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Abstract. The existence of inertial manifolds for a Smoluchowski equation arising in the 2D
Doi-Hess model for liquid crystalline polymers subjected to a shear flow is investigated. The presence
of a non-variational drift term complicates the dynamics dramatically from the gradient case in which
the it is characterized solely by the steady states. Several transformations are used in order to bring
the equation to a form in which the standard theory of inertial manifolds applies. A nonlinear
and nonlocal transformation developed in [34] and [35] is used to eliminate the first-order derivative
from the micro-micro interaction term. A traveling wave transformation eliminates the first-order
derivative from the non-variational term transforming the equation into a nonautonomous one for
which the theory of nonautonomous inertial manifolds applies.
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1. Introduction
One of the most prominent models for non-Newtonian fluids is the Doi-Hess molec-

ular kinetic theory for nematic liquid crystalline polymers. Polymer molecules are
viewed as equal rigid rods (cylinders) of length L and diameter b, b�L. Their popu-
lation is then described by a probability distribution function, f(t,x,m), for the axis
of symmetry m∈S2 of the molecule with the center of mass at x at time t. Account-
ing for Brownian effects leading to rotational and translational diffusion, effects of the
flow, and intermolecular interaction, the evolution of f is governed by the so-called
Smoluchowski equation

∂tf +u ·∇xf +∇m ·(Wf)=D∆xf +Dr∆mf +(Dr/kBT )∇m ·(∇mV f),

where ∇m =m×∂m stands for the gradient operator on the unit sphere, and ∆m =
∇2

m stands for the Laplace-Beltrami operator. The constants c, Dr, D, T and kB rep-
resent the concentration, (pre-averaged) rotational diffusivity, translational diffusivity,
absolute temperature T , and the Boltzmann constant kB , respectively. The equation
is also often studied in two dimensions, in which case the orientations m∈S1, and the
above differential operators are modified correspondingly. In the context of nematic
polymers, the equation was first proposed in the works of Doi [10] and Hess [20]. It
accounts for both the micro-micro interaction between the rods and the macro-micro
interaction when the equation coupled to macroscopic fluid equations. If, however,
the interaction with the ambient flow is neglected, the equation is a nonlinear Fokker-
Planck equation – a gradient system with the free energy as the Lyapunov functional.
Historically, the Smoluchowski equation was preceded by a variational model proposed
by Onsager in his seminal work [31]. Onsager calculated the free energy functional
and derived the Euler-Lagrange equation for the steady-states. He proposed that
the interparticle (micro-micro) interaction, due to the excluded volume effects, be
modelled using the mean-field ansatz

V (t,x,m)=kBT

∫ 2π

0

β(m,m′)f(x,m′,t) dm′= 〈β(m,·)〉f(t).
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2 Inertial manifolds for a Smoluchowski equation in shear flow

The function β(m,m′) represents a volume surrounding a molecule with orientation
m within which the center of mass of a molecule with orientation m′ is not allowed. It
depends on the shape of the particles, and in the case of cylindric rods it is given by the
formula β(m,m′)=2cdL2|m×m′|. Expanding β in terms of products of irreducible
tensors and retaining only the second term in this expansion, one arrives at the
formula β(m,m′)=−3/2U((m ·m′)2−1/3), where U ∝ cL2b denotes the intensity of
the potential. Employing this β instead the one proposed by Onsager yields the so-
called Maier-Saupe potential (see [29]). This significantly simplifies the mathematical
treatment of the model; nevertheless, it is widely accepted that it affords sufficient
degrees of freedom to capture the dynamics of the micro-micro interaction. In a recent
development, the bifurcation diagram for the Onsager equation (and therefore also
Smoluchowski equation in the absence of the flow) with the Maier-Saupe potential
was confirmed rigorously (see [6], [7], [9], [13], [25], [26]). The equation undergoes
two bifurcations. At a lower potential intensity, the equation undergoes a saddle-
node bifurcation, in which a prolate nematic branch of steady-states (probability
distribution concentrates to one direction) and an oblate nematic branch of steady-
states (probability distribution concentrates uniformly to the equator) emerge. At
a higher potential intensity, the equation undergoes a transcritical bifurcation: the
oblate branch intersects with the isotropic state, and there is a transfer of stability.
Since the Smoluchowski equation in this case is a gradient system, its global attractor
is fairly simple: it merely consists of the steady states and their unstable manifolds.

The microscopic Smoluchowski equation is coupled to macroscopic fluid equations
(e.g. Navier-Stokes equations) via the drift term

W (x,m,t)=(I−mm)(m ·∇x)u

and via the viscoelastic stresses that the mesogenic insertions induce in the fluid.
There are many challenges to the analysis of the full model, and one resorts to sim-
plifications. Even the simplest situation of spatially homogeneous suspensions in a
shear flow leads to complicated and peculiar dynamical behavior; the presence of a
non-variational symmetry breaking drift term in the Smoluchowski equation dramat-
ically complicates the dynamics. The equation ceases to be a gradient system, and
the attractor becomes a very complicated set, exhibiting not only steady-states, but
also various time-periodic solutions (see [12, 17, 18, 24, 27, 30], and even chaos (see
[1, 19]). Despite many existing numerical simulations, a rigorous bifurcation analysis
presents a great challenge.

