Homework 2
Topology I, Math 70800, Spring 2021
Instructor: Abhijit Champanerkar
Due: Monday Mar 8th
(upload pdf scan on CUNY BlackBoard in Homework Section)

Topic: Relative homology, exact sequences

Reading !

1. Read about the idea and motivation for homology from pages 97-101 of the text-
book.

2. Proof of Proposition 2.9 on page 111, Section 2.1.

3. Read about finitely generated abelian groups and the computatbility of homology

groups attached to this homework.
4. Read proof of the Five-Lemma on page 129.

5. Read about Barycentric Subdivision of Simplices from pages 119 - 120, and Iterated
Barycentric Subdivision from page 123.

6. Read about the Naturality of Exact sequences on page 127.

Problems

1. Show that Hy(X, A) = 0 iff A meets eah path-component of X.

2. Compute the relative homology groups for the following pairs (X, A).

(@) X =5%and A = {a,...,a,}

(b) X =T? and A =meridian.

(c) X=Rand A =Q.

(d) X =T7?and A = meridian and longitude.

LAll section, chapter, page and example numbers refer to the book “Algebraic Topology” by Allen
Hatcher freely available at http://www.math.cornell.edu/ hatcher/AT/ATpage.html



3. Compute the homology of space X gives below, by finding a homotopy equiva-
lent space (usually a deformation retract) Y whose homology you have computed.
Please justify the homotopy equivalence (or deformation retract).

(a) X is orientable surface of genus g with b boundary components.
(b) X is non-orientable surface of genus g with b boundary components.

() X =R3>—{(0,0,2)|]z € R}
(d) X =R3— (U{(i,O, )|z € R})

(€) X =R’ —{(z,y,0)|z* +y* =1}

(f) X is a torus with n meridional disks attached (a meridional disk a disk which

bounds a meridian inside the torus).

(8 X =R~ ({(0,0,2)]z € R} U{(z,y,0)|* +y* = 1})

4. (a) For an exact sequence A 5B 5 C = D% E show that C = 0 iff fis
surjective and g is injective.
(b) Using this prove that the inclusion A %+ X induces isomorphisms on all ho-

mology groups iff H,,(X, A) = 0 for all n.

5. Letr : X — Abe aretraction and let ¢ : A — X be the inclusion map. Show that

ix 1 Hi(A) — H,(X) is a monomorphism onto a direct summand.

6. Show that chain homotopy of chain maps is an equivalence relation.

Problems below are practice problems on exact sequences.
7. 1AL B 02 Dis exact, then [ is surjective if and only if & is surjective.

8. For each of the following exact sequences say as much as possible about the abelian

group G and/or the unknown homomorphism o.

@0—=+Z—-G—=2Z—=0 (e 0—= Zym = G — Zyn — 0

D) 0—=Z—=G—=Zy—0 ) 0—=Zs =G —=Zy 7570
) 0—-Z—>G—7Z,—0 g 02ZSZ®L—Z®Zy—0
(d) 0—=2Z, -G —=7Zy—0 h0—-GSZBZ —Zy—0



9. (@ f0 = A - B — C — 0is a short exact sequence of of vector spaces and
linear maps, then show that dim B = dim A + dim C.

(b) If 0 = A - B — C — 0is a short exact sequence of finitely generated abelian
groups, then show that rank B = rank A + rank C. (Hint: Extend a maximally
independent subset of A to a maximally independent subet of B).

() If0 — A4, = A,y — ... = A — Ay — 0is an exact squence of finitely
generated abelian groups, then > (—1)rank A; = 0.

Hand-in: 2ad, 3fg, 9c



In particular, if G = G, ® G,, then G/G, = G,.

Of course, one can have G/G, = G, without its following that G = G, ®G,;
that is, G, may be a subgroup of G without being a direct summand in G. For
instance, the subgroup nZ of the integers is not a direct summand in Z, for that
would mean that

Z = nZ o G,

for some subgroup G, of Z. But then G, is isomorphic to Z/nZ, which is a group
of finite order, while no subgroup of Z has finite order.

Incidentally, we shall denote the group Z/nZ of integers modulo n simply
by Z/n, in accordance with current usage.

