Review for Final

Calculus I Computer Lab, MTH 229, Fall 2021

1. Final Exam will be held on Monday Dec 20th 2:30-4:25, 1S-108, in-person.
2. Read the class notebooks we used during class (from the folder https://github.com/mth229/229projects on gesis or mybinder), the Webwork projects and review problems for the exam.
3. Here is a short review of some of the Julia commands we have used this semester.

Julia commands.

1. (a) Help on commands: ?commandname
(b) Use commands using MTH229, using SimplePlots
(c) Use Julia notebook version 1.5.3
2. Order of operations in Julia.
3. In-built functions: sqrt, cbrt, sin, cos etc, sind, cosd etc, asin, acos exp, $\log , \log (b, x)$
4. Functions defined using ternary operator: ternary operator predicate ? expression1 : expression2 e.g. $f(x)=x<=1$? 35 : $35+10 *(x-1)$
5. Graphing functions: plot and plot! .
6. Arrays and Lists: range, map, plot, scatter, For e.g. xs = range(0, 10, length=50); ys = f.(xs); ys = map(sin, xs), plot(xs, ys)
7. Finding Zeros: roots (f) (for zeros of polynomials only!), bisection(f,a,b) (uses bisection method), fzero(f,a) (finds zero near a for any function with high accuracy), $\mathrm{fzeros}(\mathrm{f}, \mathrm{a}, \mathrm{b}$) (finds all zeros in the interval (a, b) for any function, not much accuracy).
8. Limits: $\lim (f, c)$ (approximate the limit of a function).
9. Derivatives: secant (f,a,b), tangent (f,a) (secant and tangent line), f'(a), f' (a), f' ' (a) (numerically)
10. Newton's method: newton(f, a)
11. First and second derivatives and Extrema: plotif ($\mathrm{f}, \mathrm{f}^{\prime}, \mathrm{a}, \mathrm{b}$) (plots increasing and decreasing parts), plotif (f, f ' ' , a, b) (plots concave up and down parts) fzero(f, a)
12. Integration: integrate(f, a, b) (find definite integral), riemann(f, a, b, n, method="type") (find Riemann sums using different methods), quadgk (f, a, b) (uses Gauss quadrature method, also returns error)
13. Symbolic commands:

Limits	Derivatives
$f(x)=\sin (x) / x$	$f(x)=\exp \left(x^{\wedge} 2\right)$
@syms x	@syms x
$\operatorname{limit}(f(x), x=>0)$	$\operatorname{diff}(f(x), x)$

```
Integration
f(x) = x^2
@syms x
integrate(f(x), x)
integrate(f(x), (x, 0, 1))
```


Math 229 Final Exam Review

Problem 1. Convert the following Julia expressions to standard mathematical expressions. Use parentheses if necessary to clearly indicate the order of operations:
a. $b-a / b-b / c$
b. $\sin \left(1 / 4 * x^{\wedge} 2\right) / 2 x^{\wedge} 3$

Problem 2. Write out the Julia commands for the following mathematical expressions.
a. $f(x)=\frac{\sin ^{2}(4 x)}{\sqrt{2 x}+2}$
b. $g(x)=\frac{\tan ^{-1}(3 x)}{e^{2 x}-1}$

Problem 3. Let $f(x)=\tan (x / 6) \cdot \cos (x+3)$, for $0 \leq x \leq 2 \pi$.
Find ALL points a such that $f(a)=0$, rounded to four (4) decimal places.
Problem 4. Write the Julia commands for this function: $\quad h(x)= \begin{cases}4-\frac{7}{x^{2}} & x \leq-1 \\ 3-1 / x & x>-1\end{cases}$ Compute the following values. Truncate answers to 4 decimal places.
$h(h(h(\sqrt{6})))=$ \qquad

$$
h(h(h(-\sqrt{6})))=
$$

Problem 5. Plot the following functions on the interval $(\pi, 5)$.

$$
f(x)=\frac{\sin (12 x)}{e^{x}} \quad g(x)=\frac{\cos (12 x)}{x^{3}}
$$

a. How many times do the two curves intersect for $\pi<x<5$? \qquad
b. What is the number of local maxima (peaks) for each function? (Exclude endpoints) Number of local maxima for $f(x)$ is \qquad .
Number of local maxima for $g(x)$ is \qquad .