Although intrinsically infinite-dimensional, many dissipative parabolic systems
exhibit long-term dynamics with properties typical of finite-dimensional dynamical
systems. The global attractor, often considered the central object in the study of
long-term behavior of dynamical systems, appears to be inadequate in capturing this
finite-dimensionality, even when its Hausdorff dimension is finite. This is mainly due
to two facts. Firstly, the global attractor can be a very complicated set, not necessarily
a manifold; the question whether the dynamics on it can be described by a system of
ODEs is yet to be resolved in the literature. Secondly, although all solutions approach
this set, they do so at arbitrary rates, algebraic or exponential, and, consequently,
the dynamics outside the attractor is not tracked very well on the attractor itself.
When they exist, inertial manifolds emerge as most adequate objects to capture the
finite-dimensionality of a dissipative parabolic PDE. Introduced by Foias at al. in [15],
they are defined to remedy the shortcomings of the global attractor just described:
they should be finite dimensional positive-invariant Lipschitz manifolds which attract
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all solutions exponentially, and on which the solutions of the underlying PDE are
recoverable from solutions of a system of ODEs, termed ‘inertial form’.

The challenge to proving the existence of inertial manifolds for the Smoluchowski
equation lies in the presence of the gradient in the nonlinear Fokker-Planck and the
drift terms; in its original form the equation does not satisfy the spectral-gap condi-
tion required in all existing theorems for proving the existence of inertial manifolds.
The problem was open for a while, and the author recently succeeded in proving
their existence for the gradient case by employing a nonlinear nonlocal transforma-
tion which eliminates the first-order derivatives from the equation, transforming it
into a Schrödinger-like equation. The question remained open for the case in which
the Smoluchowski equation is not a gradient system, and for which the question
of existence of inertial manifolds becomes even more important due to the complex
structure of the global attractor. In this paper, we consider the two-dimensional shear
flow case. We employ a similar nonlinear nonlocal transform as the ones in papers
[34, 35] to eliminate the gradient from the nonlinear Fokker-Planck term. However,
we are still left with gradients in the drift term. The variational portion is then elim-
inated by another transform of the same kind, while the non-variational portion is
eliminated using a traveling wave transformation which transforms the equation to a
nonautonomous one. Finally, the spectral gap condition is satisfied, and we apply the
theory of nonautonomous inertial manifolds (see [21, 22, 23]), which are now obtained
as time-dependent periodic sets. Since the global attractor is completely embedded
in the inertial manifold, the dynamics on it is governed by the inertial form. This, at
least theoretically at this point, provides an avenue to a rigorous bifurcation analysis
of the equation, as well as significant improvement of the existing numerical studies.
Some directions are employing the nonlinear Flocket theory, or studying the equation
as a nonautonomous perturbation of a gradient system.

Let us remark here that the described method still does not work for the three-
dimensional case in the presence of a flow. In the paper [35], the three-dimensional
flow in the absence of the flow is treated. However, finding a transformation which
eliminates the first-order derivatives from the drift term still presents a challenge.

2. Preliminaries We study a Smoluchowski equation for a spatially homoge-
neous suspensions of rodlike polymers

∂tf +∇m ·(Wf)=Dr∆mf +(Dr/kBT )∇m ·(∇mV f).

The interparticle (micro-micro) interaction term, due to the excluded volume effects,
is given by the Maier-Saupe potential

V (x,m,t)=kBT

∫ 2π

0

β(m,m′)f(x,m′,t) dm′= 〈β(m,·)〉f(t),

where β(m,m′)=−3/2U((m ·m′)2−1/3) (the 3D case) or β(m,m′)=−2U((m ·
m′)2−1/2) (2D case). The macro-micro interaction term

W (x,m,t)=(I−mm)(m ·∇x)u

is due to the rotation of the axes by the velocity gradients ∇xu. In this paper, we shall
consider spatially homogeneous suspensions in a plane (f(x,m,t)=f(m,t), x∈ IR2,
m∈S1) under imposed shear flow u(x1,x2)=(Gx2,0), where G is the shear rate. We
express the particle orientations using a local variable ϕ, i.e. m(ϕ)=(cosϕ,sinϕ),
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and write f(ϕ) instead of f(m). We will also use the notation w(ϕ)=(cos2ϕ,sin2ϕ).
The simplest quantity representing its anisotropy of a probability distribution f is the
orientational order-parameter tensor which is calculated as the traceless equivalent of
the second moment tensor:

S[f ]= 〈mm− I/2〉f =
∫ 2π

0

[m(ϕ)m(ϕ)− I/2]f(ϕ) dϕ.

The scalar order parameter

S[f ]= (2S[f ] :S[f ])
1
2 =(〈w〉f · 〈w〉f )

1
2 ∈ [0,1]

represents the degree of molecular alignment. For the isotropic phase f̄ =1/2π, S[f̄ ]=
0, and for the perfect alignment S[f ]=1.

After rescaling, the Smoluchowski equation becomes

ft =fϕϕ +(Wf)ϕ +(Vϕf)ϕ, (2.1)

where the Maier-Saupe potential is given by

V [f ]=−U

2
(mm− I/2) :S[f ]=−U〈w〉f ·w. (2.2)

Here we use the notation 〈g〉f =
∫ 2π

0
f(ϕ)g(ϕ) dϕ. Observe that |V [f ]|≤U . Also,

W (ϕ)=Gsin2ϕ=
G

2
(1−cos2ϕ).