The fundamental theorem of
finitely generated abelian grou

here are actually two theorems that are important to us. The first is a

theorem about subgroups of free abelian groups. We state it here, and give a
proof in §11:

Theorem 4.2. Let F be a free abelian group. If R is a subgroup of F, then
Ris also a free abelian group. If F has rank n, then R has rank r < n; further-

more, there is a basis e,, .. . e, for F and integers t,, ... ,t, with t; > 1 such
that

AU T N ,e, is a basis for R.

@) el .. Uy, that is, t, divides t, , | for all i.

The integers t,, . . . ,t, are uniquely determined by F and R, although the basis
€y, ...,e,I1s not.

An immediate corollary of this theorem is the following:

Theorem 4.3 (The fundamental theorem of finitely generated abelian groups).
Let G be a finitely generated abelian group. Let T be its torsion subgroup.

(a) There is a free abelian subgroup H of G having finite rank B such that
G=H®T

(b) There are finite cyclic groups T,, .

««+ Ty, where T, has order ;;>1,
such that t,|1,] . . . |tk and

T=T,06...0T,

(¢) The numbers 8 and t,, . .. t, are uniquely determined by G.

The number B is called the betti number of G; th
called the torsion coefficients of G. Note that B is the
group G/T = H. The rank of the subgroup H and the

T, are uniquely determined, but the subgroups themselves are not.

./ i
e numbers ¢,, . . . o1, are
rank of the free abelian

orders of the subgroups

e e
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Proof. Let S be a finite set of
lian group on the set . The ma
morphism carrying F onto G. L
F/R = G. Choose bases for F

generators {g,} for G; let F be the free abe-
P carrying each g; to itself extends to 2 homo-
et R be the kernel of this homomorphism. Then
and R as in Theorem 4.2. Then
F=F®...0F,

where F; is infinite cyclic with generator e;; and

R = tlFl® LA ethk\QFk.*l@ 5 Ne @F,.
We compute the quotient group as follows:

F/Rz(Fl/tlFle' i -@Fk/t,‘F,‘)EB(F,,,,e- : '®Fu)~
Thus there is an isomorphism

Ji1G—(Zft,®: .. ®Z/t)o(Z® - .- .07Z).
The torsion subgrou
Z/t, by f, since any
of the theorem follo

P T of G must be mapped to the subgroup Z/1,® . . . &
isomorphism preserves torsion subgroups. Parts (a) and (b)
w. Part (c) is left to the exercises. [

This theorem shows that an

y finitely generated abelian group G can be
written as a finite direct sum of

cyclic groups; that is,
G=(Zo...02)0Z/1,0. .. ®Z/t,.
with > 1andt|e]ss . t,. This representation is in some sense a “canoni-

cal form” for G. There is another such canonical form, derived as follows:
Recall first the fact that if m and n are relatively prime positive integers,

then
Z/m®Z/n=Z/mn.

It follows that any finite cyclic group can be written as a direct sum of cyclic

groups whose orders are powers of primes. Theorem 4.3 then implies that for
any finitely generated group G,

G=(Z®. . .02)0(Z/a,®- . .®Z/a)

where each g; is a power of a prime. This is another canonical form for G, since
the numbers a; are uniquely determined by G (up to a rearrangement), as we
shall see. The numbers a; are called the invariant factors of G.

EXERCISES

1. Show that if G is a finitely generated abelian group, every subgroup of G is
finitely generated. (This result does not hold for non-abelian groups.)

2. (a) Show that if G is free, then G is torsion-free. .
(b) Show that if G is finitely generated and torsion-free, then G is free.

.



*§11. THE COMPUTABILITY OF HOMOLOGY GROUPS

We have computed the homology groups of some familiar spaces, such as the
sphere and the torus and the Klein bottle. Now we ask the question whether one
can in fact compute homology groups in general. For finite complexes, the an-
swer is affirmative. In this section, we present an explicit algorithm for carrying
out the computation.

First, we prove a basic theorem giving a “normal form” for homomor-
phisms of finitely generated free abelian groups. The proof is constructive in na-
ture. One corollary is the theorem about subgroups of free abelian groups that
we stated earlier as Theorem 4.2. A second corollary is a theorem concerning
standard bases for free chain complexes. And a third corollary gives our desired
algorithm for computing the homology groups of a finite complex.

