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Asymptotic Analysis of Gaussian Integrals, II:
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Abstract. This paper derives the asymptotic expansions of a wide class of
Gaussian function space integrals under the assumption that the minimum
points of the action form a nondegenerate manifold. Such integrals play an
important role in recent physics. This paper also proves limit theorems for
related probability measures, analogous to the classical law of large numbers
and central limit theorem.

1. Introduction

In the last few years, theoretical physicists have developed beautiful new ideas
for the asymptotic analysis of Gaussian function space integrals [Coleman; Sect.
2], [Wiegel]. In this analysis one is confronted by the "zero mode problem". The
object of this paper is to provide the mathematical framework for handling this
problem. In particular, we present the complete asymptotic expansions of a
class of Gaussian integrals on a Hubert space, for which the minimum points of
the action form a nondegenerate manifold. In addition, we prove limit theorems
for related probability measures, analogous to the classical law of large numbers
and central limit theorem.

To describe our problem, let PA denote a mean zero Gaussian probability
measure with covariance operator A on a real separable Hubert space 3?. We
write the inner product of $P as < — , — > . We wish to describe the asymptotics
of

Jn±]Ψ(Y/^)exp(-nF(Y/^ι))dPA(Yl asn^α). (1.1)

For simplicity we assume that ψ, F are smooth functionals (smooth will always
mean C°°), with ψ bounded and F satisfying

| |χ c^O. (1.2)
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These conditions assure that the integral in (1.1) exists. The co variance operator
A is trace class. We also assume that A is strictly positive. In Sect. 6, we extend
our results to the Banach space C[0, 1], which is important in applications.

Formally, Jn can be written as

(1.3)

where G(Y) = <A~1Y, 7>/2 + F(Γ) is called the (Euclidean) action. In (1.3) dY
is the purely formal translation invariant measure on 2tf. Nevertheless, (1.3)
will serve as a useful guide to our intuition.

Let x be a minimum point for G, so that G(x) = inf G. This implies that
3/C

G'(x) = 0, G"(x)^0, (1.4)

where G'(x), G"(x) are respectively the element of 2tf and the linear operator on 3C
defined by the first and second Frechet derivatives of G at x. (See Sect. 2 for details.)
We can then write, for Y near 0,

G(χ + y) = G(x) + (l/2)< G"(x)y, y > + error term. (1.5)

If G"(x) > 0, then insertion of (1.5) in (1.3) indicates that we can expand around
a new Gaussian measure, with co variance operator (G"(x))~ 1. This we have carried
out in detail in [Ellis-Rosen (1)], which generalizes earlier work of [Schilder]
and [Pincus].

In the present paper, we assume that the set of minimum points of G forms
a smooth submanifold M of 3? . In this case, differentiating the first equation in
(1.4) shows that for any xeM,

where Mx denotes the tangent space to M at x. This degeneracy of G"(x) is the
"zero mode problem." We note that M is a compact subset of Jf (see Lemma 1
(a) in Sect. 2).

The best we can hope for is

G"(x)>0 onΛ^, (1.6)

where Nx = (MJ1 is the normal space to M at x. We call M nondegenerate if
(1.6) holds for all xeM.

Throughout this paper we assume that M is a smooth nondegenerate sub-
manifold of 3f. However, the ideas presented here together with those of [Ellis-
Rosen (1)] enable one to handle many cases of degenerate M.

To state our main theorems, we introduce some notation. If V is a subspace
of ffl, πv will denote orthogonal projection onto V. If L is a linear operator on
Jf7, then LF, LF denote the linear operators on V

Lly — TlyLjJty ,

L^ίVΓ1^)-1. (1.7)

For each specific L, we will have to verify that Lv , IT are well defined.
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The geometry of M enters through the Weingarten map Wxz. For each
xeM,zeNx,Wxz is the linear transformation of Mx defined by

(W tt,t>> = <Dί5,z>, u,vεMx. (1.8)x X,Z ' / ^ u ' / ' 7 X \ /

Here Duv is the directional derivative at x, in the direction u, of any tangent vector
field v on M with v(x) = v [Spivak, Vol. IV, p. 49].

Theorem 1 is stated in great generality. A simple special case which should
look familiar to physicists is described in (1.18). The main ideas behind Theorem
1 are explained in Sect. 3 before the proof of the theorem.

Theorem 1. Let M, the set of minimum points of G, be a smooth, nondegenerate
submanifold of 3?. Then dim(M) < oo and enG*Jn has the asymptotic expansion (see
Explanation below)

enG* J ~ w

dim(M)/2 f
M

*)
- exp ( - «F3 (x, z/^/n) )dPB(x) (z) > c(x)d VM (x) as n -»oo,

J
(1.9)

where G* = min G,
je

F3(x, z) = F(x + z) - F(x)- <F'(x), z> - <F"(x)z, z>/2, (1.11)

B(χ) = (G"(x)Nχ)~x is the covariance operator ofPB(x}, (1.12)

c(x) = [det(2πylMχ)det(/ + ̂ F^x)^))]"1/2, (1.13)

and dVM is the volume-element of M induced by 2C [Spiυak, Vol. /, p. 423]. The
highest order term is n

dim(M}/2 J ψ(x}c(x}dVM(x\
M

Explanation. The smoothness of ψ, IM(x, -), and F implies that for each xeM, zεNx,
the integrand on the right-hand side of (1.9) has an asymptotic expansion of the
form

;-nF3(x,.

- Πdim(M)/2 ^ ̂  ^-j/2 ^ „ _> (χ)?

where the {a.(x,z)} are functionals. Then (1.9) means that exp(«G*)Jn has the
asymptotic expansion

dim(M)/2 V Γ ί 1 Ίn~n ^oLMU/7 '*'2 β ( x ) Z j c x M* \n

For j odd, a (x, z) turns out to be an odd function of z. Since PB(X) is mean zero,
only integral powers of n'1 appear in the last sum. Thus, (1.9) has the form

M are functionals.
=

Remarks, (i) Wxz is related to the second fundamental form of M; see [Spivak,
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Vol. IV, p. 49]. We note that if x(s), seRm, is a local parametrization of M, and if
, . . d x f . ... 02x(s)

Xi(s) = -(s},Xί.(s) = - -

Thus, if g(s) is the matrix with gk^(s) = < xfe(s), x^(s) >, then

k j

(ii) In the special case that M is a curve {fs O ^s ^/} parametrized by arc
length, Theorem 1 takes the form

exp( - nF3(fs ;z/^n))dPB(fs}(z)\ds. (1.14)

We note that ( -y- ,̂ z ) is the curvature of M in the direction z.

