Name: Solutions

- I will count your best 8 of the following 10 questions.
- You may only use Julia during this exam. No calculators or cell phones or notes.

<table>
<thead>
<tr>
<th>Question</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

80

<table>
<thead>
<tr>
<th>Section</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midterm 1</td>
<td></td>
</tr>
<tr>
<td>Overall</td>
<td></td>
</tr>
</tbody>
</table>
(1) Convert the following Julia expressions to standard mathematical expressions. Do not simplify.

(a) \(x - \frac{y}{z+x} \)

\[
\frac{x}{2} + x
\]

(b) \(\frac{\sin(x^2)}{4x} \)

\[
\frac{x}{4} \sin(x^2)
\]
(2) Convert the following Julia expressions to standard mathematical expressions. Do not simplify.

(a) \(\cos(4x^2)^2/2 \)

\[
\frac{1}{2} \cos^2(4x^2)
\]

(b) \(x/y/z-1 \)

\[
\frac{x}{yz} - 1
\]
(3) Convert each of the following expressions to its Julia equivalent:

(a) $\frac{y + x}{x - y}$

$\frac{(y + x)}{(x - y)}$

(b) $\frac{1}{\frac{b}{1+c} - a}$

$\frac{1}{(b/(1+c) - a)}$
(4) Convert each of the following expressions to its Julia equivalent:

(a) \(\frac{\tan^2(3x)}{3} \)

\[\frac{\tan(3x)}{2/3} = \sqrt{\tan(3x)} \]

(b) \(\frac{\sqrt{x-1}}{2} \)

\[\exp(\sqrt{x-1})/2 \]
(5) You want to compute a decimal approximate to $1/\sqrt{11}$. Explain what the following Julia commands compute, or why they give an error.

(a) $1/11 \cdot 1/2$

\[
1/4/2 = \frac{1}{22}
\]

(b) $1/(11 \cdot 1/2)$

\[
1/(4/2) = \frac{2}{11}
\]

(c) Write down a Julia command which produces a decimal approximate to $1/\sqrt{11}$. Explain how to check your result.

\[
1/\sqrt{11} \approx 0.3015
\]

check: $1/(0.3015...)^2 \approx 11$
(6) Plot the function \(f(x) = \frac{e^x}{\sin(5x) + 2} \) on the interval \((2, 5)\).

(a) Sketch the graph.

(b) How many local maxima are there for the function? (Exclude endpoints)
(7) Write down Julia commands to define two functions \(f(x) = \frac{x+2}{3x} \) and \(g(x) = \cos^2(\frac{1}{3x}) \), and compute \(g(f(2)) \).

\[
\begin{align*}
 f(x) &= \frac{x+2}{3x} \\
 g(x) &= \cos \left(\frac{1}{3x} \right)^2 \\
 g(f(2)) &\approx 0.77015\ldots
\end{align*}
\]
(8) Write down Julia commands to define a function \(f(x) \) which has value \(x^2 \) for \(-1 \leq x \leq 1\) and 1 for other values of \(x \), and plot its graph to check you are correct.

\[
f(x) = \begin{cases}
 x^2 & \text{if } -1 \leq x \leq 1 \\
 1 & \text{otherwise}
\end{cases}
\]

\[\text{plot}(f, -5, 5)\]
(9) Write down Julia commands to make a list of numbers from 1 to 15, and then a list of their cubes.
 Hint: you may use linspace and map.

\[x = \text{linspace}(1, 15, 15) \]
\[f(x) = x^3 \]
\[\text{map}(f, x) \]
(10) Find the minimum value of $f(x) = e^x + 2/x^2$, for positive values of x, to two decimal places.

$$f(x) = \exp(x) + 2/(x^2)$$

plot $(x, 0, 10)$

plot $(f, 0, 1.6)$

e.g. then zoom in

$x \approx 1.10$ to 2 decimal places

min value of $f(x) \approx 4.66$