Homework 2

Topology I, Math 70800, Spring 2017 Instructor: Abhijit Champanerkar **Due:** Tuesday March 14th before class

Reading¹

- 1. Read about the idea and motivation for homology from pages 97-101 of the textbook.
- 2. Proof of Proposition 2.9 on page 111, Section 2.1.
- 3. Read about finitely generated abelian groups and the computatbility of homology groups from the given handout.
- 4. Read proof of the Five-Lemma on page 129.
- 5. Read about *Barycentric Subdivision of Simplices* from pages 119 120, and *Iterated Barycentric Subdivision* from page 123.
- 6. Read about the *Naturality of Exact sequences* on page 127.

Problems

- 1. (a) For an exact sequence $A \xrightarrow{f} B \to C \to D \xrightarrow{g} E$ show that C = 0 iff f is surjective and g is injective.
 - (b) Using this prove that the inclusion $A \xrightarrow{i} X$ induces isomorphisms on all homology groups iff $H_n(X, A) = 0$ for all n.
- 2. Let $r : X \to A$ be a retraction and let $i : A \to X$ be the inclusion map. Show that $i_* : H_*(A) \to H_*(X)$ is a monomorphism onto a direct summand.
- 3. Show that chain homotopy of chain maps is an equivalence relation.
- 4. If $A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} D$ is exact, then *f* is surjective if and only if *h* is surjective.

¹All section, chapter, page and example numbers refer to the book "Algebraic Topology" by Allen Hatcher freely available at http://www.math.cornell.edu/~hatcher/AT/ATpage.html

- 5. (a) If $0 \to A \to B \to C \to 0$ is a short exact sequence of of vector spaces and linear maps, then show that dim $B = \dim A + \dim C$.
 - (b) If $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ is a short exact sequence of finitely generated abelian groups, then show that rank B = rank A + rank C. (Hint: Extend a maximally independent subset of *A* to a maximally independent subset of *B*).
 - (c) If $0 \to A_n \to A_{n-1} \to \ldots \to A_1 \to A_0 \to 0$ is an exact squence of finitely generated abelian groups, then $\sum_{i=0}^{n} (-1)^i \operatorname{rank} A_i = 0$.
- 6. For each of the following exact sequences say as much as possible about the abelian group G and/or the unknown homomorphism α .
 - (a) $0 \to \mathbb{Z} \to G \to \mathbb{Z} \to 0$ (b) $0 \to \mathbb{Z} \to G \to \mathbb{Z}_2 \to 0$ (c) $0 \to \mathbb{Z} \to G \to \mathbb{Z}_n \to 0$ (d) $0 \to \mathbb{Z}_4 \to G \to \mathbb{Z}_2 \to 0$ (e) $0 \to \mathbb{Z}_{p^m} \to G \to \mathbb{Z}_{p^n} \to 0$ (f) $0 \to \mathbb{Z}_3 \to G \to \mathbb{Z}_2 \to \mathbb{Z} \xrightarrow{\alpha} \mathbb{Z} \to \mathbb{Z} \to 0$ (g) $0 \to \mathbb{Z} \xrightarrow{\alpha} \mathbb{Z} \oplus \mathbb{Z} \to \mathbb{Z} \oplus \mathbb{Z}_2 \to 0$ (h) $0 \to G \xrightarrow{\alpha} \mathbb{Z} \oplus \mathbb{Z} \to \mathbb{Z}_2 \to 0$
- 7. Show that $H_0(X, A) = 0$ iff A meets eah path-component of X.
- 8. Compute the relative homology groups for the following pairs (X, A).
 - (a) $X = S^2$ and $A = \{a_1, \dots, a_n\}$
 - (b) $X = T^2$ and A =meridian.
 - (c) $X = \mathbb{R}$ and $A = \mathbb{Q}$.
 - (d) $X = T^2$ and A = meridian and longitude.
- 9. Compute the homology of space *X* gives below, by finding a homotopy equivalent space (usually a deformation retract) *Y* whose homology you have computed. Please justify the homotopy equivalence (or deformation retract).
 - (a) *X* is orientable surface of genus *g* with *b* boundary components.
 - (b) *X* is non-orientable surface of genus *g* with *b* boundary components.

(c)
$$X = \mathbb{R}^3 - \{(0, 0, z) | z \in \mathbb{R}\}$$

(d) $X = \mathbb{R}^3 - \left(\bigcup_{i=0}^n \{(i, 0, z) | z \in \mathbb{R}\}\right)$

- (e) $X = \mathbb{R}^3 \{(x, y, 0) | x^2 + y^2 = 1\}$
- (f) X is a torus with n meridional disks attached (a meridional disk a disk which bounds a meridian inside the torus).
- (g) $X = \mathbb{R}^3 (\{(0,0,z) | z \in \mathbb{R}\} \cup \{(x,y,0) | x^2 + y^2 = 1\})$

Hand-in: 2, 5c, 8ad, 9fg