In applications, the manifold M of minimum points often arises because of
a continuous group of symmetries. We say that a group if of unitary transforma-
tions of 2tf is a group of symmetries of Jn if for all seίf, YeJlf,

If y is a group of symmetries of Jn, then G and consequently M are ^-invariant.
If in addition

{SXO\SE^} (1.16)

(i.e., if M equals the ̂  -orbit of a single point x0), then Theorem 1 takes a parti-
cularly simple form.

Theorem 2. Assume that £f is a group of symmetries for Jn and M = <£fχ0. Then
under the assumptions of Theorem 1

f φ(x0

exp( - nF3(x0 ; z / < n ) ) d P B x o ( z ) asn-+co, (1.17)

where V(M) = f rfFM. The highest order term is wdim(M)/2c(x0)^(x0)F(M).
M

Remarks. 1. The volume element dFM is the image of Haar measure.
2. Returning to the case of M a curve {fs O ^ s ̂  ̂ } parametrized by arc length
(see (1.14)), Theorem 2 says that in the presence of symmetries

(z:<z,/O>=0}

• exp( - nF3(/0 zl^dP^z). (1.18)
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Thus, the highest order term is nll2£c(f0)ψ(f0) and the next order term involves
the curvature of M. For comparison, recall that in the case of M = {/0}, a non-
degenerate critical point, the highest order term is c(f0)ψ(f0\ for some constant
c(/0) [Ellis-Rosen (1); Theorem 2.1].

We next describe two limit theorems for probability measures related to Jn.
These limit theorems are analogues of the classical law of large numbers and central
limit theorem. Let Qn be the probability measure on ffl defined by

Qn(C) = Jexp( - nF(Y/n))dPA(Y/jn)/Zn, (1.19)
c

where C is a Borel subset of J f, and

Zn ~ jexp( - nF(Y/n)}dPA(Yl^n) = Jexp( - nF(Y/^n))dPA(Y).

We have for any integrable h

\h(Y/n)dQn(Y) = μ(y/v^)exp( - nF(Y/^n))dPA(Y)/Zn. (1.20)

Theorem 3. Under the hypotheses of Theorem I , for any bounded, continuous
functional φ on ffl, we have

x). (1.21)
«->oo M Λf

Iϊ Yn denotes the J*f-valued random vector defined by the identity map
(j f, dQn)-> J f, then Theorem 3 asserts that YJn converges in distribution to
the probability measure dp(x) = c(x)dVM(x)/$c(x)dVM(x) concentrated on M.
We next study the fluctuations of YJn around this limiting distribution. The
following theorem says that these fluctuations are a dp-mixture of normal fluctua-
tions in each fiber Nx,xeM.

If δ > 0 is sufficiently 'small, we can assign to any We^f with dist(FF, M) <* δ
a unique closest point π(W) in M. This follows from the ε-neighborhood theorem
[Guilleman-Pollack, p. 69]. If dist (Ϊ^,M)><5, then we set π(W) = Q. Since
by Theorem 3 YJn is close to M, YJn - π(YJn) should be close to zero. To study
the fluctuations of YJn we will study

V ππίV l™\

(1.22)

Theorem 4. Under the hypotheses of Theorem 1, for any bounded continuous
functional φ on 3f, we have

M
(1.23)

In Sect. 2 we present preliminaries which will be needed in our proof of Theorem
1. Sect. 3 contains the proof of Theorem 1. At the beginning of that section, we
explain the main ideas behind Theorem 1. Section 4 contains the proofs of various
lemmas used in Sect. 3, and in Sect. 5 we prove Theorems 2,3, and 4. In Sect. 6, we
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extend our results to C[0, 1]. An Appendix contains a result on the tightness of
certain measures on C[0, 1]. This result is used in Sect. 6.

Earlier work on the asymptotics of Gaussian integrals has been done by
[Pincus], [Schilder], [Donsker-Varadhan], and [Ellis- Rosen (1)]. Our study
of the manifold case is new. We have been informed by S. Breen that for certain
cases he has obtained the key change of variables formula discussed in Sect. 3.
His methods are quite different from ours.

2. Preliminaries

Let F be a C°° Frechet diίferentiable functional on the Hubert space 2? . Given
Ϋ 9 Y 1 9 . . . 9 Y j in j f , we denote the/h Frechet derivative of F at 7 by DjF(Ϋ)(Yί

7.). If Y1 = ... = Y. = 7, we use the notation DjF(Ϋ)Yj = DjF(Ϋ)(Y^ ... , 7.). The
first and second Frechet derivatives of F at 7 define, respectively, an element

and a bounded symmetric linear operator F'(7) on Jtf which satisfy

DfF(Ϋ)Yί = <F(7), y, >, D2F(Ϋ)(Yl , 72) = <Ff'(Ϋ)Yί , 72 >. (2.1)

Let A be a strictly positive trace class operator on 2tf. @)(A~ 1/2), the domain of
A~1/2, is dense in ffl and is a Hubert space, denoted 3?(A\ when equipped with
the inner product

Let us define

\(\βKY,YyA = m\\A-v2Y\\2 if
1 ' \ +00 if

and set

G(Y) = I(Y) + F(Y). (2.2)

Thus on ,3tf (A), G(y) = (l/2)<F, γyA + F(Y) and is therefore a C°° Frechet
differentiable functional on 3f (A\ We have on 2tf (A)

VG(Ϋ}Y, = < ?, Y, yA + < F(?χ Y, > = < y + AF(Ϋ\ Y, yA ,
D2G(Ϋ)(Y1,Y2)=<Yί,Y2yA + <FH(Ϋ)YltY2y = <Y1+AFH(Y)Y1,Y2>A'

DiG(Ϋ)(Yί , . . . , Yj) = Dif(Ϋ)(Yί ,..., Yj)J > 2. (2.3)

Although G is not Frechet differentiable on ffl, if Ύ^3)(A~1} we will use the
notation

'Ϋ = A-1ΫFΫ
( ' }

Thus, the domain of G"(7) is 9(A~ l\
A point xe^f is called a minimum point of G if G(x) = inf{G(7)| 7e^f}.

Throughout this paper, if K is a submanifold of Jf , we will use the natural identi-
fication of Kx with a subspace of ffl and set Nx = K^ in 3*ί? .

Lemma 1. Let F satisfy the bound (1.2). Then we have the following facts.
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(a) The minimum points of G form a non-empty compact set.
(b) If x is a minimum point 0/G, thenxe@(A~ l\

G'(x)±A-lx + F'(x) = Q, (2.5)

and
G"(x)^0. (2.6)

(c) If the set of minimum points of G forms a smooth submanifold M 0f Jf , then

G"(;φ=0, all x EM, veMx, (2.7)

and M is finite dimensional.

