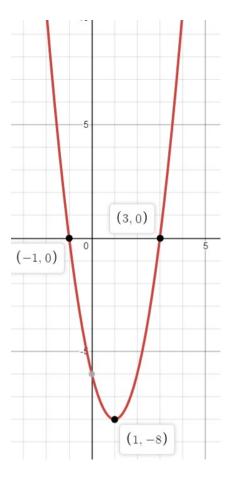
- 1. Give examples of the following power functions
 - a. For x > 0, graph passes through (1,6), is increasing and concave up. (2 pts.)
 - b. For x > 0, graph passes through (1,9), is increasing and concave down? (2 pts.)
 - c. For x > 0, graph passes through (1, 3), is decreasing and has asymptotes the positive x axis and the positive y axis. (2 pts.)


- 2. Which of the three functions $y_1 = x^4$, $y_2 = x^{-2}$, $y_3 = x^2$
 - a. Has the largest values on the interval 0 < x < 1 (2 pts)
 - b. Has the smallest values on the interval x > 1 (2 pts)
 - c. Sketch the graphs of these power functions on 0 < x < 1 (3 pts.)
- 3. Match each formula with its corresponding table of values (6 pts) a. $f(x) = 3(1.06)^x$ b. $g(x) = 2x^{1.8}$ c. $h(x) = 5x^{0.62}$

(i)	2	3	4	5	6
	13.929	43.348	97.006	181.19	301.89
(ii)	1	2	3	4	5
	5.00	7.6844	9.8806	11.81	13.562
	-		-		
(iii)	2	4	6	8	10
	3.3708	3.7874	4.2556	4.7815	5.3725

4. The relationship between the weight W (in pounds) and the wingspan S (in feet) of birds can be modeled by the power function $W = 0.15 \sqrt[4]{S^9}$. The pterosaur weighed approximately 600 pounds. Estimate the wingspan of this prehistoric bird.

- 5. For each of the polynomials below determine its degree and its leading coefficient (2+2+2 pts)
 - a. $P(x) = 2x^4 2x 3$
 - b. $P(t) = 5 3x + 8x^2 12x^6$
 - c. $P(z) = x^3 + 2x^2 + 6x 3$
- 6. For the polynomial $P(x) = x^4 5x^2 6$.
 - a. Estimate all its zeros, correct to three decimal points
 - b. How many turning points does it have? Approximately for what value(s) of x do they occur?
 - c. How many inflection points does it have? Approximately for what value(s) of x do they occur?
 - d. How many complex solutions roots does the function have?
- 7. Factor completely $f(x) = 2(x^2 4)(x^2 25)$. Then sketch its graph.

8. Write a possible formula for the polynomial, assuming that what you see from the graph includes all the roots.

- 9. Consider the function $y = f(x) = x^3$.
 - a. Write a formula for the function produced when f is stretched by a factor of 3 and then shifted down by 2 units. Call this new function F and sketch its graph.
 - b. What function do you get is you reverse the order of the two operations in part a) and first shift f(x) down by 2 units and the stretch it by a factor of 3? Call this new function G and sketch it.
 - c. What is F-G?

10. Find the roots of the equation $x^2 + 2x + 10 = 0$ and then use those solutions to factor the function $f(x) = x^2 + 2x + 10$.