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Introduction

In these lecture notes we will give a quick introduction to 3–manifolds,
with a special emphasis on their fundamental groups. The lectures were
held at the summer school ‘groups and manifolds’ held in Münster July
18 to 21 2011.

In the first section we will show that given k ≥ 4 any finitely pre-
sented group is the fundamental group of a closed k–dimensional man-
ifold. This is not the case for 3–manifolds, we will for example see
that Z,Z/n,Z ⊕ Z/2 and Z3 are the only abelian groups which arise
as fundamental groups of closed 3–manifolds. In the second section
we recall the classification of surfaces via their geometry and outline
the proofs for several basic properties of surface groups. We will fur-
thermore summarize the Thurston classification of diffeomorphisms of
surfaces.

We will then shift our attention to 3–manifolds. In the third section
we will first introduce various examples of 3–manifolds, e.g. lens spaces,
Seifert fibered spaces, fibered 3–manifolds and exteriors of knots and
links, we will furthermore see that new examples can be constructed by
connected sum and by gluing along tori. The goal in the remainder of
the lecture notes will then be to bring some order into the world of 3–
manifolds. The prime decomposition theorem of Kneser and Thurston
stated in Section 4.1 will allow us to restrict ourselves to prime 3–
manifolds. In Section 4.2 we will state Dehn’s lemma and the sphere
theorem, the combination of these two theorems shows that most prime
3–manifolds are aspherical and that most of their topology is controlled
by the fundamental group.

In Section 2 we had seen that ‘most’ surfaces are hyperbolic, in Sec-
tion 5 we will therefore study properties hyperbolic 3–manifolds. The
justification for studying hyperbolic 3–manifolds comes from the Ge-
ometrization Theorem conjectured by Thurston and proved by Perel-
man. The theorem says that any prime manifold can be constructed
by gluing Seifert fibered spaces and hyperbolic manifolds along incom-
pressible 3–manifolds.
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Caveat. These are lecture notes and they will still contain inaccura-
cies, for precise statements we refer to the references.

1. Finitely presented groups and high dimensional
manifolds

1.1. Finitely presented groups.

Definition. Let x1, . . . , xn be symbols, then we denote by

⟨x1, . . . , xn⟩

the free group with generators x1, . . . , xn. If r1, . . . , rm are words in
x1, . . . , xn, x

−1
1 , . . . , x−1

n , then we denote by

⟨x1, . . . , xn | r1, . . . , rm⟩

the quotient of ⟨x1, . . . , xn⟩ by the normal closure of r1, . . . , rm, i.e. the
quotient by the smallest normal subgroup which contains r1, . . . , rm.
We call x1, . . . , xn generators and r1, . . . , rm relators.

Definition. IfG is isomorphic to a group of the form ⟨x1, . . . , xn | r1, . . . , rm⟩,
then we say that G is finitely presented, and we call

⟨x1, . . . , xn | r1, . . . , rm⟩

a presentation of G. We call n−m the deficiency of the presentation,
and we define the deficiency of G to be the maximal deficiency of any
presentation of G.

Example. (1) The free abelian group Z3 is isomorphic to

⟨x1, x2, x3 | [x1, x2], [x1, x3], [x2, x3]⟩,

the deficiency of this presentation is zero, and one can show
that the deficiency of Z3 is indeed zero.

(2) The free abelian group Z4 is isomorphic to

⟨x1, x2, x3, x4 | [x1, x2], [x1, x3], [x1, x4], [x2, x3], [x2, x4], [x3, x4]⟩,

the deficiency of this presentation is −2, and one can show that
the deficiency of Z4 is indeed −2. Similarly, the deficiency of
any free abelian group of rank greater than three is negative.
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1.2. Fundamental groups of high dimensional manifolds. Let
M be a manifold. (Here, and throughout these lectures, manifold will
always mean a smooth, compact, connected, orientable manifold, we
will not assume though that manifolds are closed. ) Any manifold has
a CW structure with one 0–cell and finitely many 1–cells and 2–cells.
This decomposition gives rise to a presentation for π = π1(M), where
the generators correspond to the 1–cells and the relators correspond to
the 2–cells. We thus see that π1(M) is finitely presented. The following
question now naturally arises:

Question 1.1. Which finitely presented groups can arise as fundamen-
tal groups of manifolds?

Already by looking at dimensions 1 and 2 it is clear that the answer
depends on the dimension. It turns out that the question has a simple
answer once we go to manifolds of dimension greater than three.

Theorem 1.2. Let G be a finitely presented group and let k ≥ 4. Then
there exists a closed k–manifold M with π1(M) = G.

Proof. We pick a finite presentation

G = ⟨x1, . . . , xn | r1, . . . , rm⟩.
We consider the connected sum of n copies of S1×Sk−1; its fundamen-
tal group is canonically isomorphic to ⟨x1, . . . , xn⟩. We now represent
r1, . . . , rm by disjoint embedded closed curves c1, . . . , cm. We consider
the inclusion map

X := (S1 × Sk−1# . . .#S1 × Sk−1) \ (c1 ×Dk−1 ∪ · · · ∪ cm ×Dk−1)
↓ ι

Y := S1 × Sk−1# . . .#S1 × Sk−1.

This map induces an epimorphism of fundamental groups, since by gen-
eral position any closed curve can be pushed off the curves c1, . . . , cm.
But this map also induces a monomorphism. Indeed, if a curve c ⊂ X
bounds a disk D ⊂ Y in S1 ×Sk−1# . . .#S1 ×Sk−1, then by a general
position argument we can push the disk off the curves c1, . . . , cm (here
we used that n ≥ 4 > 2 + 1). The curve c thus already bounds a disk
in X, i.e. it is null homotopic in X.

We now consider the closed manifold

(S1 × Sk−1# . . .#S1 × Sk−1) \
m∪
i=1

ci ×Dk−1 ∪
m∪
i=1

D2 × Sk−2,

where we glue a disk to each curve ci. It follows from the van Kampen
theorem, that this closed manifold has the desired fundamental group.

�
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It is well–known that the isomorphism problem for finitely presented
groups is not solvable (see [Mi92]), we thus obtain the following imme-
diate corollary to the previous theorem:

Corollary 1.3. Let k ≥ 4. Then there is no algorithm which can
decide whether two k–manifolds are diffeomorphic or not.

We will now show that the statement of the theorem does not hold
in dimension 3:

Proposition 1.4. Let N be a closed 3–manifold, then π1(N) admits a
presentation of deficiency zero.

