Homework 5

Topology I, Math 70800, Spring 2021 Instructor: Abhijit Champanerkar **Due:** Monday May 3rd (upload pdf scan on CUNY BlackBoard in Homework Section) **Topic:** Universal Coefficient Theorem

Reading¹

- 1. (Split sequences) Read the proof of the Splitting Lemma, page 147.
- 2. (Homology of Groups) Read in detail about Homology of groups and Proposition 2.45, pages 148 149.
- 3. Read the discussion and example which will help understand the last part of Theorem 2A.1 ($H_1(X)$ and $\pi_1(X)$), page 168.
- 4. (Homological Algebra) Read proof of Lemmas 3.1 (page 194) about uniqueness of free resolutions.
- 5. (Right exactness of $-\otimes G$, Tor) Read proofs of Lemmas 3A.1, 3A.2 and Proposition 3A.5 (Properties of Tor), pages 262 265.

Problems

- 1. (Left exactness of Hom) For an abelian group A, denote by $A^* = \text{Hom}(A, G)$. If $A \to B \to C \to 0$, then show that $A^* \leftarrow B^* \leftarrow C^* \leftarrow 0$ is exact.
- 2. Show that Tor(A, B) is always a torsion group.
- 3. Use the Universal Coefficient Theorem to show that if $H_*(X; \mathbb{Z})$ is finitely generated, then for any coefficient field F, we have $\chi(X) = \sum_n (-1)^n \dim H_n(X; F)$.
- 4. Using the Universal Coefficient Theorems (or using the definition), compute the homology and cohomology groups with the given coefficient groups (assume homology with Z coefficients):

¹All section, chapter, page and example numbers refer to the book "Algebraic Topology" by Allen Hatcher freely available at http://www.math.cornell.edu/~hatcher/AT/ATpage.html

- (a) M_g , the closed orientable surface of genus g with coefficients \mathbb{Q} , \mathbb{Z} , \mathbb{Z}_2 , \mathbb{Z}_4 .
- (b) N_g , the closed non-orientable surface of genus g with coefficients \mathbb{Q} , \mathbb{Z} , \mathbb{Z}_2 , \mathbb{Z}_4 .
- (c) $\mathbb{R}P^n$ with coefficients \mathbb{Q} , \mathbb{Z} , \mathbb{Z}_3 and \mathbb{Z}_4 .
- 5. Compute the cohomology groups of $X = \{p\}$ using the definition.
- 6. Show that a degree d map of S^n induces an automorphism of $H^n(S^n; G)$ given by multiplication by d.
- 7. Show that for any map $f : T \to K$, the induced map $f_* : H_2(T; \mathbb{Z}_2) \to H_2(K; \mathbb{Z}_2)$ is trivial.
- 8. Let C be a free chain complex. Show that if $H_i(C)$ is finitely generated for all i, then $H_p(C; \mathbb{Z}_n) \cong H^p(C; \mathbb{Z}_n)$.
- 9. Page 204 206: Problems 4, 5, 6, 8

Hand-in: 2, 4b, 5, 7, 8