PROBLEM SET I MTH 70200 REAL ANALYSIS

- 1. Show that the Borel σ -algebra $\mathcal{B}_{\mathbb{R}}$ of the real numbers has the following alternative generating sets. (You can assume part (a) of Proposition 1.2, which we proved in class.)
 - (a) $\mathcal{B}_{\mathbb{R}} = \sigma(\{(a, b]: -\infty \le a < b \le \infty\})$
 - (b) $\mathcal{B}_{\mathbb{R}} = \sigma(\{(-\infty, x] : x \in \mathbb{R})\})$
 - (c) $\mathcal{B}_{\mathbb{R}} = \sigma(\{(-\infty, x] : x \in \mathbb{Q})\})$
- 2. A monotone class \mathcal{M} of X is a collection of subsets of X that includes X and which is closed under unions of increasing sequences of subsets and also closed under intersections of decreasing sequences of subsets. That is, if $E_j \in \mathcal{M}$ and $E_1 \subseteq E_2 \subseteq \cdots$, then $\bigcup_{j=1}^{\infty} E_j \in \mathcal{M}$, and likewise for intersections and decreasing sequences. Prove that
 - (a) An intersections of monotone classes is also a monotone class. So it makes sense to speak of the monotone class generated by a collection of subsets A, denoted M(A), as the intersection of all monotone classes containing A.
 - (b) If \mathcal{A} is an algebra of X, show that $\mathcal{M}(\mathcal{A}) = \sigma(\mathcal{A})$, that is the smallest monotone class containing \mathcal{A} corresponds to the smallest σ -algebra containing \mathcal{A} .

Hint: For 5b), the problem is to relate the notion of monotone class to complement and unions. To deal with this, consider for any $E \in \mathcal{M}(\mathcal{A})$

$$\mathcal{C}(E) = \{ F \in \mathcal{M}(\mathcal{A}) \colon E \setminus F, \ F \setminus E, \ and \ E \cap F \ are \ in \ \mathcal{M}(\mathcal{A}) \}.$$

The point is to consider the subsets that behave well under union and complement with E.

- (a) Show that $\mathcal{C}(E)$ is a monotone class.
- (b) If $E \in \mathcal{A}$, show that $\mathcal{M}(\mathcal{A}) \subseteq \mathcal{C}(E)$.
- (c) Argue that $E \in \mathcal{C}(F)$ if and only if $F \in \mathcal{C}(E)$. Use this and the above to conclude that $\mathcal{M}(\mathcal{A}) \subseteq \mathcal{C}(E)$ for any $E \in \mathcal{M}(\mathcal{A})$.
- (d) Conclude from the above that $\mathcal{M}(A)$ is an algebra first, then prove it is a σ -algebra.

Date: January 25, 2024.