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Abstract

Cache-obliviousness is a concept first introduced by Frigo et al. in
[1]. We follow their model and develop a cache-oblivious algorithm for
traversing all pairs of elements in a one-dimensional array and prove that
it is optimally cache-efficient. Though the the traversal is recursive in
nature, we demonstrate how to implement the algorithm nonrecursively,
and we give experimental results.

1 Introduction

A common programming task is to iterate over all pairs of an array. For instance,
an array might hold records giving information about a movie, and one might
want to compute the similarity of each movie to every other movie.∗ Standard
code for iterating through all pairs of an array of length N and executing some
code on them is

for i = 0 to N − 2 do
for j = i + 1 to N − 1 do

f(array[i], array[j])
end for

end for
We give a visual representation of this traversal in Figure 1.

This traversal makes poor use of the computer’s cache, however. Assuming
that the cache is not large enough to store the entire array, the inner loop must
reload the entire array every time through. We wish instead to traverse the pairs
so that accesses near to each other in time are as near as possible to each other
in the array. Instead of allowing the program explicit knowledge and control of
the cache, we design it to be cache-oblivious. The notion of cache-obliviousness
was introduced by Frigo, Leiserson, Prokop, and Ramachandran in [1]. They
defined a formal cache-oblivious memory model, which we use.

To achieve a cache-oblivious traversal, we give a traversal order with self-
similar properties; see Figure 2 for a picture of it. We will also consider traversals
of all ordered pairs of an array, in which we consider pairs like (1, 2) and (2, 1)

∗In fact, the motivation for this paper was an effort to optimize code for the Netflix Prize,
a machine-learning contest (see http://netflixprize.com/).
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Figure 1: A standard order for traversing all unordered pairs of an array of
length 16.

Figure 2: A cache-efficient traversal of the unordered pairs of an array of length
16.
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Figure 3: An cache-efficient traversal of the ordered pairs of an array of length
16

to be distinct (see Figure 3). These traversals have no practical use—we could
just as well call both f(i, j) and f(j, i) for each unordered pair (i, j)—but we
make use of them to prove facts about unordered-pair traversals.

These cache-efficient traversals all have the following property, illustrated in
Figure 4:

The Locality Property. For all integers k, u, v ≥ 0, the pairs (i, j) such that
2ku ≤ i < 2k(u + 1), 2kv ≤ j < 2k(v + 1) are accessed consecutively.

Put simply, if we tile any of Figures 1–3 with squares whose lengths are
powers of two, the traversal has the property that it visits these squares one
at a time, covering all pairs in one square before moving on to the next. This
locality explains why the traversals are cache-efficient, and it is the only fact we
need to prove that they are.

In Section 2, we explain the cache-oblivious model. In Section 3, we give a
nonrecursive implementation of the cache-oblivious traversal and show that it
satisfies the locality property mentioned before. In Section 4, we use the locality
property to show that this algorithm is asymptotically optimal in its cache-
behavior. We give experimental results in Section 5 comparing the algorithm’s
performance against the standard traversal technique.

2 Memory Models

Following [2], we consider two memory models. The first, the standard model,
is the external-memory model, in which the computer is assumed to have two
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Figure 4: An ordered-pair traversal, with 4 × 4 squares highlighted to demon-
strate the locality property.

levels of memory, the cache and the disk. (This saves the term memory to refer
to both of them.) The cache is organized in blocks of size B. The program issues
instructions to load blocks of data from the disk into cache, and it chooses which
blocks to remove from cache when necessary. The total size of the cache is M ,
meaning that it contains M/B blocks.

The other model we consider is the cache-oblivious model. We again assume
a cache of size M , organized into B blocks, but our programs have no knowledge
of these values. Rather than the program explicitly loading data into the cache,
we assume that the computer does this for us. We further assume that the
computer is omniscient and always removes the block from cache that will be
used the farthest in the future. We assume that the cache is fully associative
(i.e., a block on disk can be loaded into any block in cache). In our analysis,
we will seek to bound our algorithm’s maximum number of memory transfers
(often referred to as cache misses), instances when data must be loaded from
disk to cache.