Note that ‘most’ abelian groups have negative deficiency, and one
can thus use the proposition to show if π1(N) is abelian, then π1(N) is
isomorphic to Z,Z2,Z3,Z/n and Z⊕ Z/n.

one can use the proposition to show that the only abelian groups
which appear as fundamental groups of closed 3–manifolds are 1

Z = π1(S
1 × S2),Z/n = π1(lens space) and Z3 = π1(3− torus).

Proof. We pick a triangulation of N and we denote by H a tubular
neighborhood of the 1–skeleton. Note that H and N \H are handle-
bodies of the same genus, say g. This decomposition gives rise to a
presentation for π1(N) with g generators and g relators. �

2. Surface groups

2.1. The classification of surfaces. We now study fundamental groups
of surfaces. Surface groups are well understood and many have nice
properties, which will be guiding us later in the study of 3–manifold
groups. Surface groups will also play a key rôle in the study of 3–
manifolds. For the most part we will in the following also include the
case of non–orientable surfaces.

Surfaces have been completely classified, more precisely the following
theorem was already proved in the 19th century:

Theorem 2.1. Two surfaces are diffeomorphic if and only if they have
the same Euler characteristic, the same number of components and the
same orientability.

1If we allow non–orientable manifolds, then we have to add

Z× Z/2 = π1(S
1 × RP 2).
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In the study of surfaces it is helpful to take a geometric point of
view. In particular, note that if a closed surface Σ admits a Riemannian
metric of area A and constant curvature K, then it follows from the
Gauss–Bonnet theorem, that

K · A = 2πχ(Σ),

in particular the Euler characteristic gives an obstruction to what type
of constant curvature metric a surface can possibly admit.

The uniformization theorem says, that a constant curvature metric
which is allowed by the Gauss–Bonnet theorem, will actually occur.
More precisely, we get the following table:

χ(Σ) > 0 = 0 < 0
type of surface S2 orRP2 torus or Klein bottle everything else

Σ admits metric of
constant curvature

≡ 1 ≡ 0 ≡ −1

universal cover S2 (R2,Euclidean metric) H2

Here we think of S2 and R2 as equipped with the usual metrics of
constant curvature +1 respectively 0, and we denote by

H2 = {(x, y) | y > 0}

the upper half plane together with unique complete the metric of cur-
vature -1, namely

1

y
· standard metric on R2.

The action of π1(Σ) on the universal cover Σ̃ shows that π1(Σ) is a

discrete subgroup of Isom(Σ̃) which acts on Σ̃ cocompactly and without
fixed points. For orientable surfaces we thus obtain the following table:

χ(Σ) > 0 = 0 < 0

Isom(Σ̃) O(3) O(2)nR2 PS∗L(2,R)

π1(Σ) 0 or Z/2 Z2 or ⟨a, b | abab−1⟩ torsion-free
Fuchsian group

Here

S∗L(2,R) = {A ∈ GL(2,R) | det(A) = ±1},
PS∗L(2,R) = {A ∈ GL(2,R) | det(A) = ±1}/± id

acts on H2 = {z ∈ C | Im(z) > 0} by linear fractional transformations:(
a b
c d

)
· z :=

az + b

cz + d
.
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Remark. (1) The fact that every surface supports a complete metric
of constant curvature is often referred to as the ‘uniformization
theorem’.

(2) The hyperbolic structure on a surface is not necessarily unique,
in fact the space of hyperbolic structures on a closed surface of
genus g is (6g − 6)–dimensional. 2

(3) The fundamental group of an orientable hyperbolic surface is a
discrete subgroup of

PSL(2,R) = SL(2,R)/{± id}.

(4) Surfaces with boundary can be classified in a very similar fash-
ion.

We obtain the following corollary to the uniformization theorem:

Lemma 2.2. Let Σ ̸= S2,RP 2 be a surface.

(1) Σ is aspherical, in particular Σ is an Eilenberg–Maclane space
for π.

(2) π1(Σ) is torsion-free.

Proof. (1) We denote by Σ̃ the universal cover of Σ. For any k ≥ 2

we have πk(Σ) ∼= πk(Σ̃), but the latter groups are zero since

Σ̃ = R2 or Σ̃ = H2 by the uniformization theorem.
(2) This will follow from (1) and the following more general claim:

Claim. Let π be a group which admits a finite dimensional
K(π, 1), then π is torsion free.

Let X be a finite dimensional Eilenberg–Maclane space for
π. Let G ⊂ π be a cyclic subgroup. We have to show that G is
infinite cyclic. We denote by X̂ the cover corresponding G ⊂ X.
Then X̂ is an Eilenberg–Maclane space for G. Since X̂ is finite
dimensional it follows that Hi(G;Z) = 0 for all but finitely
many dimensions. Since finite cyclic groups have non–trivial
homology in all odd dimensions it follows that G is infinite
cyclic.

�

2Given a fixed surface we can associate to each hyperbolic structure a vector in
R6g−6 by taking the lengths of certain fixed 6g − 6 curves. This defines a homeo-
morphism. We refer to
www.math.sunysb.edu/ ~ jabehr/GeomandTeich.ps

for details.
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2.2. Fundamental groups of surfaces. Given a space X with fun-
damental group π, we want to answer the following questions:

(1) Is π is linear over the ring R, i.e. does there exist a monomor-
phism π → GL(n,R) for a sufficiently large n?

(2) Does π have ‘many finite index quotients’, i.e. does X have
many finite covers?

(3) Does π admit finite index subgroups with large homology?

Positive answers are useful for various reasons:

(1) linear groups are reasonably well understood and have many
good properties, e.g. they are residually finite (see Proposition
2.4) and they satisfy the Tits alternative 3 (see [Ti72]),

(2) the existence of ‘many finite covers’ allows us to studyX through
its finite covers, for example if N is a smooth 4–manifold, then
the Seiberg–Witten invariants of its finite covers will in general
contain more information then the Seiberg–Witten invariants
of N alone,

(3) ‘large homology groups’ means that a space has ‘lots of inter-
esting submanifolds’. For example, if N is a n–manifold, then
Hn−1(N ;Z) = H1(N ;Z) ̸= 0 implies that N admits codimen-
sion one submanifolds along which we can decompose N into
hopefully easier piece.

We will now see that surface groups have, perhaps not surprisingly,
very good properties, in particular we will get ‘best possible’ answers
to the above questions.

First note, that it follows easily from the uniformization theorem
that surface groups are linear over R. But in fact a stronger statement
holds:

Proposition 2.3. Let Σ be a surface, then π := π1(Σ) is linear over
Z.

Proof. A general principle says that a ‘generic’ pair of matrices A,B ∈
GL(n,Z) will generate a free group on two generators. For example,
one can use the ‘ping-pong lemma’ to show that

A =

(
1 2
0 1

)
and B =

(
1 0
2 1

)

3The Tits alternative says that a finitely generated linear group either contains
a non–abelian free group or it admits a finite index subgroup which is solvable
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generate a free group. 4 In particular SL(2,Z) contains a free group
on two generators, and it thus contains any free group, in particular it
contains the fundamental group of any surface with boundary.

