(1) Let \(X \) be a topological space, and define relation \(x \sim y \) if \(x \) and \(y \) lie in a common connected component. Show that \(\sim \) is an equivalence relation. Show that if \(\{ A_i \}_{i \in I} \) is a collection of connected subsets of \(X \) with \(A_i \cap A_j \neq \emptyset \) for all \(i \) and \(j \), then the union of the \(A_i \) is connected.

(2) Prove that if \(X \) has only finitely many connected components, then all the components are open.

(3) Show that a contractible space is path connected.

(4) Show that a connected open subset of \(\mathbb{R}^2 \) is path connected.

(5) Prove that \(X \) is Hausdorff if and only if the diagonal \(\Delta = \{(x, x) \mid x \in X\} \) is closed in \(X \times X \).

(6) A retract \(A \) of a space \(X \) is a subset \(A \subset X \) such that there is a continuous map \(r: X \to A \) such that \(r|_A \) is the identity on \(A \). Show that every retract \(A \) of a Hausdorff space \(X \) is closed in \(X \).

(7) Show that composition of paths satisfies the following property. If \(f_0 \cdot g_0 \simeq f_1 \cdot g_1 \), and \(g_0 \simeq g_1 \), then \(f_0 \simeq f_1 \).

(8) Let \(h \) be a path from \(x_0 \) to \(x_1 \). Show that the change of basepoint map \(\beta_h: \pi_1(X, x_1) \to \pi_1(X, x_0) \) only depends on the homotopy class of \(h \).