This model contains several unrealistic assumptions. A real memory hi-
erarchy is likely to have more than two levels, an optimal cache-replacement
strategy is clearly impossible, and most caches are not fully-associative. These
factors turn out to be irrelevant to the asymptotic cache behavior. Frigo et
al. prove in [1] that, given certain standard conditions, a cache using LRU re-
placement causes asymptotically the same number of memory transfers. They
show that a cache-oblivious algorithm that performs optimally in a two-level
model also does so in a model with more levels. Finally, they demonstrate
that a fully-associative memory model can be simulated by nonfully-associated
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memory with no asymptotic loss of performance.
We will assume that at each step of the traversal, the only memory accesses

are to the current array elements. In particular, this means that we suppose
that the loop indices are not stored in memory.

3 Traversal Algorithms

From the self-similar nature of our traversal order, exhibited in Figures 2 and
3, it is clear that we could implement our algorithm recursively. To make our
algorithm fast enough to use in practice, however, we need some simple iterative
implementation. We will give such a technique and prove that it produces a
traversal satisfying the locality property.

As these traversals are most easily understood visually, we will consider each
pair (i, j) to be the point at row i and column j. If one step of the iteration is
(i, j) and the next is (i, j + 1), we say that we moved to the right. Likewise, we
refer to (i, j− 1), (i+1, j), and (i− 1, j) as being left, up, and down from (i, j),
respectively.

We begin by giving an algorithm for ordered-pair traversal of an array whose
length is a power of two (Figure 3).

Theorem 1. The following set of rules, applied starting at (0, 0) and ending
when (2n − 1, 0) is reached, traverses (i.e., covers exactly once) all pairs (i, j)
such that 0 ≤ i, j < 2n and satisfies the locality property.

Algorithm 1 Given current (i, j), advance one step of an ordered-pair traversal.

Let 2k be the greatest power of two dividing both i + 1 and j. We have three
cases for where to move:

(1) If i+1
2k and j

2k are both odd, go up by one.

(2) If i+1
2k is even, go 2k to the left and 2k − 1 down.

(3) If j
2k is even, go 2k to the right and 2k − 1 down.

To prove this, we prove a stronger claim:

Lemma 2. If we start the algorithm at any (i0, j0) such that i0 and j0 are
both divisible by 2k, it will traverse all pairs (i, j) such that i0 ≤ i < i0 + 2k,
j0 ≤ j < j0 + 2k before reaching (i0 + 2k − 1, j0), touching no pairs outside of
this region.

Proof. We proceed by induction. The lemma is trivially true for k = 0, and we
use this as our base case. Now, we assume that the claim holds for k and show
it for k + 1.

We will apply the inductive hypothesis four times, once for each of the four
2k × 2k squares making up the 2k+1 × 2k+1 square we are traversing:
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Step 1: (i0, j0) to (i0, j0 + 2k)
Since i0 and j0 are each divisible by 2k+1, they are divisible by 2k as well.
We can apply the inductive hypothesis, which implies that we will traverse
the pairs (i, j) satisfying i0 ≤ i < i0 + 2k, j0 ≤ j < j0 + 2k, ending up at
(i0 + 2k − 1, j0). The greatest power of two dividing i0 + 2k and j0 is 2k.
As j0 is divisible by 2k+1, we have that j0

2k is even, and Rule 3 applies,
taking us to (i0, j0 + 2k).