Denoting

Ṽ (ϕ)=−G

4
sin2ϕ,

the equation (2.1) can be written as

ft−
G

2
fϕ =fϕϕ +((Vϕ + Ṽϕ)f)ϕ.

Regarding the existence, uniqueness and regularity of solutions of (2.1), it is easy to
prove the following theorem (see [6], [7]).
Theorem 2.1. Let f0 >0 be a continuous function on S1 such that

∫ 2π

0
f0 =1. A

unique smooth solution f(t)=S(t)f0 of (2.1) for an initial datum f(0)=f0 exists for
all nonnegative times, and remains positive and normalized∫ 2π

0

f(ϕ,t) dϕ=1.

Symmetry with respect to the origin – reflecting the fact that that we do not distin-
guish between orientations w and −w – is preserved. Therefore, we can expend the
solutions in Fourier series as

f(ϕ,t)=
1
2π

+
1
π

∞∑
k=1

[ak(t)cos(2kϕ)+bk(t)sin(2kϕ)],
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where

ak(t)= 〈cos(2kϕ)〉f(t) =
∫ 2π

0

cos(2kϕ)f(ϕ,t) dϕ,

bk(t)= 〈sin(2kϕ)〉f(t) =
∫ 2π

0

sin(2kϕ)f(ϕ,t) dϕ.

In this setting, the 2D Smoluchowski equation can also be written as an infinite system
of ODEs

a0 =1
b0 =0
a′k =−4k2ak +2Uk[a1(ak−1−ak+1)−b1(bk−1 +bk+1)]

+
k

2
G(−bk−1 +2bk−bk+1)

b′k =−4k2bk +2Uk[b1(ak−1 +ak+1)+a1(bk−1−bk+1)]

−k

2
G(−ak−1 +2ak−ak+1)

Multiplying the equation for a′k by ak/2 and the equation for b′k by bk/2, and adding
the two over k =1,2,3,... implies the following equation

1
2

d

dt

∞∑
k=1

a2
k +b2

k

k
+4

∞∑
k=1

k(a2
k +b2

k)=2U(a2
1 +b2

1)+
G

2
b1. (2.3)

This implies the dissipativity in the space H−1/2(S1), and also the fact that if
S[f(t)]→0 as t→∞ then f(t)→ 1

2π as t→∞. Similarly as in [8], one can prove
the dissipativity in Gevrey classes of functions, which, in turn, imply the dissipativity
in any Sobolev space Hk(S1). Also, the fact that a1 and b1 are determining modes is
proven in a similar fashion. Let us state the following
Theorem 2.2. The equation (2.1) is dissipative in the Sobolev space Hk(S1), for any
k∈ IN0, in the following sense: there exists ρk =ρk(U)>0 such that for any bounded
set U ⊂L2(S1) there exist TU >0 so that for positive f0∈U and t≥TU the solution
f(t)=S(t)f0 satisfies ‖∂k

ϕf(t)‖L2 ≤ρk. In other words, the ball Bk
ρk

={f ∈Hk(S1) :
‖f‖Hk ≤ρk} is an absorbing set: all solutions of (2.1) enter this set to remain there,
eventually. In particular, the solution operator S(t) is compact, and the equation has
a finite-dimensional global attractor A. This is the maximal compact set which is
invariant: S(t)A=A for all t∈ IR, and attracts all solutions: dist(S(t)f0,A)→0 as
t→∞ for any f0∈L2(S1). Let us also remark that the scalar order parameter tensor
evolves according to the equation

1
2

d
dtS[f(t)]2 = (2U−4)S[f(t)]2

+2U(−a2
1a2−2a1b1b2 +b2

1a2)+ G
2 (b1−a1b2 +a2b1)

(2.4)

We shall also use the fact that, when U >2, there exists sU >0 so that for any solution
f(t) of the equation (2.1) there exists a time Tf >0 so that S[f(t)]>sU for all t≥Tf .

3. Inertial Manifolds for Nonautonomous Evolution Equations In this
section, we will define inertial manifolds and state a theorem on their existence. As
already indicated in the introduction, we are unable to apply the theory of existence
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of inertial manifolds directly to the Smoluchowski equation – it possesses first-order
derivatives in the nonlinear Fokker-Planck and the drift terms, and the equation fails
to satisfy the spectral gap condition crucial to the existence of inertial manifolds.
For the Smoluchowski equation in the absence of the ambient flow, this difficulty was
circumvented by transforming the equation into a form in which it satisfies the spec-
tral gap condition (see [34, 35]). However, in the presence of the flow, in addition
to the nonlinear Fokker-Planck term, there is an additional non-variational advection
term. On a circle, the equation can again be transformed into a form conducive to
the theory; however, the transformed equation turns out to be nonautonomous. Con-
sequently, we study the equation in the context of time-dependent inertial manifolds
for nonautonomous evolution equations. As for the autonomous evolution equations,
for which the theory originated, there now exists a well developed theory for the
nonautonomous evolution equations. Also, there are several approaches to proving
their existence. In the papers [21, 22, 23], the authors prove the existence using the
cone invariance and the strong squeezing properties, and the theorem applies to our
situation.

