Review for $3^{\text {rd }}$ Exam

1. Give examples of the following power functions
a. For $x>0$, graph passes through (1,6), is increasing and concave up. (2 pts.)
b. For $x>0$, graph passes through (1,9), is increasing and concave down? (2 pts.)
c. For $x>0$, graph passes through $(1,3)$, is decreasing and has asymptotes the positive x - axis and the positive y-axis. (2 pts.)
2. Which of the three functions $y_{1}=x^{4}, y_{2}=x^{-2}, y_{3}=x^{2}$
a. Has the largest values on the interval $0<x<1$ (2 pts)
b. Has the smallest values on the interval $x>1$ (2 pts)
c. Sketch the graphs of these power functions on $0<x<1$ (3 pts.)
3. Match each formula with its corresponding table of values (6 pts)
a. $f(x)=3(1.06)^{x}$
b. $g(x)=2 x^{1.8}$
c. $h(x)=5 x^{0.62}$

(i)	2	3	4	5	6
	13.929	43.348	97.006	181.19	301.89

(ii)	1	2	3	4	5
	5.00	7.6844	9.8806	11.81	13.562

(iii)	2	4	6	8	10
	3.3708	3.7874	4.2556	4.7815	5.3725

4. The relationship between the weight W (in pounds) and the wingspan S (in feet) of birds can be modeled by the power function $W=0.15 \sqrt[4]{S^{9}}$. The pterosaur weighed approximately 600 pounds. Estimate the wingspan of this prehistoric bird.
5. For each of the polynomials below determine its degree and its leading coefficient ($2+2+2 \mathrm{pts}$)
a. $\quad P(x)=2 x^{4}-2 x-3$
b. $P(t)=5-3 x+8 x^{2}-12 x^{6}$
c. $\quad P(z)=x^{3}+2 x^{2}+6 x-3$
6. For the polynomial $P(x)=x^{4}-5 x^{2}-6$.
a. Estimate all its zeros, correct to three decimal points
b. How many turning points does it have? Approximately for what value(s) of x do they occur?
c. How many inflection points does it have? Approximately for what value(s) of x do they occur?
d. How many complex solutions roots does the function have?
7. Factor completely $f(x)=2\left(x^{2}-4\right)\left(x^{2}-25\right)$. Then sketch its graph.
8. Write a possible formula for the polynomial, assuming that what you see from the graph includes all the roots.

9. Consider the function $y=f(x)=x^{3}$.
a. Write a formula for the function produced when f is stretched by a factor of 3 and then shifted down by 2 units. Call this new function F and sketch its graph.
b. What function do you get is you reverse the order of the two operations in part a) and first shift $f(x)$ down by 2 units and the stretch it by a factor of 3 ? Call this new function G and sketch it.
c. What is F-G?
10. Find the roots of the equation $x^{2}+2 x+10=0$ and then use those solutions to factor the function $f(x)=x^{2}+2 x+10$.