Step 2: (i0, j0 + 2k) to (i0 + 2k, j0 + 2k)
We apply the inductive hypothesis again to show that from here, we tra-
verse all pairs (i, j) satisfying i0 ≤ i < i0 + 2k, j0 + 2k ≤ j < j0 + 2k+1,
ending at (i0 +2k − 1, j0 +2k). The greatest power of two dividing i0 +2k

and j0+2k is 2k, and both i0+2k

2k and j0+2k

2k are odd. Rule 1 applies, taking
us to (i0 + 2k, j0 + 2k).

Step 3: (i0 + 2k, j0 + 2k) to (i0 + 2k, j0)
The inductive hypothesis applies again, showing that from here we traverse
all pairs (i, j) satisfying i0 + 2k ≤ i < i0 + 2k+1, j0 + 2k ≤ j < j0 + 2k+1,
ending at (i0 +2k+1−1, j0 +2k). The greatest power of two dividing both
i0 + 2k+1 and j0 + 2k is 2k. We have i0+2k+1

2k is even, so Rule 2 applies,
taking us to (i0 + 2k, j0).

Step 4: (i0 + 2k, j0) to (i0 + 2k+1 − 1, j0)
We applying the inductive hypothesis one last time, bringing us to (i0 +
2k+1 − 1, j0).

Note that all the regions covered were disjoint, and together they make up all
pairs (i, j) such that i0 ≤ i < i + 2k+1, j0 ≤ j < j + 2k+1. Also note that we
ended at (i0 + 2k+1 − 1, j0). This completes the induction step, which shows
that the algorithm does traverse the pairs we claimed it did.

The locality property follows directly from this lemma.
We need only one additional rule to handle the unordered-pair traversal

(Figure 2) of an array whose length is a power of two.

Theorem 3. The following set of rules, applied starting at (0, 0) and ending
when (2n−2, 2n−1) is reached, traverses all pairs (i, j) such that 0 ≤ i < j < 2n,
and the traversal satisfies the locality property.

Algorithm 2 Given (i, j), advance one step of an unordered-pair traversal of
an array whose length is a power of two.

• If (i, j) is “on the diagonal” (that is, i + 1 = j), then go one to the right
and 2k − 2 down, where 2k is the greatest power of two dividing i + 2.

• Otherwise, determine the next move using Algorithm 1.
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The structure of this proof is nearly identical to the previous one.

Lemma 4. If we start the algorithm at (i0, i0 +1) such that i0 is divisible by 2k

with k ≥ 1, it will traverse each pair (i, j) such that i0 ≤ i < j < i0 + 2k before
reaching (i0 + 2k − 2, i0 + 2k − 1), touching no pairs outside of this region.

Proof. Again, we use induction. For the base case, note that the claim is trivially
true for k = 1. Now, we assume the claim for k and show it for k + 1.

We will apply the inductive hypothesis twice and Lemma 2 once, reflecting
that our triangle pattern is made up of two smaller triangles and one square.

Step 1: (i0, i0 + 1) to (i0, i0 + 2k)
Since i0 is divisible by 2k+1, it is also divisible by 2k. Hence, the inductive
hypothesis applies, showing that the algorithm covers each pair (i, j) such
that i0 ≤ i < j < i0 + 2k before reaching (i0 + 2k − 2, i0 + 2k − 1). Since
(i0 + 2k − 2, i0 + 2k − 1) is on the diagonal, Algorithm 2 applies. The
greatest power of two dividing i0 + 2k is 2k (note that this is true even if
i0 is divisible by a higher power of two than 2k), so we go to (i0, i0 + 2k).

Step 2: (i0, i0 + 2k) to (i0 + 2k, i0 + 2k + 1)
The pair (i0, i0 + 2k) is not on the diagonal, since k ≥ 1. So, Algorithm 1
applies. As i0 and i0 + 2k are both divisible by 2k, by Lemma 2 repeated
application of Algorithm 1 covers the region (i, j) such that i0 ≤ i < i0+2k,
i0 + 2k ≤ j < j0 + 2k+1, ending at (i0 + 2k − 1, i0 + 2k). As this is the
only pair in the region that lies on the diagonal, repeated application of
Algorithm 2 has the same effect. As (i0+2k−1, i0+2k) is on the diagonal,
Algorithm 2 applies. The greatest power of two dividing i0 + 2k + 1 is
20 = 1. So, the algorithm takes us one to the right and −1 down, leaving
us at (i0 + 2k, i0 + 2k + 1).

