Homework 1

Topology I, Math 70800, Spring 2021 Instructor: Abhijit Champanerkar **Due:** Monday Feb 15th (upload pdf scan on CUNY BlackBoard in Homework Section) **Topic:** Cell complexes and surfaces

Reading¹

- 1. Reading from Chapter 0:
 - (a) Basic definitions.
 - (b) Page 4, House with 2 rooms.
 - (c) Pages 5-8, Cell complexes and examples of the real and complex projective space ℝPⁿ and ℂPⁿ.
 - (d) Pages 11-12, Collapsing subspaces, Examples 0.7, 0.8 and 0.9.
 - (e) Pages 14-16, Homotopoy extension property and applications to cell complexes.
- 2. Read at least one proof of classification of surfaces, available from: http://www.math.csi.cuny.edu/abhijit/70800/surfaces/
- 3. If required please read the examples on Quotient Spaces which are posted on the class homepage.

Problems

- 1. Let *X* be the space obtained from S^2 by attaching *n* 2-cells along any collection of *n* disjoint circles in S^2 . Show that $X \simeq \bigvee_{n+1} S^2$.
- 2. Let *G* be a graph with *v* vertices and *e* edges. (a) Show that $G \simeq \bigvee_n S^1$ and find *n* in terms of *v* and *e*. (b) Show that if $G \simeq \bigvee_m S^1$, then m = n.

A compact surface *S* with boundary is a 2-manifold with boundary. Let \overline{S} be the closed surface obtained by gluing disks to the boundary of *S*. Then the genus of *S* is the genus

¹ All section, chapter, page and example numbers refer to the book "Algebraic Topology" by Allen Hatcher.

of the closed surface \overline{S} . You can model a surface with boundary as the standard surface model with the interiors of disjoint discs deleted.

- 3. (a) Find the genus of the cylinder and the Mobius strip.
 - (b) Show that the torus with a disc removed (punctured torus) is homotopic to the figure eight.
 - (c) Let *S* be a compact surface with boundary with genus *g* and *b* boundary components. Show that $S \simeq \bigvee_n S^1$ and find *n* in terms of *g* and *b*.
- 4. Identify the following surfaces from the given surface symbols. (a) $abca^{-1}b^{-1}c^{-1}$ (b) $abca^{-1}db^{-1}c^{-1}d^{-1}$ (c) $ae^{-1}a^{-1}bdb^{-1}cc$
- 5. Let *X* be a CW complex.
 - (a) Show that attaching a 2-cell to *X* adds a relation to $\pi_1(X)$.
 - (b) Show that attaching an *n*-cell to X for $n \ge 3$ does not change the fundamental group.
- 6. (a) Show that the space obtained by identifying the edges of a polygon in pairs is a closed surface.
 - (b) Show that the space obtained by identifying pairs of edges of a finite collection of disjoing 2-simplicies is a closed surface.
 - (c) Show that the edges in (b) can always be oriented so as to define a Δ -complex structure on the resulting surface. (harder!)
- 7. Find a Δ -complex structure and use it to compute the simplicial homology for the following spaces:
 - (a) $X = \bigvee_n S^1$ (b) $X = \bigvee_n S^2$
 - (c) *X* obtained by identifying the verticies of Δ^2 to a point.
- 8. (a) Identify the surfaces given below, and (b) Compute their simplicial homology.

Hand-in: Problems 3c, 5, 7b, 8(a).