We consider the problem
\[
\begin{cases}
-\Delta u = \lambda K (|x|) f (u), & x \in \Omega \\ u = 0 & \text{if } |x| = r_0 \\ u \to 0 & \text{as } |x| \to \infty
\end{cases}
\]
where \(\lambda \) is a positive parameter, \(\Delta u = \text{div} (\nabla u) \) is the Laplacian of \(u \), \(\Omega = \{ x \in \mathbb{R}^n; n > 2, |x| > r_0 \} \), \(K \in C^1 ([r_0, \infty), (0, \infty)) \) is such that \(\lim_{r \to \infty} K (r) = 0 \) and \(f \in C^1 ([0, \infty), \mathbb{R}) \) is a concave function which is sublinear at \(\infty \) and \(f (0) < 0 \). We establish the uniqueness of nonnegative radial solutions when \(\lambda \) is large.