Step 3: (i0 + 2k, i0 + 2k + 1) to (i0 + 2k+1 − 2, i0 + 2k+1 − 1)
The inductive hypothesis applies again, since i0 + 2k is divisible by 2k.
This means we cover all pairs (i, j) such that i0 + 2k ≤ i < j < i0 + 2k+1

before reaching (i0 + 2k+1 − 2, i0 + 2k+1 − 1).

We have gone from (i0, i0+1) to (i0+2k+1−2, i0+2k+1−1), covering all squares
(i, j) such that i0 ≤ i < j < i0 + 2k+1. This completes the induction.

Again, the locality property follows directly from this.
We add one more rule to allow for arrays whose length is not a power of two.

Theorem 5. The following set of rules does an unordered-pair traversal of an
array of any size. The traversal is identical to the one we would get if we applied
Algorithm 2 and removed all pairs that were out of bounds.
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Algorithm 3 Given (i, j), advance one step of an ordered pair traversal of an
array of size N .

• If Algorithm 2 applied to (i, j) would move to a pair within bounds (that
is, with both coordinates less than N), move according to it.

• Otherwise, move up by one.

Proof. Suppose we are at (i, j) and the next move according to Algorithm 2
would take us out of bounds. We will imagine that we continue to apply Algo-
rithm 2 until we return within bounds, and then show that this would take us
to (i + 1, j).

We may assume that (i, j) is not on the diagonal. If it were, the next move
could go at most one up and one to the right, and moving out of bounds would
imply that (i, j) = (N − 2, N − 1); the traversal would then be finished. So, we
need only consider Algorithm 1. The only move that could possibly take us out
of bounds is a rightward one, and hence Rule 3 applies. Let 2k be the greatest
power of two dividing both i + 1 and j. We know that i+1

2k is odd and j
2k is

even, and that our next pair will be (i− 2k + 1, j + 2k).
Since i + 1 is divisible by 2k, so is i− 2k + 1, and since j is divisible by 2k,

so is j + 2k. Hence, Lemma 2 applies, which shows that repeated application
of Algorithm 1 takes us to (i, j + 2k) without ever going left of column j + 2k.
Hence, as we go from (i− 2k + 1, j + 2k) to (i, j + 2k), we never return within
bounds.

Since j
2k is even, j+2k

2k is odd. As i+1
2k is odd as well, Rule 1 applies and we go

to (i+1, j +2k), still out of bounds. Lemma 2 applies, and repeated application
of Algorithm 1 takes us to (i+2k, j+2k), again without ever returning in bounds.
As i+2k+1

2k is even and j+2k

2k is odd, Rule 2 applies, taking us to (i+1, j), finally
within bounds again.

This is exactly what we set out to prove: By moving up whenever Algo-
rithm 2 would take us out of bounds, we achieve a traversal identical to the one
we would get by following Algorithm 2 and discarding out-of-bounds entries.

As this traversal is a subset of the one generated by Algorithm 2, it has the
locality property.

4 Bounds for Cache Efficiency

We seek to show that number of memory transfers in our cache-oblivious traver-
sal is within a constant factor of optimal. We also consider the cache-efficiency
of the standard pair-traversal algorithm. We start by giving a lower bound
on the number of memory transfers for any ordered-pair traversal in the stan-
dard memory model (and hence in the cache-oblivious model too). To avoid
degenerate cases, we assume that N > (2 + ε)M .
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Theorem 6. Any ordered-pair traversal of an N -element array requires Ω(N2/MB)
memory transfers.

