PROBLEM SET MTH 70200 REAL ANALYSIS

Problem 1. Let μ be counting measure on the integers. Let ν be a signed measure on the integers. What is the Radon-Nikodym derivative $\frac{d\nu}{d\mu}$?

Problem 2. Let $f, g: \mathbb{R} \to [0, \infty]$ be Borel-measurable. Let $d\mu = f \, dm$ and $d\nu = g \, dm$, where *m* is Lebesgue measure. Let $S_f = \{x \in \mathbb{R} : f(x) > 0\}$ and $S_g = \{x \in \mathbb{R} : g(x) > 0\}$.

- (a) Show that $\nu \perp \mu$ if and only if $m(S_f \cap S_g) = 0$.
- (b) Show that $\nu \ll \mu$ if and only if $m(S_g \cap S_f^c) = 0$.
- (c) Show that the Lebesgue decomposition of ν with respect to μ is $\nu = \rho + \lambda$ where $d\rho = \frac{g}{f} d\mu$ and $d\lambda = \chi_{S_{\epsilon}^{c}} g dm$.

Problem 3. (Half of Folland 3.9) Suppose $\{\nu_j\}$ is a sequence of positive measures and μ is a positive measure, all on the same space. If $\nu_j \perp \mu$ for all j, then $\sum_{j=1}^{\infty} \nu_j \perp \mu$.

Problem 4. (Folland 3.11) Let μ be a positive measure. A collection of functions $\{f_{\alpha}\}_{\alpha \in A} \subseteq L^{1}(\mu)$ is called *uniformly integrable* if for every $\epsilon > 0$, there exists $\delta > 0$ such that for all $\alpha \in A$,

$$\mu(E) < \delta \Longrightarrow \left| \int_E f_\alpha \, d\mu \right| < \epsilon.$$

- (a) Prove that any finite subset of $L^1(\mu)$ is uniformly integrable.
- (b) Prove that if $\{f_n\}$ is a sequence in $L^1(\mu)$ that converges in the L^1 -metric to some $f \in L^1(\mu)$, then $\{f_n\}$ is uniformly integrable.

Date: March 28, 2024.