If Σ is closed, then Newman [Ne85] has shown that there exists an
embedding π1(Σ) → SL(8,Z). 5 �
Definition. Let P be a property of groups. We say that a group π is
residually P if given any non–trivial g ∈ π there exists a homomorphism
α : π → G to a group G which has property π. 6

Remark. (1) Any finitely generated abelian group is residually fi-
nite.

(2) The group (Q,+) is not residually finite, in fact it has no finite
quotients at all.

(3) Let p be a prime. Any finitely generated free abelian group is
residually a p–group, i.e. residually a group of p–power order.

(4) If a finitely presented group is residually finite, then it has solv-
able word problem, i.e. it can be decided whether a given word
in the generators represents the trivial element or not. We refer
to [Moa66] for details. 7

Proposition 2.4. Let Σ be a surface, then π := π1(Σ) is residually
finite.

In fact a stronger statement holds: for any prime p the group π is
residually p.

Proof. We pick a monomorphism α : π → GL(n,Z). Let g ∈ π be non–
trivial. Pick k ∈ N such that not all entries of α(g) are divisible by k.
Then the image of g under the map

α : π → GL(n,Z) → GL(n,Z/k)
is non–trivial. �
Definition. We say that a group π is subgroup separable if for any
finitely generated subgroup A and any g ∈ π \ A there exists a ho-
momorphism α : π → G to a finite group such that α(g) ̸∈ α(A). 8

4For a proof see:
http://en.wikipedia.org/wiki/Ping-pong lemma

5I do not know whether ‘8’ is optimal, presumably not, but this is the only
reference I am aware of.

6Put differently, a group π is residually P if we can detect any non trivial element
in a P–quotient.

7See also
www.math.umbc.edu/~ campbell/CombGpThy/RF Thesis/1 Decision Problems.html

8Put differently, a group π is subgroup separable if given any finitely generated
group A and g ̸∈ A we can tell that g ̸∈ A by going to a finite quotient.
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Remark. (1) A subgroup separable group is in particular residually
finite, this follows immediately from applying the definition to
A = {e}.

(2) Any finitely generated abelian group is subgroup separable, in-
deed, given A ⊂ π the group π/A is again finitely generated, in
particular residually finite.

(3) If a finitely presented group is subgroup separable, then the ex-
tended word problem is solvable, i.e. it can be decided whether
a given finitely generated subgroup contains a given element or
not. We refer again to [Moa66] for details.

The following theorem was proved by Scott [Sc78] in 1978:

Theorem 2.5. (Scott’s theorem) Let Σ be a surface, then π1(Σ) is
subgroup separable.

Given a space X and a ring R we write

vb1(X;R) := sup{b1(X ′;R) |X ′ → X finite covering } ∈ N ∪ {∞}.
Put differently, vb1(X;R) = ∞ ifX admits finite covers with arbitrarily
large first R–Betti numbers.

Lemma 2.6. Let Σ be a hyperbolic surface, then vb1(X;R) = ∞ for
any ring.

Proof. We consider the case that Σ is closed, the bounded case is proved
the same way. Let Σ′ be an n–fold cover of Σ. Then it follows from
the multiplicativity of the Euler characteristic under finite covers that

b1(Σ
′)− 2 = −χ(Σ′) = −nχ(Σ) ≥ n.

�
2.3. The mapping class group and Dehn twists. Let Σ be an
orientable surface. We want to study

Diff(Σ) := {orientation preserving diffeomorphisms of Σ}
and the mapping class group

MCG(Σ) := Diff(Σ)/homotopy = π0(Diff(Σ)).

Definition. Let c ⊂ Σ be an oriented simple closed curve. The Dehn
twist along c is defined to be the diffeomorphism

Σ → Σ

x 7→
{

x, if x ∈ Σ \ c× [0, 1]
(e2πitz, t), if x = (z, t) ∈ c× [0, 1].

The following theorem was proved by Lickorish [Li62]:
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Theorem 2.7. (Lickorish’s theorem) Let Σ be a surface, then any
element in MCG(Σ) is the composition of finitely many Dehn twists.

In fact the mapping class group is generated by Dehn twists on cer-
tain 3g+1–curves and one can give a finite presentation for the mapping
class group.

2.4. Classification of diffeomorphisms. Up to diffeotopy S2 and
RP 2 admit no orientation preserving diffeomorphisms, i.e.

MCG(S2) = 0.

So let us turn to the torus T = R2/Z2. Any diffeomorphism of T lifts
to an diffeomorphism of R2 which preserves Z2 as a set. One can show
that the diffeotopy class of the diffeomorphism is determined by the
restriction to Z2, i.e.

MCG(T ) = SL(2,Z).

Given A ∈ SL(2,Z) there are three cases we have to distinguish:

(1) A is not diagonalizable, then 1 or 1 is an eigenvalue, i.e. A fixes
a line or reverses a line,

(2) A is diagonalizable with complex eigenvalues, in fact the only
possible complex eigenvalues are ±i and ±eπi/3, i.e. A has finite
order,

(3) A has two real eigenvalues λ and λ−1.

In terms of diffeomorphisms for tori this means that given any φ ∈
MCG(T ) one of the following happens:

(1) φ is reducible, i.e. φ fixes an essential curve as a set, 9 this
happens for example if φ is the Dehn twist along one curve,

(2) φ is periodic, i.e. φ has finite order,
(3) φ is Anosov, i.e. there exists a transverse pair of geodesic curves

c and d on T and a λ > 1 such that c gets ‘stretched’ by λ > 1
and d gets ‘compressed’ by the factor λ−1 < 1.

The ‘generic’ diffeomorphism of a torus is of that type.
Thurston in the late 1970’s showed that a complete analogue holds

for hyperbolic surfaces: Let Σ be a hyperbolic surface and φ ∈ MCG(Σ),
then

(1) φ is reducible, or
(2) φ is periodic, or

9We call a simple closed curve essential if it does not bound a disk and if it is
not boundary parallel
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(3) φ is Pseudo–Anosov, i.e. there exists a transverse pair of mea-
sured foliations c and d and a λ > 1 such that the foliations are
preserved by φ and their transverse measures are multiplied by
λ and λ−1.

For the precise meaning of (3) we refer to [Th88] and [CB88]. The
third case is again the generic case.