Proof. Consider any 4M2 consecutive steps of the pair traversal. The algorithm
must access at least 2M distinct elements of the array in these steps, since for
any amount fewer than 2M elements, there are fewer than 4M2 pairs consisting
of just these elements. So, in the course of these 4M2 steps, at least M ele-
ments must be loaded into cache, requiring dM/Be memory transfers. As the
entire pair traversal has N2 steps, the number of memory transfers in the whole
traversal is at least⌊

N2

4M2

⌋ ⌈
M

B

⌉
≥

(
N2

4M2
− 1

)
M

B

=
N2

4MB
− M

B
=

N2 − 4M2

4MB
.

All we need to do is show that N2 − 4M2 is greater than some constant factor
of N2. Since M < N/(2 + ε) by our assumption,

N2 − 4M2 ≥ N2 − 4N2

(2 + ε)2

= N2 − N2

(1 + ε/2)2

=
(

1− 1
(1 + ε/2)2

)
N2

which shows that the number of memory transfers is Ω(N2/MB).

Corollary 7. Any unordered-pair traversal of an N -element array has the same
Ω(N2/MB) lower bound on cache efficiency.

Proof. The argument goes through as above, but with N(N − 1)/2 instead of
N2, which makes no difference asymptotically.

Now, we give an upper bound on the maximum number of memory transfers
in the cache-oblivious traversal. To avoid degenerate cases, we assume that the
cache holds at least 10 blocks.

Theorem 8. Given that N and M are both powers of two, the cache-oblivious
algorithm for an ordered-pair traversal requires O(N2/MB) memory transfers.

Proof. This follows quite directly from the locality property: We consider the
square regions given by the locality property, and pick regions small enough
that all array elements in a region can fit in cache. This gives us a bound on
memory transfers for this section of the array, and we just add up these bounds.

We tile the iterative space with M
4 × M

4 squares; that is, we partition the
pairs (i, j) with 0 ≤ i, j < M/4 into one set, those with 0 ≤ i < M/4, M/4 ≤
j < M/2 into another, and so forth (see Figure 4). By the locality property, our
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traversal covers each of these squares in turn. Each of these squares contains at
most M/2 distinct elements of the array, in two contiguous segments. Regardless
of block boundaries, these all fit in cache together: Each segment requires at
most dM/4Be + 1 blocks (see [2], Theorem 1 for a detailed proof of this easy
fact), so the two segments need at most 2 dM/4Be + 2 < M/2B + 4 blocks.
Since we assumed that M/B ≥ 10, we have −M/2B ≤ −5, which means

M

2B
+ 4 =

M

B
− M

2B
+ 4

≤ M

B
− 1 <

⌊
M

B

⌋
,

which is the number of blocks in cache at a time.
So, we need fewer than M/B memory transfers per M

4 ×
M
4 square. As there

are (4N/M)2 such squares, the number of memory transfers for the traversal is
less than (

4N

M

)2
M

B
=

16N2

MB
,

which is O(N2/MB).

Corollary 9. The cache-oblivious algorithm for an unordered-pair traversal
makes O(N2/MB) memory transfers.

Proof. Let N ′ be the smallest power of two greater than or equal to N , and let
M ′ be the greatest power of two less than or equal to M . We have

N ′ < 2N (1)
M ′ > M/2. (2)

We can tile the iterative space as in the ordered-pair traversal. The unordered-
pair traversal has the locality property as well, so the above argument shows
that the traversal takes O(N ′2/M ′B). By (1) and (2), this is O(N2/MB).

Since we’ve shown that all traversal algorithms have a Ω(N2/MB) lower
bound on cache-efficiency, this means that our cache-oblivious traversal algo-
rithms have Θ(N2/MB) cache-efficiency and are within a constant factor of
optimal.

Finally, we show that the standard traversal algorithm is asymptotically less
cache-efficient.