Proof, a) This follows from the facts that G is lower semicontinuous on
and that as || y|| -> oo, Yejf(A),G(Y)-> oo like ||^-1/2y||2. For details, see
[Ellis-Rosen (1); Lemma 3.1].

b) The bound (1.2) implies xe9(A~ 1/2) = jf(A).
Thus x is also a minimum point of the smooth functional G on ̂ f(A\ so DG(x)Y = 0
for all Ye jf(A). By (2.3)

x + AF'(x) = 0. (2.8)

This shows xE@(A~l) and proves (2.5). Similarly D2G(x)Y2 ^ 0 for all
so by (2.3)

(A-^2γ,A-v2γy + <F'(*)y, y> = <y, γyA + <F"(X)Y, y> ^ o,
and in particular for

This is (2.6).
c) If veMx, let χt be a smooth curve on M with x0 = x, XQ = ι;. By (2.8)

Differentiating and then setting t = 0 gives

v + AF"(x)v = 0. (2.9)

Thus ve®(A~l) and G"(x)v = A~lv + F"(x)v = 0, proving (2.7).
We now prove that M is finite dimensional. Since A is trace class, (2.9) shows that

each x in M the unit ball in Mx is compact; hence Mx is finite dimensional. Thus
dim(M)< oo. Π

Lemma 2. Let Abe a strictly positive trace class operator on ffl and V c <$(A~l)
a finite dimensional subspace. Then

AγL =(πVLA~1πv^)~1 (2.10)

defines a strictly positive trace class operator on V\AV± =0on V). Therefore Av± is
the covariance operator of a mean zero Gaussian measure P^v^ γ

Proof. In terms of the decomposition 3? — V® VL, we can write the positive
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operators A ~ *, A as

/ f l f l f l * \ / H l S * \
(2.11)

so that, e.g., 7 = πvι.A~ xπFι , R = πvAπv. The identity A~1A = I yields

<xR + β*S = Iv, (2.12a)

j8£ + yS = 0F, (2.12b)

βS* + yT = Iv^ (2.12c)

where /F,0F denote the identity and zero operators on V and /Fι denotes the
identity operator on VL.

R = nvAnv is a bounded linear operator on the finite dimensional subspace
7, and the strict positivity of A implies ker (R) = {0}. Thus R has a bounded inverse
and from (2.12b) we have β= -γSR~l. Substituting this into (2.12c) shows

SR-iS*) = IVjL. (2.13)

Working similarly with the identity A A ~ 1 = / on @(A~l\ we find

(T - SR-lS*yy = /Fι on 9(A~ x)n F1. (2.14)

The last two equations, (2.13) and (2.14), show that y = πv±A~lπv±, with domain
F1, is invertible with inverse T - SR'^*. Thus

is well defined and we have

AγL = T-SR~1S*. (2.15)

This shows that Av± is a bounded self-adjoint operator. Av± is positive, since it
is the inverse of a positive operator, and strictly positive by (2.13). Av± is trace
class since T and S are both trace class and R~1,S are both bounded [Simon (2);
Chap. 2]. The last assertion in the theorem follows from [Gihman-Skorohod;
Theorem V.6.1]. Π

Let us record one additional fact. In case 3C itself is finite dimensional, the
identity

I OV#|S*
-SR -i I \S T V O T-SR~1S-ic*

shows that, by (2.11) and (2.15),

det(/4) = det(Λ)det(T - £R

3. Proof of Theorem 1.

We first explain the main idea behind Theorem 1. When M is a point, Theorem
1 is proven in [Ellis-Rosen (1)]. In the general case, where M is a smooth non-
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degenerate m-dimensional manifold, we use normal coordinates for Ύ/^/n in a
neighborhood of M :

xeM, zεNx. (3.1)

We will see that the main contribution to (1.1) comes from such a neighborhood.
The change of variables (3.1) in (1.3) gives formally

Jn = ty(17v)exp( - G ( Y / n ) ) d Y (3.2)

ί Ψ(* + z/<fi)IM(x> z/V")exp( - nG(x +
M NX

where m = dim(M) and 7M, defined in (1.10), is the factor arising from our change
of variables.

For each fixed xeM, the inner integral

Jn(
χ) = f Ψ& + *Λ/n)/M(x, z/y/n )exp ( - nG(x + z/^n) )dz (3.3)

Nx

is itself precisely of the form (1.3), with G(Y/^/ή) replaced by
G(x + z/^/ΰ) and the Hubert space 3? replaced by Nx. Our assumption (1.6)
that M be nondegenerate means that &(z) has a unique and nondegenerate mini-
mum point, the vector 0, in Nx. We are thus reduced to the case where M is a
point. This is the main idea behind our proof. Our greatest difficulty in proving
Theorem 1 will be in justifying the change of variables (3.1) in our integral.

Proof of Theorem 1. To help keep the proof clear, we consign certain parts to
a series of lemmas, which are proved in Sect. 4.

Let \ev , e2, ...} be a basis of ffl formed by eigenvectors of A, and set 3? . =
span{e1?... ,̂ .}. gf . is an ,4 -in variant subspace of 2tf with Jf\ci j»f j+1, and
2f = \j$e .. We define π. = π^ and S. = πS for any subset S c jf .j j Jtj j j j

For any subset 5 c #e , let 5ε = {x \ inf II 7 - x II < e}, i.e., the vectors within
ΓeS

ε of S. Let K be a finite dimensional submanifold of J f . We say that Kδ is a tubular
neighborhood of K if every YeKδ can be written Y— x 4- z for unique xe^,
zeNx(K), \\z\\ < δ. Here NX(K) denotes the space of normal vectors to K at x.
It is known that for compact K we can find δ > 0 sufficiently small such that Kδ

is a tubular neighborhood of K [Guillemin-Pollack, p. 69-76]. It is easy to
verify that for j sufficiently large, Kj is also a submanifold of Jf . We say that Kδ

is a uniformly tubular neighborhood of K if Kδ is a tubular neighborhood of
K and (Kjf is a tubular neighborhood of Kj for all 7 sufficiently large. It is not
hard to modify the proof of the existence of tubular neighborhoods to show that
if K is compact, then we can find δ > 0 sufficiently small such that Kδ is a uniformly
tubular neighborhood of K. Note, then, that the same is true for Kδ' for any
δ'<δ.

As mentioned, the heart of our proof is the following lemma, concerning a
nonlinear change of variables in a functional integral.