First, we need two lemmas with which you might already be familiar.

Lemma 11.1. Let A be a free abelian group of rank n. If B is a subgroup
of A, then B is free abelian of rank r < n.

Proof. We may without loss of generality assume that B is a subgroup of

the n-fold direct product Z" = Z X - - - X Z. We construct a basis for B as
follows:

Let ;: Z" — Z denote projection on the ith coordinate. For each m < n,
let B,, be the subgroup of B defined by the equation

B,=BN (Z"X0).

That is, B,, consists of all x € B such that x;(x) = 0 for i > m. In particular,
B, = B. Now the homomorphism

T, B,—ZL

carries B,, onto a subgroup of Z. If this subgroup is trivial, let x,, = 0; other-
wise, choose x,, € B,, so that its image =, (x,) generates this subgroup. We

assert that the non-zero elements of the set {x,, . ..,x,} form a basis for B.
First, we show that for each m, the elements x,, . . . ,x,, generate B,,. (Then,
in particular, the elements x,, . . .,X, generate B.) It is trivial that x, generates
B,; indeed if d is the integer m,(x,), then
x, = (d,0,...,0)
and B, consists of all multiples of this element.
Assume that x,,...,x, _, generate B, _,; let x € B,. Now =_(x) =

kx,(x,) for some integer k. It follows that
' . (X — kx,) =0,
so that x — kx,, belongs to B,, _,. Then

X‘—- kx,':: k.xl+ S +k._|x~_‘

By the induction hypothesis. Hence x,, . . .,x,, generate B,,.




Second, we show that for each m, the non-zero elements in the set
{x,,...,x,} are independent. The result is trivial when m = 1. Suppose it true
for m — 1. Then we show that if

AX,+ - - -+ AX, =0,

then it follows that for each i, \; = 0 whenever x; # 0; independence follows.
Applying the map =, we derive the equation

A 7. (x,) =0.

From this equation, it follows that either A, = 0 or x,, = 0. For if A,, # 0{‘!“’“
7 (X,) = 0, whence the subgroup (B, is trivial and x,, = 0 by definition.
We conclude two things:

\.=0 if x,#0,
. >\1x1+"‘+)‘m-1xm-l=0'
The induction hypothesis now applies to show that for i <m,

N=0 whenever x,#0. O

For later use, we generalize this result to arbitrary free abelian groups:

Lemma 11.2. If A is a free abelian group, any subgroup B of A is free.

Proof. The proof given for the finite case generalizes, provided we assume
that the basis for 4 is indexed by a well-ordered set J having a largest element.
(And the well-ordering theorem, which is equivalent to the axiom of choice, tells
us this assumption is justified.)

We begin by assuming A equals a direct sum of copies of Z; that is, 4 equals
the subgroup of the cartesian product Z’ consisting of all tuples (n,), . ; such
that n, = O for all but finitely many . Then we proceed as before.

Let B be a subgroup of 4. Let B consist of those elements x of B such that
7, (x) = 0 for « > B. Consider the subgroup m,(B,) of Z; if it is trivial define
x; = 0, otherwise choose x; € B, s0 m(X;) generates the subgroup.

We show first that the set {x, | « =< 8} generates B,. This fact is trivial if .

B is the smallest element of J. We prove it in general by transfinite induction.
@ .M
Given x € B;, we have

w5(X) = kwy(Xg)

for some integer k. Hence m3(x — kx;) = 0. Consider the set of those indices a
for which m (x — kxg) # 0. (If there are none, x = kx; and we are through.)

All of these indices are less than 8, because x and x; belong to B,. Furthermore, }

this set of indices is finite, so it has a largest element +, which is less than 8. But
this means that x — kx; belongs to B,, whence by the induction hypothesis,

x — kx, can be written as a linear combination of elements x,, with each a < .- 4
Second, we show that the non-zero elements in the set {x, | « < B} are inde- 3




pendent. Again, this fact is trivial if B is the smallest element of J. In general,
suppose
A X, + s FAK, T+ Ax, =0,
where a; < B. Applying 7, we sec that
Ay 7s(xg) = 0.
As before, it follows that either A, = 0 ot x, = 0. We conclude that
A =0 if x,#0,
and
k,lx,' + ALK, ™ 0.
The induction hypothesis now implies that A, = 0 whenever X, #0 0O

We now prove our basic theorem. First we need a definition.

