotopic to the
identity.

Actually, we only discussed the case without boundary. But, as usual, the case
with boundary is easily deduced from this one by consideration of the double man-
ifold DM with the action of the group G ⊕ Z/2, where the factor Z/2 acts by
exchange of the two halves of DM .

6.3. Covering properties

A classical problem in geometric topology is to decide if a non-compact manifold has
finite topological type. A particularly interesting source of non-compact manifolds
is provided by (connected) coverings M̃ → M , where the manifold M has finite
topological type. It turns out that the use of hyperbolic geometry can provide some
answers to this type of problems. We give here a few samples of the type of results
which can be obtained through this approach.

An immediate corollary of the existence theorems for hyperbolic structures is the
following:

Theorem 6.4. Let M be a 3–manifold which admits a complete hyperbolic struc-
ture or, more generally, a complete metric of non-positive curvature (compare The-
orems 4.3, 4.4, 4.5 or 4.7). Then the universal cover of M is homeomorphic to the

euclidean space E3. More generally, for every connected covering M̃ → M where
the fundamental group π1

(
M̃

)
is abelian, M̃ has finite topological type.

The first statement is a celebrated theorem of Hadamard (see for instance do
Carmo [25, Chap. 7] or Eberlein [32, Sect. 1.4], and compare Sections 1.2 and 2.1).
The second one follows from the fact that isometric actions of abelian groups on
a simply connected manifold of non-positive curvature are easily classified; see [32,
Sect. 1.9].

A more subtle geometric argument leads to the following purely topological result.

Theorem 6.5. Let M be the interior of a compact 3–manifold M with boundary
which contains no essential 2–sphere, projective plane, 2–torus or annulus, and
such that at least one component of ∂M has negative Euler characteristic. If M̃ is
a connected covering of M whose fundamental group is finitely generated, then M̃
has finite topological type.

A proof can be found in Morgan [97, Proposition 7.1]. The idea is to use the
Hyperbolization Theorem 4.3 to endow M with a complete hyperbolic metric. The
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metric provided by the proof of Theorem 4.3 is of a certain type, called “geometri-
cally finite”. A relatively simple observation then shows that the lift of this metric
to M̃ is also geometrically finite (this is where we need the hypothesis that at least
one component of ∂M has negative Euler characteristic), from which it follows

that M̃ has finite topological type. Presumably, the hypothesis that M contains
no essential 2–sphere, projective plane, 2–torus or annulus is unnecessary, as the
general case should follow from the above one and from the use of the characteristic
splittings of Section 3.

Similar results can be obtained from relatively deep results on the geometry of
ends of hyperbolic 3–manifolds, obtained by Thurston [139] and the author [17].
Indeed, one of the topological consequences of this analysis is the following result:

Theorem 6.6. Let the 3–manifold M admit a complete hyperbolic metric. Assume
that the fundamental group π1 (M) is finitely generated and does not (algebraically)
split as a non-trivial free product of two groups. Then M has finite topological type.

This immediately gives the following corollary:

Corollary 6.7. Let the 3–manifold M admit a hyperbolic metric (compare Theo-

rems 4.3, 4.4, 4.5 or 4.7), and consider a covering M̃ → M with M̃ connected. If

the fundamental group π1

(
M̃

)
is finitely generated and does not split as a non-trivial

free product, then M̃ has finite topological type.

We should also include in this section the important residual finiteness property
for fundamental groups of 3–manifolds.

Recall that a group G is residually finite if, for every non-trivial g ∈ G, there
exists a finite index subgroup of G which does not contain g. This property has
important algebraic consequences for the group G; see for instance Magnus [79].
However, what is more of interest to topologists is that, when G is the fundamental
group π1 (M) of a manifold M , the residual finiteness of π1 (M) is equivalent to
the following topological property: For every compact subset K of the universal
covering M̃ , there is a connected finite index covering M̃0 of M such that the
natural projection M̃ → M̃0 is injective on K. The equivalence between these two
properties is an easy exercise, and the topological property is very useful in practice.

The connection with geometric structures is a theorem of Mal’cev [81] which
asserts that every finitely generated group of matrices (with entries in an arbitrary
commutative field) is residually finite. Since all isometry groups of the 3-dimensional
geometries embed in matrix groups, a geometric structure on the 3-manifold M
embeds π1 (M) in such a matrix group. This proves:

Theorem 6.8. Let the finite type 3–manifold M admit a geometric structure. Then
its fundamental group π1 (M) is residually finite.

Let M be a compact Haken 3–manifold. For the characteristic torus decompo-
sition T of Section 3.2, the geometrization results of Sections 4.2 and 4.3 provide
geometric structures on the components of M−T ∪∂M , and in particular show that
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the fundamental groups of these components are residually finite. It is non-trivial
to conclude from this that the fundamental group of M itself is residually finite,
but this is indeed a result of Hempel [51]:

Theorem 6.9. Let M be a Haken 3–manifold. Then the fundamental group π1 (M)
is residually finite.

Note that residual finiteness is preserved under finite index extensions. Therefore,
Theorem 6.9 holds under the slightly weaker hypothesis that the manifold M is
virtually Haken, namely admits a finite cover which is Haken.

6.4. Topological rigidity of hyperbolic 3–manifolds

Finally, we mention some recent results which prove for hyperbolic 3–manifolds the
results obtained by Waldhausen for homotopy equivalences and isotopies of Haken
manifolds, as discussed in Section 3.5.

Theorem 6.10. Let f : M → N be a homotopy equivalence between a compact
hyperbolic 3–manifold M and a 3–manifold N which contains no essential 2–sphere.
Then f is homotopic to a diffeomorphism.

The requirement that the 3–manifold N contains no essential 2–sphere is here
only to circumvent any possible counter-example to the Poincaré conjecture. Indeed,
it easily follows from the hyperbolic structure of M that every decomposition of the
fundamental groups π1 (M) ∼= π1 (N) as a free product must be trivial. Therefore,
the hypothesis that N is homotopy equivalent to M already implies that every 2–
sphere embedded in N must bound in N a homotopy 3–ball, namely a contractible
3–submanifold of N .

Theorem 6.11. Let f0, f1 : M → M be two diffeomorphisms of a compact hyper-
bolic 3–manifold M . If f0 and f1 are homotopic, then they are isotopic.

Theorems 6.10 and 6.11 were proved in three steps. First, by an elegant but
comparatively simple argument, Gabai proved in [40] that the conclusion of these
theorems holds in finite covers of M and N ; the main ingredients of this part of the
proof are the techniques developed by Waldhausen in [145]. Then, by more elaborate
arguments which use in a crucial way the geometry at infinity of hyperbolic 3–space,
Gabai was able to prove Theorems 6.10 and 6.11 under the additional assumption
that the hyperbolic 3–manifold M satisfies a certain “insulator condition” [41]. He
also conjectured that any compact hyperbolic 3–manifold satisfies this insulator
condition. This easily translates to a similar conjecture for discrete 2–generator
subgroups of the isometry group Isom+

(
H3

)
= PSL2 (C). Now, a 2–generator sub-

group of PSL2 (C) is determined by its generators, and therefore by a finite number
of complex parameters. It quickly became clear that any counterexample to the
conjecture would provide one in a certain compact portion of the corresponding
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parameter space. Gabai, R. Meyerhoff and N. Thurston then scanned this compact
region of the parameter space, and, through a careful control of rounding errors,
were able to rigorously prove that every compact hyperbolic 3–manifold M satisfies
the insulator condition. The details of this computer-assisted part of the proof of
Theorems 6.10 and 6.11 can be found in [42].
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