3. Examples and constructions of 3–manifolds

For the remainder of this lecture course we will study 3–manifolds. In
dimension three we do not have to distinguish between the categories of
topological, smooth and PL manifolds: by Moise’s theorem any topo-
logical 3–manifold also admits a unique PL and a unique smooth struc-
ture. 10 We will throughout restrict ourselves to 3–manifolds which are
either closed or which have toroidal boundary.

3.1. Examples of 3–manifolds.

3.1.1. Lens spaces. The most basic example of a 3–manifold is of course
the 3–sphere:

S3 = {x ∈ R4 | ||x|| = 1} = {(w, z) ∈ C2 | |w|2 + |z|2 = 1}.
The quotients of S3 by cyclic groups form already an interesting class
of manifolds. More precisely, let p, q ∈ N and let ξ = e2πi/p. We then
consider the lens space

L(p, q) := S3/ ∼ where (z, w) ∼ (ξz, ξqw),

We can thus view L(p, q) as the quotient of S3 by a free action of Z/p.
It follows that

π1(L(p, q)) = Z/p.
Lens spaces are completely classified:

Theorem 3.1. (Reidemeister 1937) Let L(p, q) and L(p, q′) be two
lens spaces.

(1) L(p, q) and L(p, q′) are homotopy equivalent if and only if

q′ ≡ ±a2q mod p for some a.

(2) L(p, q) and L(p, q′) are diffeomorphic if and only if

q′ ≡ ±q±1 mod p.

10The analogous statement does of course not hold in dimension four, for example
it follows from the work of Freedman and Donaldson that R4 admits uncountably
many smooth structures.
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Proof. The ‘if’ directions can be shown directly, the first ‘only if’ di-
rection follows from studying the linking forms on the first homology,
the second ‘only if’ direction follows from considering Reidemeister tor-
sion. �

We see in particular that the fundamental group of a 3–manifold
does not determine the homotopy type, and the homotopy type does
not determine the diffeomorphism type of a lens space.

3.1.2. Complements of knots and links. Given any knot or link L in S3

we can consider its exterior

X(L) := S3 \ νL.
Important examples are given by

(1) the unknot, the trefoil knot and the figure 8 knot,
(2) torus knots and links, i.e. knots and links which lie on the

standard torus in S3. Note that the trefoil knot is a torus knot,
whereas the figure 8 knot is not.

3.1.3. Mapping tori. Let Σ be a surface and φ ∈ Diff(Σ), then we can
consider the mapping torus

([0, 1]× Σ) / (0, x) ∼ (1, φ(x)).

If N can be written that way, then we say that N fibers over S1. For
example the exteriors of torus knots and of the figure 8 knot fiber over
S1, but ‘most’ knot exteriors do not fiber over S1.

3.1.4. Seifert fibered spaces.

Definition. A Seifert fibered 3-manifold is a 3-manifold N together
with a decomposition into disjoint simple closed curves (called fibers)
such that each fiber has a tubular neighborhood that forms a stan-
dard fibered torus. A standard fibered torus corresponding to a pair of
coprime integers (a, b) with a > 0 is the surface bundle of the diffeo-
morphism of a disk given by rotation by an angle of 2πb/a, with the
natural fibering by circles. If a > 1, then the middle fiber is called
singular.

There are various different equivalent ways to think about Seifert
fibered manifolds:

(1) Seifert fibered manifolds are S1–bundles over a surface with
isolated ‘singular fibers’,

(2) Seifert fibered manifolds are S1–bundles over 2–dimensional
orbifolds,
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(3) A 3–manifold is Seifert fibered if and only if it is finitely covered
by an S1–bundle over a surface.

Example. The following are Seifert fibered spaces:

(1) S1 × Σ, in particular the three torus,
(2) S3 with the Hopf fibration,
(3) lens spaces,
(4) exteriors of torus links,
(5) mapping tori of periodic surface diffeomorphisms.

Seifert fibered spaces are well understood and completely classified.
We refer to [Or72, He76, Ja80, Br93] for further information and for
the classification of Seifert fibered 3-manifolds. For future reference we
record the following lemma:

Lemma 3.2. Let N be a Seifert fibered 3–manifold with infinite fun-
damental group. Then a regular fiber of the Seifert fibration generates
an infinite cyclic normal subgroup of π1(N).

Since Seifert fibered spaces are finitely covered by circle bundles over
surfaces it is not difficult to show that fundamental groups of Seifert
fibered spaces share many of the nice properties of surface groups, more
precisely we have the following proposition:

Proposition 3.3. Let N be a Seifert fibered space. Then the following
hold:

(1) π1(N) is linear over Z,
(2) π1(N) is residually finite,
(3) π1(N) is subgroup separable.

3.2. Operations on 3–manifolds. Given 2–oriented 3–manifolds N1

and N2 we can consider the connected sum

N1#N2 = (N1 \ 3-ball) ∪ (N2 \ 3-ball),

where we identify the two boundary spheres using an orientation re-
versing homeomorphism. Note that the diffeomorphism type of the
connected sum depends in general on the orientation, i.e. in general

N1#N2 ̸∼= N1#−N2.

Similarly, given two 3–manifolds N1 and N2 with toroidal boundary,
we can create a new manifold by gluing N1 to N2 along a boundary
torus.
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4. 3–manifolds up to 1973

4.1. The prime decomposition theorem. A 3-manifold N is called
prime if N can not be written as a non-trivial connected sum of two
manifolds, i.e. if N = N1#N2, then N1 = S3 or N2 = S3. Furthermore
N is called irreducible if every embedded S2 bounds a 3-ball. Note
that an irreducible 3-manifold is prime, conversely if N is a prime 3-
manifold, then either N is irreducible or N = S1 × S2. We now have
the following theorem:

Theorem 4.1. (Prime decomposition theorem) Let N be an ori-
ented 3–manifold.

(1) There exists a decomposition N ∼= N1# . . .#Nr, where the 3-
manifolds N1, . . . , Nr are oriented prime 3-manifolds.

(2) If N ∼= N1# . . .#Nr and N ∼= N ′
1# . . .#N ′

s where the 3-manifolds
Ni and N ′

i are oriented prime 3-manifolds, then r = s and (pos-
sibly after reordering) there exists an orientation preserving dif-
feomorphism Ni → N ′

i .

Remark. (1) The first part of the theorem was proved by Kneser
[Kn29]. The difficulty of course lies in showing that the process
of decomposing a 3–manifold will end after finitely many steps.
The second statement was proved by Milnor [Mi62].

(2) The theorem says in particular, that any 3–manifold group can
be written as the free product of fundamental groups of prime
3–manifolds. In fact the converse holds: if π1(N

3) is isomorphic
to a free product A ∗B, then there exist 3–manifolds X and Y
with π1(X) = A, π1(Y ) = B and N = A#B. This statement
is referred to as the ‘Kneser conjecture’ and was first proved by
Stallings [St59].

