Homework 6

Topology I, Math 70800, Spring 2021 Instructor: Abhijit Champanerkar **Due:** Friday May 28th **Topic:** Cup products, Duality and Products

Reading¹

- 1. Read the examples 3.7 (orientable surfaces), 3.8 (non-orientable surfaces), 3.9 on pages 207-209, 3.15 on page 217.
- 2. Read about relative cup products discussed on page 209.
- 3. Read about comology rings on page 211-212.
- 4. Read statements of Theorems 3.12 about cohomology rings of $\mathbb{R}P^n$ and $\mathbb{C}P^n$, and use them in problems below.
- 5. Read the details of the proof of Theorem 3.14.
- 6. Read Page 230- 233, Introduction to Poincare duality.

Problems

- 1. Show that the homology and cohomology groups of the following pairs of spaces are the same. Are the spaces homeomorphic to each other ? Are the spaces homotopic to each other ?
 - (a) $X = \mathbb{CP}^2, Y = S^2 \vee S^4$
 - (b) $X = \mathbb{R}P^3, Y = \mathbb{R}P^2 \vee S^3$
 - (c) $X = \mathbb{R}^3 (\{(0,0,z)|z \in \mathbb{R}\} \cup \{(x,y,0)|x^2 + y^2 = 1\})$ (complement of the Hopf link in S^3), $Y = \mathbb{R}^3 (\{(0,0,z)|z \in \mathbb{R}\} \cup \{(x,y,0)|(x-2)^2 + y^2 = 1\})$ (complement of the unlink on two components in S^3).

¹All section, chapter, page and example numbers refer to the book "Algebraic Topology" by Allen Hatcher freely available at http://www.math.cornell.edu/~hatcher/AT/ATpage.html

- 2. Use the ideas in Examples 3.7 and 3.8 to construct co-cycles and cup products for the following CW complexes with given coefficients obtained by identifying a polygon using the following words.
 - (a) a^5 with \mathbb{Z}_5 coefficients.
 - (b) a^3b^3 with \mathbb{Z}_3 coefficients.
- 3. Let $X = S^2$, $Y = T^2$, the torus and Z denote the Klein bottle.
 - (a) Prove that $f^*: H^2(Y; \mathbb{Z}) \to H^2(X; \mathbb{Z})$ is trivial for any map $f: X \to Y$.
 - (b) Prove that $f_*: H_2(X; \mathbb{Z}) \to H_2(Y; \mathbb{Z})$ is trival.
 - (c) Can you say the same about g^* for any map $g: Y \to X$.
 - (d) Prove that $f^*: H^2(Z; \mathbb{Z}_2) \to H^2(X; \mathbb{Z}_2)$ is trivial for any map $f: X \to Z$.
 - (e) Prove that $f^*: H^2(Y; \mathbb{Z}_2) \to H^2(Z; \mathbb{Z}_2)$ is trivial for any map $f: Z \to Y$.
 - (f) Prove that $f^*: H^2(Z; \mathbb{Z}_2) \to H^2(Y; \mathbb{Z}_2)$ is trivial for any map $f: Y \to Z$.
- 4. Let M_g denote the closed orientable surface of genus $g \ge 1$.
 - (a) Prove that for each nonzero $\alpha \in H^1(M_g; \mathbb{Z})$, there exists $\beta \in H^1(M_g; \mathbb{Z})$ with $\alpha \cup \beta \neq 0$.
 - (b) Prove that for any map $f : M_m \to M_n$ with n > m, the map $f^* : H^2(M_n) \to H^2(M_m)$ is trivial.
 - (c) Prove that M_g is not homotopy equivalent to a wedge sum $X \vee Y$ of CW complexes, each with nontrivial reduced homology.
- 5. Prove that a degree 1 map between manifolds induces a surjection on the fundamental groups.
- 6. Let *M* be an odd dimensional manifold with boundary. Show that $2\chi(M) = \chi(\partial M)$ (Hint: Double the manifold along its boundary).
- 7. Page 228-230: 1, 2, 3, 8
- 8. Page 257 258: 2, 3, 4, 5, 6, 7, 9, 11
- 9. Page 280: 1, 4

Hand-in:1b, 2b, 3a, 4a, 6ab(page 258).