We consider an evolution equation on a Hilbert space H endowed with the inner
product (·,·), and the norm | · | of the form

du

dt
+Au=N(t,u), (3.1)

where A is a positive self-adjoint linear operator with compact inverse, and N : IR×
H→H is a locally Lipschitz function in u and T -periodic and continuous in t. Recall
that, since A−1 is compact, there exists a complete set of eigenfunctions wk for A

Awk =λkwk.

We arrange the eigenvalues in a nondecreasing sequence λk≤λk+1, k =1,2,... It is a
well-known fact that λk→∞ as k→∞. We also define the projection operators

Pnu=
n∑

k=1

(u,wk)wk

and Qn = I−Pn.
For the autonomous case, i.e., when N(t,u)=N(u), we define inertial manifolds

in the following way
Definition 3.1. An inertial manifold M is a finite-dimensional Lipschitz manifold
which is positively invariant, i.e.

S(t)M⊂M, t≥0,

and has the exponential tracking property, i.e. there exist µ>0 so that for every
u0∈H there exists v0∈M

|S(t)u0−S(t)v0|≤Ke−µt, t≥0

where K =K(u0,v0)>0.
The dynamics of a a nonautonomous system is no longer described by a semigroup,

and thus the definitions for invariant sets, global attractor and inertial manifolds have
to be modified. Rather than by a semigroup, the dynamics is described by a two
parameter family {S(t,θ) : t≥θ∈ IR} (or S(·,·) for short) of continuous operators from
H into itself such that
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• S(θ,θ)= I
• S(t,σ)S(σ,θ)=S(t,θ)
• (t,θ) 7→S(t,θ)u0 is continuous for t≥θ and u0∈H.

The natural way to define invariance in this context is by the following
Definition 3.2. A family A={A(t)}t∈IR of nonempty sets A(t)⊂H is called a
nonautonomous set. It will be said to be forward invariant if

S(t,θ)A(θ)⊂A(t), t≥θ

and invariant if

S(t,θ)A(θ)=A(t), t≥θ.

In this context, one also talks about two different kinds of attraction (dynamics), the
forward (t→∞), and the pullback (θ→−∞) attraction (dynamics). In general, these
two dynamics are different, and they will coincide only in some specific situations, e.g.
when S(·,·) is a semigroup in disguise. Let us recall here that for autonomous systems,
the global attractor can be characterized as the union of all globally in time defined
trajectories which are also bounded. In order to achieve the same classification for
nonautonomous systems, it turns out that in the definition of the global attractor we
need to require the pullback attraction. We arrive at the following
Definition 3.3. A pullback attractor is defined as an invariant family A={A(t)}t∈IR

of compact sets A(t)⊂H such that ∪t∈IRA(t) is compact, and it attracts all bounded
B⊂H in the pullback sense

lim
θ→−∞

dist(S(t,θ)B,A(t))=0, t∈ IR

As for inertial manifolds, the definition has to be modified in the following way:
Definition 3.4. A nonautonomous inertial manifold is a nonautonomous set M
with the properties that

• for each t∈ IR, M(t)is a finite-dimensional Lipschitz manifold;
• it is invariant;
• it has the exponential tracking property, i.e. there exist µ>0 so that for every

θ∈ IR and u0∈H there exists v0∈M(θ)

|S(t,θ)u0−S(t,θ)v0|≤Ke−µt, t≥0

where K =K(θ,u0,v0)>0.
We shall need the following version of the existence theorem

Theorem 3.1. Suppose that the nonlinearity N(t,u) in (3.1) satisfies the following
three conditions

• It has compact support in H, i.e. supp(N(t,·))⊂Bρ ={u∈H : |u|≤ρ} for
some ρ>0.

• It is continuous in t and |N(t,u)|≤C0 for t∈ IR and u∈H and for some
constant C0 >0.

• It is globally Lipschitz continuous, i.e. |N(t1,u1)−N(t2,u2)|≤C1|u1−u2|+
C2|t1− t2| for t1,t2∈ IR and u1,u2∈H and for some constants C1,C2 >0.

Suppose that the eigenvalues of A satisfy the spectral gap condition

λn+1−λn >4C1,
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for some n∈ IN. Then there exists a T -periodic Lipschitz continuous function Φ:
IR×PnH→QnH so that the nonautonomous set given as a graph of Φ

M=G[Φ]={(t,p+Φ(t,p)) : t∈ IR,p∈PnH}

is an inertial manifold. Restricting (3.1) to M yields the ordinary differential equation
for p=Pnu

dp

dt
+Ap=PnN(t,p+Φ(t,p)) (3.2)

termed the inertial form. The theory of inertial manifolds is very well established,
even for the nonautonomous systems, and there are several different methods for
proving their existence, all of them yielding the spectral gap condition as one of the
(sufficient) conditions for their existence. In [2], the the authors used the Lyapunov-
Perron method to prove the existence of inertial manifolds for the case in which N is
assumed to be linear in u and periodic in t. Following this paper, without reproducing
the entire proof, we shall indicate here how the inertial manifolds are constructed using
the Lyapunov-Perron method for the case of nonlinear N and periodic t.
Proof : Let θ∈ IR and consider the equation

du

dt
+Au=N(θ+ t,u). (3.3)

Let β =λn+1−λn and η =β/2. Define the Banach space

X−={f : IR−→H :f continuous and sup
t≤0

|eηtf(t)|<∞}

First of all, observe that if u=e−λntv, then (3.3) is equivalent to

dv

dt
=(λn−A)v+eλntN(t+θ,e−λntv).