(3) Schubert proved that a similar theorem holds for knots: a knot
can be uniquely written as the connect sum of finitely many
prime knots.

We will henceforth restrict ourselves to irreducible 3–manifolds.

4.2. Dehn’s lemma and the sphere theorem. The following the-
orem was first formulated by Dehn in 1910. In 1927 Kneser showed
that Dehn’s proof had a gap, and a correct proof was finally given by
Papakyriakopoulos [Pa57] 11 in 1957:

11I now quote from the wikipedia article about Papakyriakopoulos: ‘The
following limerick was composed by John Milnor, shortly after learning of
several graduate students’ frustration at completing a project where the work
of every Princeton mathematics faculty member was to be summarized in a limerick:



AN INTRODUCTION TO 3-MANIFOLDS 15

Theorem 4.2. (Dehn’s lemma) Let N be a 3–manifold, let T be a
boundary component, and suppose that

K := Ker{π1(T ) → π1(N)}
is non–trivial. Then there exists a properly embedded disk D ⊂ N such
that ∂D represents a non–trivial element in K.

Remark. This formulation of Dehn’s lemma is also known as the loop
theorem.

We obtain immediately the following corollary:

Corollary 4.3. Let K ⊂ S3 be a knot. Then K is trivial if and only
if π1(S

3 \ νK) = Z.

Proof. If K is trivial, then π1(S
3\νK) = π1(S

1×D2) = Z. Conversely,
if π1(S

3 \K) = Z, then the longitude of K represents an element in

Ker{π1(∂(S
3 \ νK)) → π1(S

3 \ νK)}.
But by the loop theorem the longitude now bounds a disk, i.e. the knot
is trivial. �

Papakyriakopoulos [Pa57] also proved the following deep theorem:

Theorem 4.4. (Sphere theorem) Let N be a 3–manifold such that
π2(N) ̸= 0. Then there exists an embedded essential 12 sphere in N , in
particular N is reducible.

Remark. (1) We can summarize Dehn’s lemma and the sphere the-
orem slightly sloppily as follows: ‘Dehn’s lemma says, that if
there exists a singular disk, then it can be replaced by an em-
bedded disk’, and the sphere theorem says, morally speaking,
‘a singular sphere can be replaced by an embedded sphere’.

(2) If N is a manifold of dimension n ≥ 5, then it follows from
a general position argument, that any class in π2(N) can be
represented by an embedded sphere. The analogous statement

The perfidious lemma of Dehn
Was every topologist’s bane

’Til Christos Papa-
kyriakopou-

los proved it without any strain.

The phrase ‘without any strain’ is not meant to indicate that Papa did not expend
much energy in his efforts. Rather, it refers to Papa’s ‘tower construction’, which
quite nicely circumvents much of the difficulty in the cut-and-paste efforts that
preceded Papa’s proof.’

12An embedded sphere is called essential if it does not bound a 3–ball
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does not hold in dimension four. This can be viewed as the
source of all the troubles (or exciting phenomena, depending
on your point of view) in dimension four.

Corollary 4.5. Let N be an irreducible 3–manifold with infinite fun-
damental group. Then N is aspherical.

Proof. It follows from the sphere theorem, that π2(N) = 0. We now

denote by Ñ the universal cover of N . It follows from Hurewicz that

π3(N) = π3(Ñ) = H3(Ñ).

Our assumption that π1(N) is infinite implies that Ñ is not compact,

i.e. that H3(Ñ) = 0. By induction we can now show that in fact
πk(N) = 0 for all k ≥ 3. �

Note that this corollary applies in particular to knot complements.
By the argument of Lemma 2.2 we now obtain the following corollary:

Corollary 4.6. Let N be an irreducible 3–manifold with infinite fun-
damental group. Then π1(N) is torsion–free.

We can now give a complete answer to the question, which abelian
groups can arise as fundamental groups of 3–manifolds:

Proposition 4.7. The only abelian groups which appear as fundamen-
tal groups of closed 3–manifolds are 13

Z = π1(S
1 × S2),Z/n = π1(lens space) and Z3 = π1(3− torus).

Proof. Let N be a 3–manifold with abelian fundamental group. By
Proposition 1.4 we already know that π1(N) is isomorphic to Z,Z2,Z3,Z/n
or Z ⊕ Z/n. If N is not prime, then π1(N) is a free product, and we
can thus assume that N is in fact prime. If N has infinite, non–cyclic
fundamental group, then it follows from Corollary 4.5 that N is aspher-
ical, i.e. N = K(π1, 1). In Corollary 4.6 we showed that this implies
that π1(N) is torsion–free, we can thus exclude the possibility that
π1(N) = Z⊕ Z/n. Finally note that H3(Z2) ̸= H3(N) = Z, so we can
also exclude the case that π1(N) = Z2. �

13If we allow non–orientable manifolds, then we have to add

Z× Z/2 = π1(S
1 × RP 2).
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4.3. Haken manifolds.

Definition. (1) A surface Σ ⊂ N is called incompressible, if π1(Σ) →
π1(N) is injective.

(2) A 3-manifold N is called Haken if N is irreducible and if N ad-
mits a non-simply connected embedded incompressible surface
Σ ⊂ N .

The following lemma shows in particular that the exteriors of knots
are Haken:

Lemma 4.8. Let N ̸= S1×D2 be any irreducible 3–manifold (for once
with no restrictions on the boundary) with b1(N) ≥ 1, then N is Haken.

Proof. Let Σ ⊂ N be a properly embedded surface of ‘minimal com-
plexity’ 14 representing a given non–trivial element in H1(N ;Z) =
H2(N, ∂N ;Z).

Claim. The surface Σ is incompressible.

If Σ is not incompressible, then applying Dehn’s lemma to N \ νΣ
we can find an embedded essential curve c on Σ which bounds an
embedded disk D in N . We can thus do surgery on Σ along c and
we obtain a surface of smaller complexity which represents the same
homology class. This concludes the proof of the claim.

Our assumption that N ̸= S1×D2 and that N is irreducible implies
that Σ ̸= D2 and Σ ̸= S2. We thus found an incompressible non–simply
connected surface in N . �

The basic idea for the study of Haken manifolds is very simple: given
an incompressible surface Σ ⊂ N we can cut N along Σ, we obtain
a (possibly disconnected) 3–manifold such that each component has
positive first Betti number, i.e. each component is Haken again. We can
thus iterate the process and reduce the ‘complexity’ of the 3–manifold
along the way till we obtain 3–balls. We refer to [Ha62] for details.