Definition. Let G and G’ be free abelian groups with bases a,, . . . ,@, and
al,....a., respectively. If f: G — G’ is a homomorphism, then

fla) = N\a

for unique integers X,. The matrix (X)) is called the matrix of f relative to the
given bases for G and G'.

Theorem 11.3.  Let G and G be free abelian groups of ranks n and m, re-
spectively; let [ : G — G' be a homomerphism Then there are bases for G and
G' such that, relative to these bases. the matrix of [ has the form

b, 0 |
N .
gl0 b,
j
0 0
where b, > 1 and b,| b,] - - - | b,.

This matrix is in fact uniquely determined by f (although the bases involved
are not). It is called a normal form for the matrix of f.

Proof. 'We begin by choosing bases in G and G’ arbitrarily. Let A be the
matrix of f relative to these bases. We shall give shortly a procedure for modify- \

{ - il
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ing these bases so as to bring the matrix into the normal form described. It is
called “the reduction algorithm.” The theorem follows. I

Consider the following “elementary row operations” on an integer matrix A:
(1) Exchange row i and row k.

(2) Multiply row i by —1.

(3) Replace row i by (row i) + g(row k), where g is an integer and k # i.

Each of these operations corresponds to a change of basis in G'. The first
corresponds to an exchange of a; and a;. The second corresponds to replacing
a!by —a;. And the third corresponds to replacing a; by a; — ga;, as you can
readily check.

There are three similar “column operations” on A that correspond to changes
of basis in G.

We now show how to apply these six operations to an arbitrary matrix A4 so
as to reduce it to our desired normal form. We assume A is not the zero matrix,
since in that case the result is trivial.

Before we begin, we note the following fact: If ¢ is an integer that divides
each entry of the matrix A4, and if B is obtained from 4 by applying any one of
these elementary operations, then ¢ also divides each entry of B.

The reduction algorithm

Given a matrix A = (a;) of integers, not all zero, let a(A) denote the small-
est non-zero clement of the set of numbers |a,|. We call a; a minimal entry of A
if |a,| = a(A).

Thc reduction procedure consists of two steps. The first brings the matrix
to a form where a(A) is as small as possible. The second reduces the dimensions
of the matrix involved.

Step 1. We seek to modify the matrix by elementary operations so as to
decrease the value of the function a. We prove the following:

If the number a(A) fails to divide some entry of A, then it is possible to de-
crease the value of o by applying elementary operations to A; and conversely.

The converse is easy. If the number a(A) divides each entry of A, then it
will divide each entry of any matrix B obtained by applying elementary op-
erations to A. In this situation, it is not possible to reduce the value of a by
applying elementary operations.

To prove the result itself, we suppose a; is a2 minimal entry of A that fails
to divide some entry of A. If the entry aj; fails to divide some entry a; in its
column, then we perform a division, writing

ag; r
—E=q+—,
a;, a‘j

arc,
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where 0 < |r| < |a;|. Signs do not matter here; g and r may be either positive
or negative. We then replace (row k) of A by (row k) — g(row i). The result is
to replace the entry a,; in the kth row and jth column of 4 by a,; — qa; = r.
The value of « for this new matrix is at most |r|, which is less than a(A).

A similar argument applies if a;; fails to divide some entry in its row.

Finally, suppose a;; divides each entry in its row and each entry in its col-
umn, but fails to divide the entry a,,, where s # i and ¢ # j. Consider the fol-
lowing four entries of A4:

a;- - - a,

Because a;; divides a,;, we can by elementary operations bring the matrix to the
form where the entries in these four places are as follows:

0..-.a,+la,

If we then replace (row i) of this matrix by (row i) + (row s), we are back in
the previous situation, where a;; fails to divide some entry in its row.

Step 2. At the beginning of this step, we have a matrix 4 whose minimal
entry divides every entry of 4.

