Math 231, Midterm 2, version A
Name: \qquad
November 18, 2019

I pledge that I have neither given nor received
unauthorized assistance during this examination.
Signature:

- DON'T PANIC! If you get stuck, take a deep breath and go on to the next question.
- Unless the problem says otherwise you must show your work sufficiently much that it's clear to me how you arrived at your answer.
- You may use a scientific calculator on this exam, but you may not use a graphing calculator.
- You may bring a two-sided sheet of notes on letter-sized paper in your own handwriting.
- There are 8 problems on 8 pages.

Question	Points	Score
1	12	
2	10	
3	10	
4	6	
5	8	
6	8	
7	10	
8	8	
Total:	72	

Good luck!

[12 points] 1. Find the derivatives of the following functions. Do not simplify your solutions.
(a) $f(x)=\frac{\cos x}{x^{2}}$

Solution:

$$
f^{\prime}(x)=\frac{x^{2}(-\sin x)-(\cos x)(2 x)}{x^{4}}
$$

(b) $f(x)=e^{-\sqrt{2 x+1}}$

Solution:

$$
\begin{equation*}
f^{\prime}(x)=e^{-\sqrt{2 x+1}}\left(-\frac{1}{2 \sqrt{2 x+1}}\right) \tag{2}
\end{equation*}
$$

(c) $f(x)=x^{3}+\frac{1}{x^{2}}$

Solution:

$$
f^{\prime}(x)=3 x^{2}-2 x^{-3}
$$

[10 points] 2. A spherical balloon is being inflated. Suppose the radius expands at a constant rate of $2 \mathrm{~cm} / \mathrm{s}$. At the moment when the radius reaches 10 cm , how quickly is the volume of the balloon growing? (Note that the volume of a sphere with radius r is $\frac{4}{3} \pi r^{3}$.

Solution: Let r be the radius and V the volume of the balloon. We're given that $\frac{d r}{d t}=2$, and we want to find $\frac{d V}{d t}$ when $r=10$. Differentiating both sides of the equation $V=\frac{4}{3} \pi r^{3}$, we get

$$
\frac{d V}{d t}=4 \pi r^{2} \frac{d r}{d t}
$$

Plugging in, we get

$$
\frac{d V}{d t}=4 \pi(10)^{2}(2)=800 \pi
$$

[10 points] 3. Let $s(t)$ represent the number of subscribers of a streaming service at time t years (with $t=0$ representing 2015, when the service started). The sign diagrams of $s^{\prime}(t)$ and $s^{\prime \prime}(t)$ are given below.

(a) At time $t=1$, which of the following is true about the streaming service:
$\sqrt{ }$ It's gaining subscribers, and the rate of gain is increasing.
O It's gaining subscribers, but the rate of gain is decreasing.
O It's losing subscribers, and the rate of loss is increasing.
O It's losing subscribers, but the rate of loss is decreasing.
(b) At time $t=5$, which of the following is true about the streaming service:

It's gaining subscribers, and the rate of gain is increasing.
It's gaining subscribers, but the rate of gain is decreasing.
O It's losing subscribers, and the rate of loss is increasing.
$\sqrt{ }$ It's losing subscribers, but the rate of loss is decreasing.
(c) At what times does the number of subscribers achieve a local minimum? If the answer is never, say so.

Solution: I'd accept either $t=0$ or never as correct answers (we've never really said whether or not an endpoint counts as a local minimum).
(d) At what times does the number of subscribers achieve a local maximum? If the answer is never, say so.

Solution: $t=3$, since $s^{\prime}(t)$ changes from positive to negative there.
(e) Give the t-coordinates of all inflection points of $s(t)$, or state that there are none.

Solution: $t=2$ and $t=4$, since $s^{\prime \prime}(t)$ changes sign there.
(f) Sketch the graph of $s(t)$ on the axes above the sign diagram. Assume that at time $t=0$, the service has 0 users.
[6 points] 4. Compute

$$
\lim _{x \rightarrow \infty} \frac{\ln x}{x} .
$$

Solution: The top and bottom both approach infinity, so L'Hôpital's rule applies and gives

$$
\lim _{x \rightarrow \infty} \frac{\ln x}{x}=\lim _{x \rightarrow \infty} \frac{1 / x}{1}=0
$$

[8 points] 5. Let $f(x)=\ln (2 x+1)$. Give an estimate of $f(.1)$ using linearization.

Solution: The idea here is that we observe that $f(0)=\ln (1)=0$, and we do linearization using this as our base point. We compute

$$
f^{\prime}(x)=\frac{2}{2 x+1},
$$

and $f^{\prime}(0)=2$. So,

$$
f(.1) \approx f(0)+f^{\prime}(0) \cdot(.1)=.2
$$

[8 points] 6. Let $g(x)=x^{3}-3 x+2$. Find the absolute maximum and minimum of $g(x)$ on the interval $[0,3]$.

Solution: We find $g^{\prime}(x)=3 x^{2}-3$ and set it equal to zero. This yields critical points $x= \pm 1$, of which only $x=1$ is in the interval. Plugging in this point plus the endpoints into f gives:

$$
\begin{aligned}
g(0) & =2 \\
g(1) & =0 \\
g(3) & =20
\end{aligned}
$$

So, the minimum of $g(x)$ is 0 and the maximum is 4 on $[0,3]$.
7. Let $f(x)=\frac{(x-1)^{2}}{x^{2}}$. The first two derivatives of this function can be computed to be
$f^{\prime}(x)=\frac{2(x-1)}{x^{3}}$,
$f^{\prime \prime}(x)=-\frac{2(2 x-3)}{x^{4}}$.
[3 points] (a) Give the locations of any vertical asymptotes of the function, or state that it doesn't have any.

Solution: There's a vertical asymptote at $x=0$.
[3 points] (b) List all critical values of this function.
Solution: There's a critical value at $x=1$.
[4 points] (c) Give the intervals where this function is increasing and the intervals where it is decreasing.

Solution: Increasing on $(-\infty, 0)$ and $(1, \infty)$, decreasing on $(0,1)$.
[8 points] 8. Consider the curve defined by equation $x^{2} y^{3}+x^{2}=2$. Find the equation for the tangent line to the curve at $(1,1)$.

Solution: Differentiating with respect to x,

$$
2 x y^{3}+3 x^{2} y^{2} \frac{d y}{d x}+2 x=0
$$

Rearranging and isolating $\frac{d y}{d x}$, we get

$$
\frac{d y}{d x}=\frac{-2 x-2 x y^{3}}{3 x^{2} y^{2}}=\frac{-2-2 y^{3}}{3 x y^{2}} .
$$

At $(1,1)$, the slope of the tangent line is therefore $(-2-2) / 3=-4 / 3$. In point-slope form, the equation for the tangent line is

$$
y-1=-\frac{4}{3}(x-1) .
$$