Next, note that a function v∈X− is a solution if and only if it satisfies the integral
equation

v(t)=e(λn−A)tp+
∫ t

0

e(λn−A)(t−s)PneλnsN(θ+s,e−λnsv(s)) ds

+
∫ t

−∞
e(λn−A)(t−s)QneλnsN(θ+s,e−λnsv(s)) ds,

where p=Pnv(0). To see this, first observe that for a solution v∈X− and for τ ≤ t≤0,
we have by variation of constants formula

Pnv(t)=e(λn−A)tp+
∫ t

0

e(λn−A)(t−s)PneλnsN(θ+s,e−λnsv(s)) ds

and

Qnv(t)=e(λn−A)(t−τ)Qnv(τ)+
∫ t

τ

e(λn−A)(t−s)QneλnsN(θ+s,e−λnsv(s)) ds.

Then, observe that

|e(λn−A)(t−τ)Qnv(τ)|≤e−βt+(β−η)τ |v|X−→0
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as τ→−∞. Thus

Qnv(t)=
∫ t

−∞
e(λn−A)(t−s)QneλnsN(θ+s,e−λnsv(s)) ds.

The converse can also be established using the usual arguments.
Define the function F in the following way:

F :X−×PnH× IR→X−

(v,p,θ) 7→e(λn−A)tp+
∫ t

0

e(λn−A)(t−s)PneλnsN(θ+s,e−λnsv(s)) ds

+
∫ t

−∞
e(λn−A)(t−s)QneλnsN(θ+s,e−λnsv(s)) ds.

It can be observed easily that F is well defined and that

|F (v,p,θ)−F (v̄,p,θ)|X− ≤C1

(
1
η

+
1

β−η

)
|v− v̄|X−

≤ 4C1

β
|v− v̄|X−

The assumption on the spectral gaps insures that F is a contraction with respect to
the function v, thus for fixed p∈PnH and θ∈ IR F possesses a unique fixed point
v(·,p,θ)∈ X−. We now define

Φ(θ) :PnH→QnH

p 7→Qnv(0,p,θ)=
∫ 0

−∞
esAQnN(θ+s,e−λnsv(s)) ds

The function Φ is T -periodic in θ and Lipschitz continuous in p. To see that, let
v =F (v,p,θ) and v̄ =F (v̄, p̄,θ) for p and p̄∈PnH. Then

|v(·,p,θ)− v̄(·, p̄,θ)|X− = |F (v,p,θ)−F (v̄, p̄,θ)|X−

≤ 4C1

β
|v(·,p,θ)− v̄(·, p̄,θ)|X− + |p− p̄|

and so

|v(·,p,θ)− v̄(·, p̄,θ)|X− ≤ β

β−4C1
|p− p̄|

and

|Φ(θ)(p)−Φ(θ)(p̄)|≤ 4C1

β−4C1
|p− p̄|.

2

One of the advantages of having an inertial form for the system is that, at least
theoretically, we can preform an asymptotic study of the original system via the
Nonlinear Floquet theory. The following theorem can be proven exactly like for its
linear counterpart.
Theorem 3.2. Let F0,t be the the flow map generated by the inertial form (3.2),
and let Ψ=F0,T be the corresponding monodromy map. If the monodromy map has
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a logarithm, i.e. if there exists an autonomous vector field Z such that Ψ=exp(TZ),
then there exists T -periodic P so that

F0,t =P (t)◦exp(Zt).

The mapping P is called the Floquet mapping and the eigenvalues of Z are called
the Floquet exponents. Finding the monodromy matrix is a nontrivial task, if at all
possible. In the chronological calculus formalism we can write

Z(p)=−Ap+
1
T

ln−→exp

(∫ T

0

PnN(τ,p+Φ(τ,p) dτ

)
.

4. The main result

4.1. Schrödinger-like equation In this section we shall transform the Smolu-
chowski equation in a manner that will eliminate the gradient from the nonlinear term.
It can be easily verified that functions f and V [f ]=−U〈w〉f ·w satisfy (2.1) if and
only if

u=feV/2 =fe−
U
2 〈w〉f ·w (4.1)

and V [f ] satisfy the Schrödinger-like equation

ut =uϕϕ +(Wu)ϕ +
1
2

(
Vt +Vϕϕ−

1
2
(Vϕ)2−WVϕ

)
u.

Due to the dependence of V on f , this is not a closed equation in u, and it turns out
that the transformation is not invertible. If, however, instead of the minus sign in the
exponent in (4.1) we had the plus sign, the transformation would be invertible on an
open set of functions. The change of the sign in the exponent of the transformation
is easily accomplished if we first preform a transformation which changes the sign of
the second modes in the Fourier expansion of f and preserves the positivity of f :

g =Θ(f)=f−2P2f +d=f +cV +d,

where c= 2
Uπ and d= 4

π . Notice that f >0 implies g >0 and
∫ 2π

0
f(ϕ)dϕ=1 implies∫ 2π

0
g(ϕ)dϕ=9. It can be easily seen that f satisfies the Smoluchowski equation if

and only if g satisfies

gt =gϕϕ +(Wg)ϕ +(Vϕg)ϕ +H(g,ϕ), (4.2)

where

H(g,ϕ)= c[Vt−Vϕϕ−(V (W +Vϕ))ϕ]−d(W +Vϕ)ϕ.