Waldhausen [Wa68b, Corollary 6.5] used this approach to prove the
following theorem:

Theorem 4.9. Let N and N ′ be two closed Haken manifolds with
π1(N) ∼= π1(N

′), then N and N ′ are homeomorphic.

14The complexity of a surface Σ with connected components Σ1, . . . ,Σk is defined
as

χ−(Σ) =

k∑
i=1

max(0,−χi(Σ)).

This turns out to be the correct generalization of the concept of ‘minimal genus’ to
disconnected surfaces. We refer to [Th86a] for details.
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Remark. If N and N ′ are Haken manifolds with non–trivial toroidal
boundary, then it is in general not true, that their diffeomorphism
type is determined by their fundamental group. In fact if K denotes
the trefoil knot, then

S3 \ ν(K#K) and S3 \ ν(K#−K)

are not diffeomorphic, even though the fundamental groups are isomor-
phic. This can be dealt with as follows: Let N be a 3-manifold with
incompressible boundary. Then we refer to the fundamental group of
π1(N) together with the conjugacy classes of subgroups determined
by the boundary components as the peripheral structure of N . Wald-
hausen showed that Haken 3–manifolds with non–spherical boundary
are determined by their ‘peripheral structure’. We refer to [Wa68b] for
details.

5. Interlude: Hyperbolic 3–manifolds

We say that a 3–manifold N , possibly with toroidal boundary, is
hyperbolic if the interior of N admits a complete metric of constant
curvature equal to −1. If N is hyperbolic, then its universal cover is
given by

H3 = {(x, y, z) | z > 0}
equipped with the metric

1

z
· standard metric on R3.

Note that Isom(H3) = PSL(2,C) = SL(2,C)/± id.

Proposition 5.1. A 3–manifold N is hyperbolic if and only if there
exists a discrete and faithful representation α : π1(N) → SL(2,C) such
that α(π1(N)) ⊂ SL(2,C) is torsion–free and has finite covolume.

Proof. If N is a hyperbolic 3–manifold, then there exists a discrete
and faithful representation α : π1(N) → PSL(2,C), such that the im-
age is torsion–free and has finite covolume. Thurston showed that
this representation lifts to a representation to SL(2,C) (see [Sh02, Sec-
tion 1.6]). The converse follows immediately from the observation that
H/α(π1(N)) is a hyperbolic 3–manifold, diffeomorphic to N . �

Riley [Ri74] used this approach in 1974 to show that the figure 8
knot 15 is hyperbolic. But in most cases it is very difficult to directly
show that a 3–manifold is hyperbolic.

15In this case one can write down the representation explicitly: The fundamental
group of the figure 8 knot complement has the following presentation

⟨x, y |xyx−1y−1x = yxy−1x−1y⟩
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In the following we say that a 3-manifold N is atoroidal if any in-
compressible torus is boundary parallel, i.e. can be isotoped into the
boundary. The following lemma gives an obstruction to a 3–manifold
being hyperbolic:

Lemma 5.2. Let N be a hyperbolic 3–manifold and let A ⊂ N be a
subgroup isomorphic to Z2. Then there exists a boundary torus T such
that A = π1(T ) as subgroups in π1(N).

It follows directly from the lemma that a closed hyperbolic 3–manifold
does not contain any incompressible tori.

Proof. We can view π1(N) as a discrete subgroup of SL(2,C). A basic
argument shows that any discrete subgroups of SL(2,C) isomorphic to
Z2 is of the form (

ε Z+ λZ
0 ε

)
where ε = ±1 and λ ∈ C \ R. One can now show that any such
subgroup corresponds to a boundary torus ([Bo02, Theorem 2.9]). �

In the case of surfaces we noted that any surface Σ with χ(Σ) < 0
is hyperbolic, but the hyperbolic structure is by no means unique.
Amazingly the situation is completely different in dimension three (see
[Mob68] and [Pr73]):

Theorem 5.3. (Mostow–Prasad rigidity) Let N be a hyperbolic 3–
manifold, then the hyperbolic structure of N is unique up to isometry.

Put differently, if two hyperbolic 3–manifolds are homeomorphic,
then they are already isometric. This implies that all geometric in-
variants of hyperbolic 3–manifolds (e.g. volume) are in fact topo-
logical invariants. It follows also, that a hyperbolic 3–manifold ad-
mits a unique (up to conjugation) discrete and faithful representation
α : π1(N) → PSL(2,C).

Remark. (1) Rigidity also holds in fact for closed hyperbolic mani-
folds of any dimension greater than two.

(2) One can use rigidity to show that the the discrete and faithful
representation α : π1(N) → SL(2,C) is conjugate to a represen-
tation π1(N) → SL(2,Q) over the algebraic closure Q of Q (see
[MR03, Corollary 3.2.4]).

and a discrete and faithful representation is given by

x 7→
(
1 1
0 1

)
and y 7→

(
1 0
z 1

)
where z = e±πi/3.
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We conclude this section with the following variation on Proposition
2.4.

Proposition 5.4. Let N be a hyperbolic 3–manifold, then π1(N) is
residually finite.

Proof. We can view π1(N) as a subgroup of SL(2,C). It thus suffices
to prove the following claim:

Claim. Any finitely generated subgroup of GL(n,C) is residually finite.

Let π ⊂ GL(n,C) be a subgroup which is generated by g1, . . . , gk. We
denote byR the ring which is generated by the entries of α(g1), . . . , α(gk).
Note that R is finitely generated over R. Since R is finitely generated
over R we can find for any r ∈ R a maximal ideal m ⊂ R such that r
is non–trivial in R/m. The field R/m has a prime characteristic and
is finitely generated, hence R/m is in fact a finite field. Since m is
maximal the quotient R/m is Given a non–trivial matrix A ⊂ π can
now find a maximal ideal m ⊂ R such that A represents a non–trivial
element in the finite group GL(n,R/m). �

We thus see that hyperbolic 3–manifolds have interesting properties,
but in contrast to surfaces it is very difficult to construct examples of
hyperbolic 3–manifolds ‘by hand’. Historically the first example of a
closed hyperbolic 3–manifold is the Seifert–Weber manifold constructed
in 1933. We refer to [SW33] for details. 16 In [BRT09] it is shown that
the Seifert–Weber manifold is not Haken. The figure 8 knot comple-
ment, the Seifert–Weber manifold and their finite covers were some of
the few examples of hyperbolic 3–manifolds known till the mid 1970’s.

6. The JSJ and the geometric decomposition

6.1. The statement of the theorems. In Section 4.1 we saw that
3–manifolds have a unique prime decomposition, i.e. they have a
unique decomposition along spheres. In this section we will see that
3–manifolds also have a canonical decomposition along incompressible
tori. After this second stage of decompositions we will finally end up
with pieces which are either hyperbolic or Seifert fibered.