Apply elementary operations to bring a minimal entry of A to the upper left
corner of the matrix and to make it positive. Because it divides all entries in its
row and column, we can apply elementary operations to make all the other en-
tries in its row and column into zeros. Note that at the end of this process, the
entry in the upper left corner divides all entries of the matrix.

One now begins Step 1 again, applying it to the smaller matrix obtained by
ignoring the first row and first column of our matrix.

Step 3. The algorithm terminates either when the smaller matrix is the
zero matrix or when it disappears. At this point our matrix is in normal form.
The only question is whether the diagonal entries b,, . . . ,b, successively divide
one another. But this is immediate. We just noted that at the end of the first
application of Step 2, the entry b, in the upper left corner divides all entries
of the matrix. This fact remains true as we continue to apply elementary op-
erations. In particular, when the algorithm terminates, b, must divide each of
| S

A similar argument shows b, divides each of b,, ...,b,. And so on.

It now follows immediately from Exercise 4 of §4 that the numbers
b,,...,b,are uniquely determined by the homomorphism f. For the number / of
non-zero entries in the matrix is just the rank of the free abelian group f(G) C
G'. And those numbers b, that are greater than 1 are just the torsion coeffi-
cients t,, . .. ¢, of the quotient group G'/f(G).




Applications of the reduction algorithm

Now we prove the basic theorem concerning subgroups of free abelian

groups, which we stated in §4.

Proof of Theorem 4.2. Given a free abelian group F of rank n, we know
from Lemma 11.1 that any subgroup R is free of rank r < n. Consider the
inclusion homomorphism j: R — F, and choose bases a,,...,a, for R and
e, ...,e, for F relative to which the matrix of j is in the normal form of the
preceding theorem. Because j is a monomorphism, this normal form has no zero
columns. Thus j(a;) = bye; fori = 1,...,r, where b, = 1and b, | b,] - - - |5,.
Since j(a;) = a,, it follows that b,e,, ... ,b,e, is a basis for R. [

Now we prove the “standard basis theorem” for free chain complexes.

Definition. A chain complex € is a sequence

a a
'_"C’+l_”+lC’—L'C’_|_" ..

of abelian groups C; and homomorphisms 8;, indexed with the integers, such
that 8, 4d,,, = 0 for all p. The pth homology group of @ is defined by the
equation )

H,(C) =kerd,/imd,,,.
If H,(@) is finitely generated, its betti number and torsion coefficients are called
the betti number and torsion coefficients of @ in dimension p.

Theorem 11.4 (Standard bases for free chain complexes). Let {C’, a,} be a
chain complex; suppose each group C, is free of finite rank. Then for each p
there are subgroups U,, V,, W, of C, such that

c,=U,e@\Q~/ ‘,tZ/\?

where 3,(U,) C W,_, and 3,(V,) =0 and 3,(W,) = 0. Furthermore, there
are bases for U, and W, _, relative to which d,: U, — W, _, has a matrix of
the form

where b, =1 and b | b,| - - - | b,
Proof. Step 1. Let
Z,=%kerd, and B,=imad,,,.

Let W, consist of all elements c, of C, such that some non-zero multiple of ¢,

Sdtakiis

PRSI0 1T G S

Patan




belongs to B,. It is a subgroup of C,, and is called the group of weak boundaries.
Clearly
BCWCZ CL,
(The second inclusion uses the fact that C, is torsion-free, so that the equation
mc, = 8, +,d, , , implies that 4,c, = 0.) We show that W, is a direct summand
in Z,.
Consider the natural projection )
Z. = () — HC)|T,1€);

where T,(€) is the torsion subgroup of H,(€). The kernel of this projection
is W, therefore, Z,/W, = H,/T,. The latter group is finitely generated
and torsion-free, so it is free. If ¢, + | is a basis for Z,/W,,
and d,,....d, is a basis for W,, then it is straightforward to check that
Ciy - - +Cpdy, . . . ,d,is a basis for Z,. Then Z, = V, & W,, where ¥, is the group
with basis ¢, .. . ,c,.