Warning on notation. In Lemma 3 and for the rest of the paper, if V is a subspace
of ffl , then we write Pv for the Gaussian measure P(AVγ Whenever the variable
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of integration is omitted in an integral with respect to PF, that variable is under-
stood to be z. In such an integral, the region of integration is understood to be K

Lemma 3. Let K be a compact, finite dimensional, submanifold of ffl, with Kδ a
uniformly tubular neighborhood of K. If A~lx is a smooth Jjf -valued function of
x on K, then ANχ^K) is a strictly positive trace class operator on NX(K) and for any
bounded, uniformly continuous functional φ onJtf* with supp φ c Kδ/2

9

ΪΦ(Y)dPA(Y)=!\ ί
K l ι iz | |«5

-dPNχ(K) (det(2π^JΓ ̂  dVK(x) (3.4)

where Iκ and dVK are defined as in the statement of Theorem 1.
Let us now turn to M, the set of minimum points of G. By Lemma 1, M is a

compact finite dimensional submanifold of ffl. We can therefore find δ > 0
sufficiently small such that Mδ is a uniformly tubular neighborhood of M.

Let f ( Y ) be a bounded, uniformly continuous functional, with / = 1 on Mδ/4

and supp/^M^2. The main contributions to (1.1) come from Y/^/ήeMδ/4.
More precisely, by Lemma 4.1 of [Ellis-Rosen (1)] (which is based on [Varadhan;
Sect. 3] ) we can find a δ' > 0 such that for any δ ̂  δ' and/as above

enG*Jn = ̂ G*ί/(y/v/n)v>(y/V^)exp( - nF(Y'/'^/n))dPA(Y) + 0(e~nc\ (3.5)

for some c = c(δ) > 0. We therefore need only study the asymptotic expansion
of the integral with the cutoff function/. At the end of our proof we will see how
to remove this cutoff.

If S c 3? is a subset, we use the notation λ/ήs = {Y\ Y= ^/ήx, for some

xeS}. We will apply Lemma 3 to the functional φ(Y) = f(Y/^/n)\l/(Y/^Jn)

exp( — nF(Y/^/n)) and the compact submanifold K = *JnM. Note that because

of the cutoff function f(Y/^/ή\ supp φ ^^/n(Mδ/2) = (^/nMynδl2. Since Mδ is

a uniformly tubular neighborhood of M, it is easy to see that (^/nMynδ is a uniform-

ly tubular neighborhood oϊ^/nM. Also, since by (2.5)

A-ix=-F(x\ forallxeM,

A~ ίx is smooth on^/nM. Finally the condition that φ be bounded and uniformly
continuous follows from the smoothness of ψ and F and the compactness of M.
Since this compactness argument will be used repeatedly, we state it as a lemma,
whose simple proof we omit.

Lemma 4. Let K be a compact subset of ̂  ana φ a continuous functional on Jjf.
Then for some δ>Q,φ is bounded on Kδ.

We choose δ as small as required by Lemma 4. Then (3.5) and Lemma 3 yield

™ r* c ί r Λ , » (x + Z\ fx + Z\
e

nG*j = e

nG* f J f (det(2π^4 ))~ / f\ l^f ' j.
n J \ J ^ ^ («JnM.)χJ ' J I Γ~~ j \ f~~ I

\JnM. \* 1 1 z/ ̂ /w 1 1 < δ \ \j il / \ \/ n /
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+ 0(e-"c). (3.6)

We intend to simplify the integral in (3.6) and obtain

f
M ||z/Vn||«5

exp( - nF3(x, z/n))dPBx(z) c(x)dVM(x) + 0(6^), (3.7)

where F3 , c(x\ B(x) are defined in Theorem 1 and m = dim(M). (3.7) should be
compared to (1.9).

To prove (3.7), we first note the following.

Lemma 5. For any integrable functional h on -

V«M M

Lemma 5 applied to (3.6) yields

- | | z / V n | | < < 5

exp(-wF(x + ;

exp(-n<^-1x,x>/2-n<^-1x,z/^

+ 0(^-"c) (3.8)

Now, we note that (y/nM)^x = ̂ /n(Mx) = Mx since Mx is a subspace, and

,nx(^/nM) = NX(M). We also have the following fact.

Lemma 6. Ij^Jήx, z) = IM(x, z/^/n).
We apply to (3.8) these facts, together with (see (2.5))

G* = G(x) = <A~1x,xy/2 + F(x),

We find

e»«Vn = n""2i{ J
M (.

exp( - nF3(x, z/V«))exp( - <F'(x)z, Zy/2)dPNχ(M) }dVM(x) + 0(e~'κ).
J (3-9)

We now apply Lemma 4.4 of [Ellis-Rosen] with

^t = Uix(M], A, = A"~™ and yl = (F"(x))Nχ(M}.
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The condition of that lemma, that A~l + Λ = (G"(x))Nχ(M}>0, is precisely the

nondegeneracy condition (1.6). The lemma tells us that det(/ + A.Nχ(M\F"(x))Nχ(M))

is well defined and positive, that B(x) = (G"(x))Nχ(M} is the co variance operator

of a mean zero Gaussian measure PB(χ) on NX(M\ and that

dPB(x)(z) = (det(/ + AN*w\F'\x))Nχ(M)))V2exp( - <F"(x)z, zy/2)dPNχ(My

Applying this to (3.9) and recalling the definition of c(x) in (1.13), we see that c(x)
is well defined and (3.7) holds.

We will complete the proof of Theorem 1 by expanding the terms ψ, 7M, and
e~nF* in (3.7) in powers of n~ 1/2 up to a given order, bounding the contributions
of the remainder, and then showing how to remove the cutoff function /. Our
analysis will resemble that of'the proof of Theorem 2.1 of [Ellis-Rosen (1)].
For each given order, we may need to choose a different δ. We then choose /in
accordance with this δ. Each time it appears, the letter c will denote a (possibly
different) constant independent of n.

Let j be a fixed integer. For δ sufficiently small, we have in (3.7)

- nF3(x,

with

uniformly in x e M. This follows from Lemma 4 applied to the error term in Taylor' s
theorem.

For any real number μ we have

eμ=Σ M ! + Sj(μ\ with | S.(μ) \ g ** | μ \j+ \
i = 0

so

exp( - nF3(x, z / n ) ) = ( - nF3(x, z / / l l + S.( -
i = 0

with

S.( - nF3(x, zljn}} ^ exp(|nF3(x, z/^.

ί c(\\ z \\3/^

uniformly in xeM, by Lemma 4.

Similarly expanding IM(x, z/^fn\ we can write
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- nF3(x, z/jn)} = ρ.(x, z/jn) + Rj(x, z/^/n).