The following theorem was proved independently by Jaco and Shalen
[JS79] and Johannson [Jo79].

Theorem 6.1. (JSJ Decomposition Theorem) Let N be an irre-
ducible 3-manifold. Then there exists a collection of disjointly embedded

16Or alternatively see:
http://en.wikipedia.org/wiki/Seifert-Weber space
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incompressible tori T1, . . . , Tk such that each component of N cut along
T1 ∪ · · · ∪ Tk is atoroidal or Seifert fibered. Furthermore any such col-
lection with a minimal number of components is unique up to isotopy.

In the following we will refer to the tori T1, . . . , Tk as the JSJ tori
and we will refer to the components of N cut along ∪k

i=1Ti as the JSJ
components.

The goal now is to determine which 3–manifolds are atoroidal. In the
following we say that a closed 3-manifold is spherical if it admits a com-
plete metric of curvature +1. Note that the universal cover of a spher-
ical 3–manifold is necessarily S3. It is clear that spherical 3–manifolds
have finite fundamental groups, in particular they are atoroidal. By
the discussion of the previous section we also know that hyperbolic
3–manifolds are atoroidal. Thurston [Th82] conjectured that these are
all examples of atoroidal 3–manifolds.

This conjecture was proved by Thurston for Haken manifolds. The
proof for the general case was first given by Perelman in his seminal
papers [Pe02, Pe03a, Pe03b], we refer to [MT07] for full details. More
precisely, Perelman proved the following theorem:

Theorem 6.2. (Perelman) Let N be an irreducible atoroidal 3–manifold.
Then either N is spherical or N is hyperbolic.

It is well-known that S3 equipped with the canonical metric is the
only spherical simply connected 3-manifold. We thus obtain the fol-
lowing theorem:

Theorem 6.3. (Poincaré conjecture) The 3–sphere S3 is the only
simply connected, closed 3-manifold.

Remark. It also follows that a 3-manifold N is spherical if and only if
it is the quotient of S3 by a finite group, which acts freely and isomet-
rically, in particular we can view π1(N) as a finite subgroup of SO(4)
which acts freely on S3. We refer to [Or72, Chapter 1, Theorem 1] and
[Or72, Chapter 2, Theorem 2] for details and for the complete list of
3-manifolds with finite fundamental groups.

Note that spherical 3-manifolds are in fact Seifert fibered (see [Bo02,
Theorem 2.8]). We thus obtain the following theorem:

Theorem 6.4. (Geometrization Theorem) Let N be an irreducible
3-manifold with empty or toroidal boundary. Then there exists a collec-
tion of disjointly embedded incompressible tori T1, . . . , Tk such that each
component of N cut along T1 ∪ · · · ∪ Tk is hyperbolic or Seifert fibered.
Furthermore any such collection with a minimal number of components
is unique up to isotopy.
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6.2. Geometric structures on 3–manifolds. We had seen that any
surface admits a metric of constant curvature. For 3–manifolds the sit-
uation is more complicated: we first have to decompose a given man-
ifold along embedded spheres and incompressible tori. The resulting
pieces are then either hyperbolic or Seifert fibered. The Seifert fibered
pieces with finite fundamental groups are spherical, and the Seifert
fibered pieces with infinite abelian fundamental groups are Euclidean,
i.e. they have a metric of constant curve zero. Seifert fibered pieces
with infinite, non–abelian fundamental groups do not admit a metric of
constant curvature. But they do carry a unique geometry if we expand
our definition of ‘geometry of a manifold’. The five extra geometries
needed are referred to as

Sol, ˜SL(2,R),Nil, S2 × R, H2 × R.

Even though the geometric point of view is very pretty, in practice these
geometries are studied very little, since they all correspond to Seifert
fibered spaces or torus bundles, which are well understood anyway.
The only geometric 3–manifolds which are not well understood are the
most important manifolds: hyperbolic 3–manifolds.

For completeness’ sake we also describe how the geometry of a Seifert
fibered space N can be determined from the topology of N : As we
mentioned earlier, any Seifert fibered space is finitely covered by an
S1–bundle over a surface Σ. We denote by e the Euler class of the
S1–bundle. Then χ(Σ) and e determine the geometry of N :

χ > 0 χ = 0 χ < 0
e = 0 S2 × R E3 H2 × R
e ̸= 0 S3 Nil ˜SL(2,R).

The Sol–geometry appears only for torus bundles which are not Seifert
fibered spaces. Their JSJ decomposition is given by cutting the torus
bundle along a fiber. We refer to [Th82], [Sc83] and [Bo02] for more
information on the eight geometries.

The above discussion shows that one can reformulate the geometriza-
tion theorem in such a way, that the name ‘geometrization theorem’ is
fully justified:

Theorem 6.5. (Geometrization Theorem) Let N be an irreducible
3-manifold with empty or toroidal boundary. Then there exists a col-
lection of disjointly embedded incompressible tori T1, . . . , Tk such that
each component of N cut along T1∪ · · ·∪Tk is geometric. Furthermore
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any such collection with a minimal number of components is unique up
to isotopy. 17

Finally, Thurston’s eight geometries also inspired fashion designer
Issey Miyake:
http://www.youtube.com/watch?v=lMneAQsAZUA

6.3. Examples of the decompositions. We now want to see what
the geometrization theorem does for several ‘real life’ examples.

LetN1 andN2 be two hyperbolic 3–manifolds such that Ti = ∂Ni, i =
1, 2 consists of one torus each. Using Dehn’s lemma one can easily show
that the boundary tori are incompressible. We then glue N1 and N2

along their boundary tori using any diffeomorphism. The resulting
3–manifold N contains an incompressible torus. By the discussion of
Section 5 the manifold N can therefore not be hyperbolic. One can
also show that N is not Seifert fibered. 18 We thus need at least one
torus to cut N into a union of Seifert fibered spaces and hyperbolic
pieces. The torus T of course does the trick.

In general, if we glue two 3–manifolds N1 and N2 along a torus
boundary component, then in almost all cases 19 the JSJ decomposition
of the resulting manifold N is given by the JSJ tori of N1, together with
the JSJ tori of N2 and the gluing torus.

Remark. It follows from the above arguments that a knot K ⊂ S3 is
either a torus knot, a hyperbolic knot, or a satellite knot, i.e. a knot
which is given by wrapping a non–trivial knot in a solid torus around
another non–trivial knot.

Exercise 6.6. Let K1 and K2 be two non–trivial hyperbolic knots.
What is the JSJ decomposition of S3 \ (K1 ∪K2)?