Theorem 10. The standard algorithm for ordered- or unordered-pair traversal
has cache-efficiency Ω(N2/B).

Proof. Recall the standard ordered-pair traversal:
for i = 0 to N − 1 do

for j = 0 to N − 1 do
f(array[i], array[j])

end for
end for

At each step of the outer loop, at most M of the N elements of the array
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can already be in cache. So, each iteration of the outer loop requires at least⌈
N−M

B

⌉
memory transfers. There are N steps of the outer loop, meaning that

the number of memory transfers is at least⌈
N −M

B

⌉
N ≥ N2 −NM

B

≥ N2

2B

with the last inequality by our prior assumption that N ≥ 2M .
The unordered-pair variation is nearly identical (but messier), and we omit

it.

5 Experimental Results

We implemented our algorithm in C++, making use of templates and function
objects to allow it to execute arbitrary code on each pair. We unrolled the loop
so that we need only calculate the next move once per each 16 moves. (Further
loop unrolling provided no gains.) Because the code relies on function inlining,
the implementation is drastically slower when compiled with the optimizer off.

To test the cache-oblivious algorithm, we wrote a program that filled an array
with random integers. We considered every k of these to form a record. For
each pair of records, we summed the integers making up each respective record
and multiplied them together. We asked our program to find the maximum of
these values, using both a standard traversal and our cache-efficient one.

Our results are shown in Figures 5 and 6. For small record sizes, the addi-
tional overhead of our method made it slower than the standard traversal. When
the record size was greater than 32 bytes, our method was faster, sometimes by
a factor of as much as 40%. (By percent improvement, we mean 1− t/t′, where
t and t′ are the running times of the cache-oblivious and standard algorithms,
respectively.) The record size was the only variable that affected our results.
In particular, changing the length of the array made no significant difference in
the relative speed of our algorithm to the standard one. We used different array
sizes in Figure 5 and Figure 6 only because tests with the larger array size and
a large record size took a long time to run. The benchmarking was done on
a computer with an 8 kilobyte, 4-way-associative L1 cache and a 512 kilobyte,
8-way-associative L2 cache, both with 64 byte lines.

We also tested the algorithm on some real-life data, asking our program to
rate the similarity of all pairs of some subset of movie-watchers given in the
data for the Netflix Prize. Each movie-watcher takes up a different amount
of memory depending on the number of movies they have rated; the average
record size was approximately 800 bytes. We improved by about 25% over the
traditional traversal. Notably, this program made frequent memory accesses
besides the two array elements from the pair currently traversed, not following
the assumption from Section 2.
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Figure 5: Percent improvement over a standard pair traversal, record sizes 4–
384, array size 32768.
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Figure 6: Percent improvement over a standard pair traversal, record sizes 512–
8192, array size 8192.
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Figure 7: Traversal order with few diagonal moves.

6 Conclusion and Future Work

We presented a practical algorithm for efficiently traversing the pairs of an array.
In practice, the algorithm is faster than the standard algorithm so long as the
size of each array entry is large enough, and we proved that the algorithm is
within a constant factor of optimal in terms of cache behavior.

Of course, in real applications, this constant term is relevant, and there may
be other traversal algorithms that perform better. We examined several other
traversals. Figure 7 demonstrates a traversal order that reduces the number
of diagonal moves (that is, moves in which both the row and column change).
Despite its apparent advantages, an implementation of this order exhibited al-
most identical running times as the cache-efficient algorithm given in this paper.
Testing with Cachegrind, a cache profiler, showed that its cache behavior was
nearly identical to our algorithm’s. We were surprised by this and would con-
sider it worthwhile to simulate a cache in more detail to determine why this is
so; of course, this would leave the realm of cache-obliviousness. Figure 8 gives
a traversal that reduces the number of diagonal moves and avoids large jumps,
but we were not able to efficiently implement it.
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Figure 8: Traversal order with few diagonal moves and few jumps.
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