Here Q. is the sum of all terms containing factors of n~ί/2 up to order n~j/2 and

(3.10)

for some N9 uniformly in xeM, again by Lemma 4.
We can choose δ so small that for given ft > 0

I nF3(x, zjjn) \ ̂  cn( \\ z \\ /V^)3 ^ δc \\ z \\2 ^ (ft/4) || z ||2

uniformly in xeM, by Lemma 4. Taking ft to be the constant appearing in the next
lemma, we see from (3.10) that the contribution of Λ . to the inner integral in (3.7)
is 0(n~(j+l}/2\ uniformly in xeM.

Lemma 7. There exist ft > 0, d < oo, independent o/xeM, such that

and for alla>0 and xeM

B ( * ) l z l l l z l l = α / = e (3.12)

We will see in Lemma 8 that c(x) is continuous and therefore bounded on M.
We have thus shown

M

+0(nm/2-α+1)/2). (3.13)

The proof of Theorem 1 will be complete once we have shown that (3.13) is

still valid if we replace / by 1 and drop the restriction to {z || z/^/n \\ < δ}. How-

ever, again by Lemma 4

I QJ(X, z/Jή)\ ^ c(l + || z f) for some N (3.14)

uniformly in xeM and all z. Since/is bounded and/(x + z/^/n) = 1 if || z || /^/n <
δ/4, it will suffice to show that for some δ > 0

f \Qj(x,z/^ι)\dPB(x)(z)^ce-nδ~
{z\\\z\\IJn*δl4}

independent of xeM. In view of (3.14), this follows from Lemma 7.

4. Proofs of Lemmas 3-8

Proof of Lemma 3. We will see that for finite dimensional 3? our lemma is a
straightforward change of variables. In the general case, we will approximate ffl
by the finite dimensional {Jtf.} and then pass to the limit7-* oo.
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Let k = dim(K). Since K is compact and n^I strongly, it is easily checked
that K = nK is a fc-dimensional submanifold and

(4.1)

for; sufficiently large. Therefore

fφ(Y)dPA(Y) = f Φ(Ύ)dPA(Ύ). (4.2)

We write K . χ and N xto denote, respectively, the tangent space and the normal
space to K. in Jf at x. As usual we identify these with subspaces of Jίf.

KJ is also a submanifold of 3? .. We will use Kjx and N. ̂  to denote, respectively,
the tangent space and the normal space to Kj in 34? j at x. Identifying these as
usual with subspaces of ffl . c jf>9 we see that

(4.4)

We also define (K/ = {xejf}\ inf \\x-Y\\< δ}, so that (X/ = (K.)δnjf}.

In terms of the decomposition Jf = Jf ̂  φ <?f j , /4 has the matrix

0

Because we are dealing with Gaussian probability measures, for any integrable
h we have

lh(Ύ}dPA(Ύ] = J { J h(u + υ)dPA^ (ii) JΛV W (4 6)
H Xj (tfj. ] )

Since Kj c ̂ .5 for any uejfj with || ϋ || < δ and xeK^., x + v is in (£/, so that
by (4.6)

J φ(7)^(Γ) = J f 0(u + υ)dP^ (u)dPA (i?), (4.7)

We can assume j > fe is so large that (Kjf is a tubular neighborhood of Kjy

and therefore (Kp5 = (K^r\#e '. is a tubular neighborhood of K. in jf r We will
rewrite the inner integral in (4.7) using the following straightforward change of
variables formula (for a proof, see [Weyl] ) :

Kj

h(u)dju = J J A(x + w)/x (x, w)dwj'-k dFχ (χ) (4.8)
J J

for any bounded continuous functional h(u) on jtfr In this formula, Iκ and rfFK.
are defined as in the statement of Theorem 1, and J^J9 Njx are vieweci as j and
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j - k dimensional Hubert spaces, respectively, with dju and dj~kw denoting the
natural Lebesque measures on these spaces.

To apply (4.8) to the inner integral of (4.7), note that as measures on ffl.

dP. (ιι) = exp(- <^-χ

Therefore, with h(u) = φ(u + ι;)exp( - (A~ lu, u>/2)/(det(2πXjr .))1/2, (4.8) shows

f φ(u + p)dP^ («) = f I I Φ(x + w + ι?)(det(2π4^))" 1/2

ί||wH<%)}

exp(—<^4 1(x + w),x + w>/2)/~ (x, w)dj fcw \άVv (x)ί-\ v /J '/ ' X / v > ' ( KjV /

(4.9)
The definition of ANj * shows that for w e f f j x

(4.10)

Since as measures on N

dP/?AJt(w) = exp(-

(4.11)

(4.9), (4.10), (4.11), and (2.16) show that

\~l/2.

• exp ( - < A ~ :x, x >/2 - < A " !x, w »/κ .(x, w)^ . >) J

(4.12)

We now show that (4.2), (4.7) and (4.12) can be combined to yield

$Φ(Y)dPA(Y)=l
Kjl\\z\(<»

• exp ( - < A - lx, x >/2 - < A ~ lx, z > )/κ .(x, z)dPN.χ \dVKj(x).

(4.13)

To prove (4.13), first note that in the decomposition Jf = Jf jφ Jtfj the matrix
of % x is by (4.4)
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Therefore, on Q>(AΓ*) n NJfX =

<-!„

By Lemma 2 these operators are invertible, and we have
s> * 0

,0 A

(4.14)

(4.15)

The operators in (4.15) are positive and trace class. Once again, because we are
dealing with Gaussian probability measures, (4.15) shows that for any integrable h

$h(z)dPNjχ(z) = J (4.16)

Secondly, note that for xetf., υe^j, (^l'1^, w> = <^4~1x, w + t;>, and -since
Kj c jf the definition (1.10) of Iκ shows that Iκ (x, w) - Iκ .(x, w + ϋ). Together
with (4.16), (4.2), (4.7) and (4.12) now prove (4.13). J

We wish to pass to the limit j-+ oo in (4.13). We will do this in two steps. We
write Nx for NX(K) and χδ(z) for the characteristic function of the set {z\ \\ z \\ <δ}.

Assertion (a). For any ε > 0, we can find a J such that for ally > J the right-hand
side of (4. 1 3) is within ε of

exp( - <X-1x, x>/2 - <Λ- ̂ , z»/κ(x, πNχz)dPNj>7τ χ}dVκ(x). (4.17)

Assertion (b). For each x 6 K,?^ ->p weakly as measures on jf.
l*j,π x ^x ^

Let us show how these two assertions complete the proof of our lemma. The
support property of φ expressed in (4.1) shows that the inner integrand in (4.17)
is for each fixed x a bounded continuous function of z. By Assertion (b), the inner
integral in (4.17) converges to

!Φ(x + z)χ,(z)(det(2π4xJΓ 1/2exp( - (^x, x>/2 - <X" *x, z»/κ(x, z)dPNβ).