In Section 4.3 we obtained new 3–manifolds by connect sum op-
eration and by gluing along tori. The prime decomposition theorem
and the geometrization theorem now unravel these two operations: the

17The two decompositions in the two formulations of the geometrization theorem
are identical with one exception: if N is a torus bundle over S1 with Sol geometry,
then in the second formulation we do not need any tori, whereas in the first for-
mulation the decomposition will consist of one fiber, which then cuts N into two
manifolds of the form T × [0, 1], which are both Seifert fibered spaces.

18For example incompressible tori in Seifert fibered spaces are well-understood,
in particular the complement of an incompressible torus in a Seifert fibered space
has to be Seifert fibered again.

19The only exception is the case that the JSJ components abutting the gluing
torus are both Seifert fibered, and if the Seifert fibrations match up.
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prime decomposition theorem detects the prime components and the
geometrization theorem detects ‘almost all’ the gluing tori.

As a final example we discuss fibered 3–manifolds. The following
theorem was proved by Thurston [Th86a, Th86b] in the late 1970’s:

Theorem 6.7. . Let Σ be a surface with χ(Σ) < 0 and let φ ∈
MCG(Σ). We denote by N the mapping torus of φ.

(1) If φ is reducible, then N admits an incompressible torus,
(2) if φ is periodic, then N is Seifert fibered,
(3) if φ is pseudo–Anosov, then N is hyperbolic.

6.4. Applications. We will first prove the following lemma:

Lemma 6.8. Let N be a 3–manifold which contains a subgroup iso-
morphic to Z2, then N contains an incompressible torus.

Proof. If N is hyperbolic, then we saw at the end of Section 5 that any
subgroup isomorphic to Z2 comes from a boundary torus. On the other
hand, if N is Seifert fibered, then the statement follows easily from the
classification of Seifert fibered spaces. Now suppose that N is neither
hyperbolic nor Seifert fibered. It then follows from geometrization that
N has a non–trivial JSJ decomposition, in particular it contains an
incompressible torus. �
Theorem 6.9. Let N and N ′ be two closed, prime 3-manifolds with
π1(N) ∼= π1(N

′). Then either N and N ′ are homeomorphic, or N and
N ′ are both lens spaces.

Recall that a 3–manifoldN is aspherical if and only ifN is irreducible
and if π1(N) is infinite. The theorem thus in particular proves the Borel
conjecture for 3–manifolds.

Proof. Let N and N ′ be two closed, prime 3-manifolds with π1(N) ∼=
π1(N

′). We first assume that N contains an incompressible torus. It
follows from Lemma 6.8 that N ′ also contains an incompressible torus.
In particular N and N ′ are both Haken, and the statement follows from
Theorem 4.9.

We now consider the case that neither N nor N ′ contain an incom-
pressible torus. It follows from geometrization that N and N ′ are either
Seifert fibered or hyperbolic. First suppose that N is Seifert fibered. It
follows from Lemma 3.2 that π1(N) contains an infinite cyclic normal
subgroup. An argument similar to the proof of Lemma 5.2 shows that
fundamental groups of hyperbolic 3–manifolds do not contain infinite
cyclic normal subgroups. We thus see that N ′ is also Seifert fibered. It
now follows from the classification of Seifert fibered spaces (see [Sc83,
Theorem 3.1] and [Or72, p. 113]) that N and N ′ are diffeomorphic.
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Finally consider the case that N and N ′ are hyperbolic. We identify
π1(N) with π1(N

′). Let α : π1(N) → PSL(2,C) and α′ : π1(N
′) →

PSL(2,C) be the discrete and faithful representations. Note that

(6.1) N = H/α(π1(N)) and N ′ = H/α′(π1(N
′)).

By Mostow–Prasad rigidity all discrete and faithful representations
π1(N) → PSL(2,C) with cocompact image are conjugate. It follows
that α and α′ are conjugate, but this implies by (6.1) that N and N ′

are diffeomorphic. �
If N is an irreducible 3–manifold we can now write π1(N) as an

iterated HNN extension and amalgam of fundamental groups of Seifert
fibered spaces and hyperbolic 3–manifolds along torus groups. We
already saw that fundamental groups of hyperbolic 3–manifolds and
Seifert fibered spaces are residually finite. Hempel [He87], building
on ideas of Thurston [Th82], and assuming/using the Geometrization
Theorem showed the following theorem:

Theorem 6.10. Let N be any 3–manifold, then π1(N) is residually
finite.

7. hyperbolic 3–manifolds

The previous section shows that the key to understanding hyperbolic
3–manifolds lies in understanding hyperbolic 3–manifolds. Unfortu-
nately progress in our understanding of hyperbolic 3–manifolds has till
recently been rather slow.

Before we state some of the most important questions regarding hy-
perbolic 3–manifolds we introduce one more definition: Let P be a
property of 3–manifolds, then we say that a 3–manifold N is virtually
P if N admits a finite cover which has Property P .

We now list some questions:

(1) Is every hyperbolic 3–manifold virtually Haken?
(2) Does every hyperbolic 3–manifold admit a finite cover with pos-

itive first Betti number?
(3) Is every hyperbolic 3–manifold virtually fibered?

Note that we already saw that not every hyperbolic 3–manifold is
Haken, but it was recently shown by Kahn and Markovic [KM09] that
the fundamental group of every closed hyperbolic 3–manifold contains
the fundamental group of a closed surface. This is a very important
step towards proving (1).

Question (3) is the most ambitious question, and at first glance it
sounds rather dubious. Fibered 3–manifolds are clearly very special
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and fairly simply to describe. Why then should any hyperbolic 3–
manifold admit a finite cover which fibers over S1? This question was
first asked by Thurston in [Th82] and except for studying a few very
specific examples progress has been very slow till a few years ago.

But recently there has been some progress towards proving (3). To
state the results we need the following definition:

Definition. Let Γ be a finite graph with vertex set V , then it gives rise
to a group presentation as follows:

⟨{gv}v∈V | [gu, gv] = 1 if u and v are connected by an edge⟩.
Any group which is isomorphic to such a group is called a right angled
Artin group (RAAG). RAAGs are also often referred to as graph groups
or free partially commutative groups.

Agol [Ag08] proved the following theorem:

Theorem 7.1. Let N be a hyperbolic 3–manifold such that π1(N) is a
subgroup of a RAAG, then N virtually fibers over S1.

This raises the question, which hyperbolic 3–manifolds have the
property that their fundamental groups are subgroups of a RAAG.
Wise [Wi09, Wi11] announced a proof for the statement that a Haken
3–manifold is either virtually fibered, or its fundamental group is a sub-
group of a RAAG. Wise’s results together with Agol’s theorem would
thus imply that a hyperbolic Haken 3–manifold is virtually fibered.
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