Problem 6. Find the minimum point (x-value) for $0<x<\pi$ for

$$
h(x)=\left(\cos (x)+\frac{1.7}{(x-\pi)^{2}}\right)
$$

a. Exact minimum x-value to three (3) decimal places: \qquad .
b. Write the precise Julia commands you used to solve this problem.

Problem 7. Let $g(x)=x^{5}-4 x+2$.
What is the SMALLEST real root, rounded to four (4) decimal places?
Hint: If $a<b$, then a is smaller than b, so -5 is smaller than -2 .

Problem 8. Let $h(x)=e^{2 x}-4 e^{x}+4$.
a. Use fzeros to find all roots of $h(x)$, rounded to four (4) decimal places.
b. Use fzero $(\mathrm{h},-10,10)$ to find all roots of $h(x)$. Explain what goes wrong. Hint: Graph the function.

Problem 9. Compute the following limits. Round answers to 4 decimal places.
a. $\lim _{x \rightarrow 5} \frac{\cos \left(2 x^{3}+\pi / 2\right) \sin (x-5)}{x-5}=$ \qquad
b. $\lim _{x \rightarrow 3} \frac{\log \left((x-3)^{4}+2 x-5\right)}{x-3}=$ \qquad
c. $\lim _{x \rightarrow 0}(\cos (x))^{\left(3 / x^{2}\right)}=$ \qquad

Problem 10. Compute the EXACT answer (symbolically) for the following limits.
a. $\lim _{x \rightarrow 0}(\cos (x))^{\left(3 / x^{2}\right)}=$ \qquad
b. $\lim _{x \rightarrow 0^{+}} \sqrt{\frac{5}{x}} \sin \left(\frac{\sqrt{x}}{3}\right)=$ \qquad

Problem 11. $f(x)=\tan (x / 6) \cdot \cos (x-0.8)$, for $0 \leq x \leq 2 \pi$.

Find the x-coordinates in this interval for the following points, accurate to 4 decimal places.
a. Points where $f^{\prime}(x)=0$:
b. Points where $f(x)=f^{\prime}(x)$:
c. Points where $f^{\prime \prime}(x)=x^{3}$:

Problem 12. Use Newton's Method to find all zeros of $f(x)=\sqrt{x+1} \cos (x)$ for $0 \leq x \leq 10$.
a. Graph the function on this interval.
b. Write all the necessary Julia commands to use Newton's Method.
c. Write the answers, accurate to 4 decimal places.

Problem 13. Let $f(x)=e^{(x / 3)} \sin (x+1)$ for $0 \leq x \leq 10$.
Write both the Julia commands and your answers, accurate to 4 decimal places.
a. Find all critical points of $f(x)$; i.e. points where $f^{\prime}(x)=0$.
b. Find all inflection points of $f(x)$; i.e. points where $f^{\prime \prime}(x)=0$.

Problem 14. Write the answers, accurate to 4 decimal places.

$$
f(x)=\sqrt{x+2} \cos (x+1)+x^{3} \sin (2 x) \quad \text { for } \quad 5 \leq x \leq 10
$$

a. Find all critical points of $f(x)$.
b. Find all inflection points of $f(x)$.
c. Where is $f(x)$ decreasing? Use interval notation.
d. Where is $f(x)$ concave down? Use interval notation.
e. Classify the critical points as max, min or neither using the first derivative test.
f. Classify the critical points as max, min or neither using the second derivative test.

Problem 15. Let $f(x)=\frac{x+1}{\sqrt{x^{3}+2}}$.
We want to compute $\int_{3}^{7} f(x) \mathrm{d} x$. But the command integrate will not work here.
a. Approximate $\int_{3}^{7} f(x) \mathrm{d} x$ by Riemann sums with these methods and values of n :

	Left endpoint method	Right endpoint method	Simpsons method	Trapezoid method
$n=100$				

b. What is the answer using the command quadgk ?
c. How accurate is the answer given by quadgk ? i.e., what is the max error?
d. Which is the best answer in the table above?