Furthermore, the assumption that A" lx is a smooth function of x on the compact
set K, together with (4.26) of the following lemma, show that the inner integral
can be bounded by a constant, independent of j. By the dominated convergence
theorem, (4.17) converges to the right-hand side of (3.4). The proof of Lemma 3
follows immediately.

The next lemma collects some facts needed in the proof of Assertions (a) and
(b).

Lemma 8. Let & denote the space of bounded linear operators on J^ with the uniform
operator norm, J> the subset of ̂  consisting of trace class operators with the trace
norm, and ̂ ^ the subset of& consisting ofHilbert-Schmidt operators with Hilbert-
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Schmidt norm. Then under the conditions of Lemma 3,

**,_. ->«*_ Ί (4 18)
in &, uniformly in x e K, (4.19)

(4.20)

ingfiandJ*, (4.2 la)

inΛanάtfSP, (42 Ib)

πκ and πN are continuous &-valued functions on K, (4.22)

ANχ is a continuous J-valued and &-valued function on K, (4.23a)

(ANχ)112 is a continuous Jtfϊf-valued and &-valued function on K, (4.23b)

det (AKj π χ) -> det (AKχ) } (4.24)
V uniformly in x e K,

det (AK^JX) -> det (AKχ) j (4.25)

det (AKχ) is continuous and nonzero on K, (4.26)

c(x), defined in (1.13), is continuous on M. (4.27)

Proof of Assertion (a). We will work locally. K can be covered by a finite number
of coordinate neighborhoods. Let i^ be such a neighborhood, and let x(s)9 se^ <g
#fc, be a parametrization of ̂ . Then, π;.χ(s) is a parametrization of π.^ ̂  K..

Setting xt(s) = —z—, 1 ̂  i ̂  fe, and recalling the local definition of dVK. [Spivak,
os. J

Vol. I, p. 423], we see that the integral in (4.13) over the region π.τΓ can be written
as

f ί -1/2

J I J T \ /\ \ Kj,χ''

3 3'x)

}
* exp j_ — \ 7i .A (̂s), x(s) //Σ — \τc .A x(s), z / Jj ̂  (τι x(s), zjdr^ /•

•(det«π.χί(S),xχS)»)1/2Λ.

Let us show that this is, for7* sufficiently large, within ε of

exp(-
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exp(- <^-1x,x>/2- (A~lx,zy)IK(x,TiNxz)dPNj^ dVK(x).

For this we will show that all terms in the integrands are uniformly bounded
and corresponding terms are uniformly close. First note that x(s)eK and || z || < <5.
Since φ is bounded and uniformly continuous, φ(πjx(s) -f z) is bounded and close
to φ(x(s) + z). Since A~ ίx is a smooth function of x on K, (ιtjA~ (̂s), x(s)>/2 +
<π/4"1x(sXz> is bounded and close to (A~lx(s)9x(s))/2 + (A~lx(s)9zy.
Similarly det«πyx/(s),x^(s)» is bounded and close to det«x.(,s),x^(s)». The
terms involving det(AKj π ) are handled by (4.24) and (4.26). Finally, by (4.19),

z = πN . π .̂ z is close to πNχ s z, and it is then easily seen from the definitions that

Iκ(πjx(s\ z) is bounded and close to Iκ(x(s\ πN z). Since, as mentioned, K can
be covered by a finite number of such i^9 Assertion (a) is proven. Π

Proof of Assertion (b). By [Gihman-Skorohod, p. 379], this follows from (4.21b).
D

This completes the proof of Lemma 3. Q

Proof of Lemma 5. Let y be a coordinate neighborhood of x in M, and let x(s),

se^e#m, be a parametrization of ir. Set χ.(s) = — — , and 0y(s) = <xi(s),Xi/(s)>.
c/S

In terms of this parametrization, the volume element of M determined by 3? is

(det(gij(s)))V2dsi...dSm.

We can use^Λϊx(s) as a parametrization of a neighborhood of^/nx in^/nM.

In terms of this parametrization the volume element of ̂ /nM determined by
is

where m = dim (M). This proves Lemma 5. Π

Proof of Lemma 6. If ϋ(x) is the extension of v used in the definition (1.8) of WXtZ

for M, we can take v(x/^/ή) as the extension to be used in the corresponding
definition ϊor^/nM. Lemma 6 follows easily. Π

Proof of Lemma 7. By [Gihman-Skorohod; p. 351], we see that for each xeM

$eb"z"2/2dPB(x)(z) = [det(7 - bB(x))]~ l'2 > 0 (4.29)

for b sufficiently small, and by [Ellis-Rosen (1); Lemma 4.4]

B(x) = (ANχ)ll2[I + (ANχ)V2(F"(x)N)(ANχ)il2] -\ANχ)il2. (4.30)

(3.11) will follow from (4.29) once we show that B(x) in (4.30) is a continuous »/-
valued function on M [Simon (2) p. 48] . Then (3. 1 2) follows from (3.11) by Cheby-
shev's inequality.

Now by (4.23b), (ANχ)1/2 is continuous in the Hubert- Schmidt norm, so that
it suffices to prove that the middle factor in (4.30) is continuous in the uniform
operator norm [Simon (2); p. 31]. This follows from the smoothness of F, (4.22),
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(4.23b), and the fact that inversion is a continuous map from 38 to 36 on the open
set of invertible operators. Π

Proof of Lemma 8. We work locally. Let i^ be a coordinate neighborhood of K
and x(s), s€^eRk,a parametrization of if . Then {π.χ(s\ s e tyi] is a parametrization

π/^ , a coordinate neighborhood of K. {xf(s) = — — , i^i^ k} form a basis for
i

Kx(s) and for large;, {πjXi(s)9 1 ̂  i ̂  k} form a basis for Kjtnjx(sγ

Define the k x k matrices, g(s) and gL(s), by

(432)

It is easily verified by checking on the above mentioned bases that

ιfcX (4-33)

^ ̂  r = Σ (ai l 0)ι, < v,w 7 > ViW
i,τ

These formulae prove (4.18) and also (4.19) and (4.22) since, e.g., πNχ = I — πMχ.
They also show that

ίxi(s), (4.35)

Y = Σ ( 0 1 ( ^ ) ) ί t < ( 4 Γ> 1*^). (4-36)

Since by assumption A~lx is a smooth function of x on X, these last formulae
prove (4.20).
By (2. 15) we have

AN*™ = AN -(πN Aπκ )(AK Γ1^ Aπκ )*, (4.37)
Λ/ΛΓ(S) V Nχ(S) Kχ(s) f ^ Λχ(s) / V Nχ(s) K X(s) ' ' V 7

^NJ ,πj.x(s) ̂  A _(π ^π )(^ ί'1^ Aπκ )*.
Nj,njX(S) ^ Nj,πjχ(s) Kj>πjX(S)'\ Kj,πjχ(s)' v Nj>πjX(S) Kj.wjxίs)7

(4.38)

Since inversion is a continuous map from Jf to ̂  on the open set of invertible
operators, (4.18), (4.19) and the fact that Xe./, together with standard facts about
«/ [Simon (2); Chap. 2], imply (4.21 a). Similarly, using (4.22), we have (4.23a).