As already indicated, the transformation

u=gexp(V/2)=ge
U
2 〈w〉g·w

can be proven to be invertible, and it eliminates the gradient from the nonlinearity.
Note that from now on,

V [g]=U〈w〉g ·w.
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One can easily verify that the function g satisfies (2.1) if and only if u=gexp(V/2)
satisfies the equation

ut =uϕϕ +(Wu)ϕ +
1
2

(
Vt +Vϕϕ−

1
2
(Vϕ)2−WVϕ

)
u+H(g)eV/2. (4.3)

In view of the equation for the evolution of V [g] and the fact that ‖V [g]‖∞≤U , we
can write the latter equation as

ut =uϕϕ +(Wu)ϕ +F (g,ϕ), (4.4)

where F depends Lipschitz-continuously on g and ϕ and is periodic in ϕ. Our next
goal is to express g as a function of u in order to view (4.4) as a closed semilinear
parabolic equation in u.

4.2. Transformation inverse The inversion of the transformation requires
developing the following framework. For any u∈L1(S1), we define the transform
û∈C∞(IR2)

û(x)=
∫ 2π

0

u(ϕ)e−x·w(ϕ) dϕ.

Similarly as for the Fourier and the Laplace transforms, for a∈ IR2, we define the
operator

µau(ϕ) :=u(ϕ)e−a·w(ϕ)∈L1(S1),

and so

µ̂au(x)=
∫ 2π

0

u(ϕ)e−(x+a)·w(ϕ) dϕ=: τaû(x).

We define the function sets H=L2(S1;IR+), and

X =
{

g∈H :
∫ 2π

0

g(ϕ) dϕ=9
}

.

Let also

X =
{

u∈H :
∫ 2π

0

µau(ϕ) dϕ<9 for some a∈ IR2

}
,

and X1 =
{

u∈X :
∫ 2π

0
u(ϕ) dϕ≥9

}
, X2 =

{
u∈X :

∫ 2π

0
u(ϕ) dϕ<9

}
, so that X =X1∪

X2. For u∈X we have

∇û(x)=−
∫ 2π

0

µxu(ϕ)w(ϕ) dϕ,

∇∇û(x)=
∫ 2π

0

µxu(ϕ)(w(ϕ)w(ϕ)) dϕ.

∇∇û(x) is positive definite, since by Cauchy-Schwarz

det(∇∇û)= 〈w2
1〉〈w2

2〉−〈w1w2〉2 >0,
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where 〈f〉=
∫ 2π

0
f(ϕ)µxu(ϕ) dϕ, so û is a concave up.

If u∈X1, the level set

Γ(u)={x∈ IR2|û(x)≤9}

is nonempty convex set, and the there exists a unique point r∈∂Γ(u) so that |r|=
dist(Γ(u),o), where where o=(0,0). Note that r is the unique point on ∂Γ(u) for
which there exists U >0 such that

∇û(r)=− 2
U

r.

We now define the mappings

R :X1→ IR2,

u 7→r,

G :X1→X,

u 7→g =µR(u)u=ue−R(u)·w,

Y :X1→ IR2,

u 7→−(∇û)(R(u))=
∫ 2π

0

u(ϕ)e−R(u)·w(ϕ)w(ϕ) dϕ=<w>G(u)

U :X1→ IR+,

u 7→U =2|R(u)|/|Y (u)|.

Note the inequality R(u)≤U(u)/2. We will need the following:
Lemma 4.1. R, G, Y , and U are continuous functions on X1.
Proof : We prove the continuity of R, and the continuities of G, Y and U follow. To
prove the statement by contradiction, we chose a sequence (vn)n∈IN in X1 and u∈X1

such that vn→u in L2(S2). This obviously implies v̂n→ û and v̂n
′→ û′ in L∞(S2).

Let r=R(u), sn =R(vn), and suppose sn 6→r as n→∞. Let Un =2|R(vn)|/|Y (vn)|=
4|sn|/|∇v̂n(sn)|. One can easily observe that the sequence (sn) is bounded. There-
fore, without loss of generality, we can assume that sn→ s 6=r as n→∞. Because
of the convergence in the sup norm, v̂n(sn)→ û(s) and ∇v̂n(sn)→∇û(s). Therefore,
v̂n(sn)=9 implies û(s)=9, and Un→U :=2|s|/|∇û(s)|, so ∇û(s)=− 2

U s. This is a
contradiction to s 6=r.