Step 2. Suppose we choose bases e,,...,e, for C,, and ej, ..., e, for

C, - 1, relative to which the matrix of 3,: C, — C, _, has the normal form
s s n @y s veEih
e, -bl 0
. . 0
e, |0 b,
€41
0 0
e. | :
where b, =1 and b, 15 » # &l b,. Then the following hold:

(1) €44,---,e,is a basis for Z,.
(2) e, ....eis a basis for W, _,.
(3) bsel, . ..,be;is a basis for B, _,.
We prove these results as follows: Let ¢, be the general p-chain. We com-
pute its boundary; if

] 1
¢, = ae;, then a,c, = a;b.e.
To prove (1), we note that since b; # 0, the p-chain ¢, is a cycle if and only if
a; = Ofori=1,...,l To prove (3), we note that any p — 1 boundary §,c, lies
in the group generated by be;, . . . ,b,e;; since b, # 0, these elements are inde-
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pendent. Finally, we prove (2). Note first that each of e],...,e] belongs to

W, _,, since b,e; = de;. Conversely, let

Cp1 = id,-e,f

i=1

be a p — 1 chain and suppose ¢, _, € W, _,. Then ¢, _, satisfies an equation of
the form

1

Aey-1=9pc,= > aibie]

i=1

for some X # 0. Equating coefficients, we see that Ad; = 0 for i > I, whence
d;=0fori> I Thuse,,...,ejis a basis for W, _,.

Step 3. We prove the theorem. Choose bases for C, and C, _ , as in Step 2.
Define U, to be the group spanned by e,, . . . ,¢; then

,=U,®2Z,.

Using Step 1, choose ¥, so that Z, = ¥, ® W,. Then we have a deco'mposition
of C, such that 9,(¥,) = 0 and 9,(W,) = 0. The existence of the desired bases
for U, and W, _, follows from Step 2. O

Note that W, and Z, = V, ® W, are uniquely determined subgroups of C,.
The subgroups U, and V, are not uniquely determined, however.

Theorem 11.5. The homology éroups of a finite complex K are effectively
computable.

Proof. By the preceding theorem, there is a decomposition
GK)=U®oeV,ew,

where Z, = V,® W, is the group of p-cycles and W, is the group of weak
p-boundaries. Now

H,(K)=Z,/B,=V,® (W,/B,) = (Z,/w,) ® (W,/B,).

The group Z,/W, is free and the group W, /B, is a torsion group; computing
H,(K) thus reduces to computing these two groups.

Let us choose bases for the chain groups C,(K) by orienting the simplices
of K, once and for all. Then consider the matrix of the boundary homomor-
phism 4, : C,(K) — C, _ (K relative to this choice of bases; the entries of this
matrix will in fact have values in the set {0,1,—1}. Using the reduction algo-
rithm described earlier, we reduce this matrix to normal form. Examining Step
2 of the preceding proof, we conclude from the results proved there the follow-
ing facts about this normal form:
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(1) The rank of Z, equals the number of zero columns.
(2) The rank of W, _, equals the number of non-zero rows.

(3) There is an isomorphism

W, \/B,_\=Z/b,®Z[b,® - - - OL/b,

Thus the normal form for the matrix of d,: C, — C, _ , gives us the torsion

coefficients of K in dimension p — 1; they are the entries of the matrix that are
greater than 1. This normal form also gi‘\"es us the rank of Z,. On the other
hand, the normal form for 8, , ,: C, , , — C, gives us the rank of W,. The dif-
ference of these numbers is the rank of Z,/W,—that is, the betti number of K
in dimension p. 0O

EXERCISES

1. Show that the reduction algorithm is not needed if one wishes merely to com-
pute the betti numbers of a finite complex K; instead all that is needed is an
algorithm for determining the rank of a matrix. Specifically, show that if A4, is
the matrix of 9, : C,(K) — C, _,(K) relative to some choice of basis, then

P e e L A

B,(K) = rank C,(K) — rank 4, — rank 4, , ,.

2. Compute the homology groups of the quotient space indicated in Figure 11.1.
[Hint: First check whether all the vertices are identified.]

D e

3. Reduce to normal form the matrix

2 6 4
4 =7 4
4 8 4

Figure 11.1