To prove the assertions about determinants, note that by (4.33)

)Xi(s). (4.39)
i, τ

Thus, in the basis {xt(s\ 1 ̂  i ̂  fc}

(̂ «.,)«= Σto~1(s))h<χϊ(sX^*Xs)> (4-40)
τ

Similarly in the basis π^x.(s), 1 ̂  ι ̂  fc, we find

(4.41)
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This proves (4.24) and (4.26). The fact that det(AKχ{β}) ± 0 follows from the strict
positivityofA

We similarly find formulas for the matrices of (AKχW)~l and (AKi>nJx(s))~l .
They look like (4.40) and (4.41) with A replaced by A~~ 1. Since A~ ίx is a smooth
function of x on K, (4.25) follows.

Facts (4.21b) and (4.23b) follow from (4.21a) and (4.23a), respectively [Simon (2);
p. 42].

Finally, to prove the continuity of c(x\ we need only note (4.26), (4.23a), (4:22),
and the smoothness of F [Simon (2); p. 48]. (We have seen in our proof of (3.7) that
for each x, the determinants appearing in the definition of c(x) are nonzero.) Π

5. Proofs of Theorems 2, 3, and 4

Proof of Theorem 2. Using the notation of the proof of Theorem 1, by (3.7) we have

Λn = if"2 jί J f(x + z/^/n)ψ(x + Z/V»VM(X> W")'
M(.NX

exp( - nF3(x, zlJn))dPB(x)(z)\c(x)dVM(x) + 0(e-"<) (5.1)

Take any xeM and write it as x = sx0 for some stίf. The inner integral is

J /(sx0 + z/^/n)φ(sx0 + z/^/n)IM(sx0,z/^/ή)exp( - nF3(sxϋ,z/^/n))

*"X(5*o)(2) (5-2)

Let 2tf 1 and 3? 2 be Hubert spaces. In general, if R is the covariance operator of
a Gaussian probability measure PR on 2tf χ and U is a unitary operator from
Jf ! to jf 2 , we have for any integrable h on 2tf 2

J h(UY)dPR(Y) = J h(W)dPURU.1(W). (5.3)
Jfl ^2

In the present situation it is easily seen that s is a unitary transformation from
NXQ to NSXQ, so that for any integrable h on Nsxo

J h(sz)dPB(Xo)(z)= J MzWP^^.^z). (5.4)

However it is easily checked using (1.15) that

sBίXoK^BK). (5.5)

Thus the integral (5.2) can be written as

J f(sx0 +
XXQ

• exp ( - nF3 (5X0 , sz/^/n) )dPB(Xo} (z) (5.6)

H-
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• exp ( - nF3 (x0 , z/ v/n) )dPB(Xo) (z)

by the invariance of Jn under 5̂ , (1. 1 5). Note that since s is a unitary transformation

of Nxo onto NSXQ,f(sx0 + sz/^/n\ as a function of zeJVΛo, is equal to 1 for

| z || /\/w < <V4 and zero for || z || /y/n ^ (5/2. The proof of Theorem 2 now follows
as in the proof of Theorem 1 . Π

Since C00^) is dense in C(#?\ it suffices to prove Theorem 3 and 4 for φ
smooth.

Proof of Theorem 3. By (1.20) we have

SΦ(Y/n)dQn(Y)

= jV>(y/7tt)exp( - nF(Y/^/n))dPA(Y)/$exp( - nF(Y/^/n))dPA(Y). (5.7)

By Theorem 1,

- nF(Y/^n))dPA(Y) = n^2^φ(x)c(x)dVM(x) + 0(n^2~ 1), (5.8)

( - nF(Y/^n))dPA(Y) = n^2^c(x)dVM(x) + O(nml2~l\ (5.9)

which combine to prove Theorem 3. Π

Proof of Theorem 4. By (1.20) we have

exp( - n

dPA(Y).

By (3.7), in the notation of the proof of Theorem 1,

= nmβl\ ϊ f ( x +
M(NX

exp( - nF3(x, z/^/n))dPB(x)(z) >c(x)dVM(x) + O(e~nc\ (5.10)

and the proof of Theorem 1 shows that this is equal to

nm/2 j { J Φ(z)dPB(x)(z)}c(x)dVM(x) + O(nm'2~l).
M (NX )

This, together with (5.9), proves Theorem 4. Π

6. Extension to C [0,1]

In many applications, integrals of the form (1.1) arise where the functional F is
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not defined on all of L2[0, 1], but only on C[0, 1]. In this section, we illustrate
how our results can be extended to this setting by proving the C[0, 1] -analogue
of Theorem 1. We denote C[0, 1] by #, L2[0, 1] by Jf , and write the supremum
norm of ̂  as || - || the norm of 3? will be written as || — || 2 and the inner product
of 3? as <-,->. As above, "smooth" means C°°. Let PA be a mean zero Gaussian
probability measure on ̂  with covariance operator A and covariance function
A(s, t). Let ψ and F be functionals on # and define the functional G by (2.2). G is
finite on ®(A~ 1/2), which is a subset of # [Ellis-Rosen (2); Lemma 4.3(d)] .

We next state the hypotheses under which the extension to ̂  of Theorem 1
will be valid. The bound (6.2) below, which is weaker than (1.2), is condition (df)
in [Simon (2); p. 185]. This weaker bound is useful for applications.

Hypothesis 1. A is strictly positive on 3ί? . Also,

\A(s9 t)\£c< oo, \A(s, t)-A(s\ ί)| ̂  β(\s- s'\\ allO ̂  s,s'9 1 ̂  1, (6.1)

where β is some function on [0, 1] which is nondecreasing, is continuous on [0, ε],

and satisfies β(O) = 0 and Jj%)tΓ1[log(l/w)]~1/2dw < oo for some εe(0, ί/e) (e.g.,

β(u) = up for some p > 0).