As discussed earlier, g(t)=Θ(f(t)) is a solution of (4.2) for some U >0, if and
only if

u(t)=g(t)eV [g(t)]/2

satisfies

ut =uϕϕ +(Wu)ϕ +F (G(u),ϕ). (4.5)

As already mentioned, we need Lipschitz continuity of the nonlinear term in order
to apply the classical theory of inertial manifolds. In the following lemmas, we shall
establish some facts about the Lipschitz continuity of the transformation.
Lemma 4.2. Let U >0 be fixed, and let XU =U−1{U}. The functions R|XU

, G|XU
,

and Y |XU
, are Lipschitz continuous. In particular, GU =G|XU

:XU →X is a Lipschitz
homeomorphism. Its inverse is given by

G−1
U (g)=ge(U/2)<w>g·w.
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Proof : We prove the Lipschitz continuity of R, and the others follow. Let u,v∈XU ,
and let r=R(u), s=R(v). The mean-value theorem implies the existence of θ1∈ [0,1]
and θ2∈ [0,1] so that, with the convexity of û and v̂, we have

û(s)− û(r)=∇û(r+θ1(s−r)) ·(s−r)≥∇û(r) ·(s−r)=− 2
U

r(s−r)

and

v̂(r)− v̂(s)=∇v̂(s+θ2(r−s)) ·(r−s)≥∇v̂(s) ·(r−s)=− 2
U

s(r−s).

Adding both equations yields∫ 2π

0

(u(ϕ)−v(ϕ))(e−s·w(ϕ)−e−r·w(ϕ)) dϕ≥ 2
U
|s−r|2,

and therefore there exists C3 =C3(U)>0 so that

2
U
|s−r|2≤C3‖u−v‖L2 |r−s|,

and so |R(u)−R(v)|≤ UC3
2 ‖u−v‖L2 . 2

For κ>0 let us define the ball Bκ ={u∈H :‖u‖L2 ≤κ}. Let us now choose κ :
IR+→ IR+, continuous and increasing, such that the ball Bκ(U) satisfies Bκ(U)⊃
G−1

U (Θ(Bρ0(U))). Observe that the ball Bκ(U) is an absorbing ball in L2(S1) for the
transformed equation (4.5).

We have proved the Lipschitz continuity of the transformation on the set of func-
tions U−1{U} on which U(u) is kept fixed at U . Since the potential intensity U is
given a-priori, and it is not changed by the original equation, this is also true for the
transformed equation. However, the transform changes the geometry of the phase
space, and U−1{U} is not a Hilbert space. In order to apply the classical theory, we
need to imbed this set in a larger Hilbert space, and we accomplish this by allowing
U to change; U(u) becomes a quantity that is preserved under the solution operator.
In the following lemma we expand the already established Lipschitz continuity to this
larger Hilbert space.
Lemma 4.3. Let U1 >0 and K >0. Let U =Bκ(U1)∩U−1(0,U1)∩{u∈X1 :K <
|Y (u)|}. Then R|U , G|U , Y |U , U |U are Lipschitz continuous.
Proof : Let u,v∈U , and let r=R(u), s=R(v). As before, we have

û(s)− û(r)≥ 2
U(u)

r(r−s)

and

v̂(r)− v̂(s)≥ 2
U(v)

s(s−r).

Since r(r−s)+s(s−r)= |r−s|2≥0, we distinguish the following cases:
Case 1: r(r−s)≥0 and s(s−r)≥0.
In this case, similarly as in the previous Lemma, we have∫ 2π

0

(u(ϕ)−v(ϕ))(e−s·w(ϕ)−e−r·w(ϕ)) dϕ≥ 2
U1
|s−r|2,
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and so |R(u)−R(v)|≤ U1C3(U1)
2 ‖u−v‖L2 .

Case 2: r(r−s)<0 and s 6∈Γ(u).
In this case,

û(s)− û(r)>0>
2

U(v)
r(r−s)

and

v̂(r)− v̂(s)≥ 2
U(v)

s(s−r),

and one arrives at the same conclusion as in the previous case.
Case 3: r(r−s)<0 and s∈Γ(u).
Since s∈Γ(u), there exists s′∈∂Γ(u)∩ [o,s]. Let v′=µs−s′v, and so v̂′= τs−s′ v̂. Thus,
v̂′(s′)= v̂(s)=9, so R(v′)= s′ follows. Another easy observation is that r(r−s′)≤0,
and so

û(s′)− û(r)=0≥ 2
U(v)

r(r−s′)

and

v̂′(r)− v̂′(s′)≥ 2
U(v′)

s′(s′−r)≥ 2
U(v)

s′(s′−r),

and we conclude again |r−s′|≤ U1C3(U1)
2 ‖u−v′‖L2 . On the other hand, since s and

s′ are collinear,

v̂(s′)− v̂(s)≥ 2
U(v)

s(s−s′)=
2

U(v)
|s||s−s′|≥K|s−s′|.

Since v̂(s)= û(s′), we have |s−s′|≤ U1C3(U1)
K ‖v−u‖L2 . The desired follows with the

estimate

‖v−v′‖2L2 =
∫ 2π

0

(v(ϕ)−v′(ϕ))2dϕ=
∫ 2π

0

v(ϕ)2(1−e(s′−s)·w(ϕ))2 dϕ

=
∫ 2π

0

[G(v)(ϕ)]2(es·w(ϕ)−es′·w(ϕ))2 dϕ≤C2
4 |s−s′|2‖G(v)‖2L2 ≤C2

5‖v−u‖2L2 .

where the constants C4 and C5 depend on K and U1 only.
Case 4: s(s−r)<0.
The inequalities for this case follow in an analogue fashion to the previous two cases.

2

Lemma 4.4. Let 0<U <U1 and K =sU , and let U be defined as in the previous
Lemma. Let V=U ∪(XU ∩Bκ(U)). Then the functions R|V , G|V , Y |V , and U |V are
Lipschitz continuous.
Proof : Let us partition V into three regions: V1 =XU ∩Bκ(U)∩R−1(0,s1/2], V2 =
XU ∩Bκ(U)∩R−1(s1/2,s1), and U . By the previous two Lemmas, the functions are
Lipschitz continuous on any of these three regions, as well as on sets V1∪V2 and V2∪U .
The Lipschitz continuity on V1∪U follows since both of these sets are bounded in L2

and dist(R(V1),R(U))>s1/2. This implies the Lipschitz continuity on V. 2
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4.3. Prepared equation Before we can prepare the equation, and apply the
theory, we need to preform a couple transformations more in order to have the equation
in the form to which the classical theory applies. Firstly, we eliminate the variational
portion of the drift Ṽ =−G

4 sin2ϕ term by employing the Lipschitz-homeomorphism
u=K(v)=ve−Ṽ /2. This leads similarly as before to an equation of the form

vt =vϕϕ +
G

2
vϕ + F̃ (G(K(v)),ϕ), (4.6)

where F̃ is Lipschitz continuous in both components and is periodic in ϕ. Denoting

N(v,ϕ)= F̃ (G(K(v),ϕ)

we can write the equation as

vt =vϕϕ +
G

2
vϕ +N(v,ϕ). (4.7)

We now follow the usual procedure known as preparing the equation in which we mod-
ify the nonlinearity outside the absorbing set K−1B2κ(U1). We modify the nonlinear
term:

NP (v,ϕ)=
{

N(v,ϕ), if Kv∈V
0, if Kv∈H\B2κ(U1)

This is clearly a Lipschitz function. Denote by C >0 its Lipschitz constant. Following
[36], a Lipschitz-continuous function defined on a subset of a Hilbert space can be
extended to a Lipschitz continuous function defined on the entire Hilbert space, even
preserving the Lipschitz constant C >0. Without changing the notation, let us by
NP :H× IR→ IR denote such an extension. The prepared equation reads now

vt =vϕϕ +
G

2
vϕ +NP (v,ϕ). (4.8)

Finally, the traveling wave transformation w(t,ϕ)=v(t,ϕ− G
2 t) leads to the equation

wt =wϕϕ +NP (w,ϕ−G

2
t). (4.9)

The term NP (w,ϕ− G
2 t) is now globally Lipschitz, periodic in both t and ϕ, and we

find ourselves in the situation of Theorem 3.1.

4.4. Main theorem We are now able to prove the existence of the inertial
manifold of the Smoluchowski equation.
Theorem 4.5. Let U >2. The Smoluchowski equation (2.1) possesses in inertial
manifold MU .
Proof : The positivity of Aw=−wϕϕ, the global Lipschitz continuity of NP and
the fact that it vanishes outside of a ball in H suffice to prove that the prepared
equation has a solution for all positive times for any initial datum in H and it is
dissipative. The complete set of eigenfunctions for the linear operator A is given by
wn

1 (ϕ)=cosnϕ, wn
2 (ϕ)=sinnϕ, n=0,1,... , with eigenvalues λn =n2, n=0,1,... . If C1

is a Lipschitz constant for NP , there exists n∈ IN such that λn+1−λn =2n+1>4C1,
and the spectral gap condition is satisfied. The Theorem 3.1 applies, and we infer
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the existence of nonautonomous time-periodic inertial manifold MP for the prepared
equation (4.9) given as a graph of a Lipschitz function ΦP :

G[ΦP ]={(t,p+ΦP (t,p)) : t∈ IR,p∈PnH}.

Because of the fact that ΦP is Lipschitz in both components, it can be easily seen
that the set

MP =
⋃
t∈IR

(p+ΦP (t,p))(·+ G

2
t)

is an inertial manifold for (4.8). We now define MU =Bρ0(U)∩Θ−1GU (XU ∩K(MP )).
Since GU :XU →X is a Lipschitz homeomorphism, it is immediate that MU is a
finite dimensional Lipschitz manifold. It is positively invariant under, since both
Bρ0(U) and Θ−1GU (XU ∩K(MP )) are positively invariant. It is also nonempty, since
it contains the global attractor of (4.8). It remains to prove that MU is exponentially
tracking. Let f0∈H and f(t)=S(t)f0. Let v(t)=K−1G−1

U Θ(f(t)), t≥0. Since MP

is exponentially tracking, there exists v0∈MP so that for the solution vP of (4.8) to
this initial datum we have ‖v(t)−vP (t)‖L2 →0, as t→∞, exponentially. Also, there
exists T >0 so that vP (t)∈K−1(U) for t≥T . However, since NP |K−1(U) =N |K−1(U),
U(K(vP (t)))=U for t≥T . Therefore, h(t) :=Θ−1GK(vP (t))∈Θ−1GK(MP ), t≥T is
a solution of (2.1). For some T ′≥T we have h(t)∈Bρ0(U), t≥T ′, and therefore
h(t)∈MU , t≥T ′. Finally, since all the transformations are Lipschitz continuous,
‖f(t)−h(t)‖L2 →0, as t→∞, exponentially. This concludes the proof. 2
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