Hypothesis 2. The functionals ψ and F on # are continuous and ψ is bounded.
For all YεΉ, F satisfies

-c2(ε)-εμ^y||2 (6.2)

for some 0<;fc< 1/(2||^||2), some O^J < 1/2 such that Ίτ(Al~2A)< oo, and
all sufficiently small ε > 0.

Under Hypothesis 2, G has minimum points [Simon (2); Lemma 18.5]. We
denote by M the set of minimum points of G.

Hypothesis 3. The functionals ψ and F are smooth on some neighborhood iΓ
of M . For yeiΓ, Yi , Y 2 e ( t f , the first and second Frechet derivatives of F at Ϋ can
be represented as

Y, >, ΰ2F(γ)(γ1 , y2) = <ίw(Y)y1 , y2 >, (6.3)
where F'(y) is a smooth ^f-valued function and F"(Ϋ) is a smooth J'p f )-valued
function.

Hypothesis 4. M is a smooth m-dimensional nondegenerate submanifold of .̂
The next theorem, Theorem 5, is the ^-analogue of Theorem 1. All quantities

in Theorem 5 are defined as in Theorem 1. (Note: for xeM,Nx = M ,̂ where 1
denotes orthogonal complement in Jt? .) The meaning of the asymptotic expansion
in Theorem 5 is explained after Theorem 1 (with 2tf replaced by #).

Theorem 5. Let PA be a mean zero Gaussian probability measure on *$ with covari-
ance operator A and covariance function A(s9 1) and let ι//9 F be functionals on Ή.
Suppose that Hypotheses 1-4 are valid. Define the integrals {Jn} by (LI). Then

r ^
'nml2 n ί Ψ(^ + z/^)IM(x,z/^)QXp(-nF3(x9z/^))dPBM(z)>-

M(NX J
φ)d7M(χ).
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To prove Theorem 5, we must make suitable modifications in the proofs of
Lemmas 1, 2, 3, 7 and of Theorem 1. Concerning the other lemmas, in Lemma 4 we
change tf to <β and Kδ to Kδ , where

The proof of Theorem 5 uses this new Lemma 4, the proof of which is simple, to-
gether with Lemmas 5, 6, and 8 as stated, the proofs of which stay unchanged.
(The conclusions of Lemma 8 stay valid since continuity in <# implies continuity
in 2tf .) We next modify Lemmas 1, 2, 3, 7 and the proof of Theorem 1.

Lemma 1 holds as stated. The only fact that requires separate proof is (a),
namely that M is a compact subset of # (and thus of ̂ \ This follows from the
proof of [Ellis-Rosen (2); Lemma 4.5 (d)] and the fact that if F satisfies (6.2),
then there exist b > 0, ε > 0 such that for all Ύe^ G(Y) ̂  - c2(ε) + bI(Y).

Lemma 2 holds as stated. For use below (Lemmas 3 and 7) we augment Lemma
2 to show the following technical result on the tightness of certain Gaussian
measures.

Lemma 9. Suppose that A satisfies Hypothesis 1 . Let Γ be an index set and { Vy γ e Γ}
finite dimensional subsets in ^(A'1) all of the same dimension d. Suppose that for
each yeΓ we have a bounded linear operator Ly such that for all vεVy

v = ALyv (6.4)

and suppose that

Then the set of Gaussian measures {Pv± yεΓ} is tight.

Proof. By Theorem A in the Appendix of this paper, it suffices to prove that the
covariance functions of the {P/ yeΓ} all satisfy (6.1) for some c, β independent
of γeΓ. For each γ, let {φ . i = 1, . . . , d} be an orthonormal basis of V. Denoting
the orthogonal projections πv and πv± by π and π^, respectively, we have π1 =

1 d

IΣ
Oί=l

(*yΓ)(*) = ί Σ Φ,.t(s)Φ7ti(t)Y(t)dt9 OίsZL (6.5)

Now (2. 15) implies

tfArf - π^Aπy(πyAπyΓ \Aπ$. (6.6)

Since by (6.5)

sup{ II (V^Γ1 [1 2} = sup{ || (AVγΓ
l || 2} ̂  c' < oo,

y&l yεl

we are done once we show the following: for all γeΓ, ie{l, . . . , d}

\φyβ)\ ^ c < oo |0?>) - φr>ί(t)\ ίβ(\s- s'|),0 ̂  s, s', t ̂  1, (6.7)

where β is some function as in Hypothesis 1. Since A(s, t) satisfies (6.1), we have
by (6.4)

^ s, t ̂  1} ||LJ2 ̂  cέ < oo, yeΓ,i6{l, ... ,d}, se[0, 1].
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This gives the first bound in (6.7). The second bound in (6.7) follows similarly
from the second bound in (6.1). Π

We now modify the proof of Theorem 1. In Lemma 3, we assume that A also
satisfies Hypothesis 1 and that K is a compact, finite dimensional submanifold
of #. We still use Kδ, the ^-neighborhood of K which forms a uniformly tubular
neighborhood, but we assume that φ is a bounded, continuous functional on ̂ .
These hypotheses on φ differ from the hypotheses on φ made in the original version
of Lemma 3 (φ bounded and uniformly continuous). The technical reasons for
these new hypotheses will be explained below, just before the statement of Lemma
10. We note that Lemma 3 applies to the choice K =^/nM (see discussion after
Lemma 3). Indeed, since by Lemma ί(b) A~ίx = F(x) for xeM, Hypothesis
6.4 implies that A~ lx is a smooth ^-valued function of x on^/nM. We prove this
modified Lemma 3 later.

The crucial point in our modification of the proof of Theorem 1 lies in the choice
of the cutoff function/ On the one hand, we need a uniformly tubular neighborhood
for Lemma 3- and our tubular neighborhoods are 2tf objects-while on the other
hand, in order to expand ψ and F we need neighborhoods in Ή. We now choose
/ Pick δ so small that M(2<5) is a uniformly tubular neighborhood of M and define
the following subsets of M(2<5) :

S2(δ) = {Y Y = x + z, xeM, zeNχ9 \\ z | ^ <5, || z || 2 ̂  δ}.

We will show below that S^δ) and S2(δ) are closed in .̂ Since (Mδ)c is closed in
,̂ Urysohn's lemma [Roy den; Prop. 8.2] guarantees the existence of a continuous

functional / on ^ which satisfies /= 1 on S^(δβ\f=Q on S2 (δ) u (Mδ)c, and

We next prove that

- nF(Y/Jn))dPA(Y)

(Y) + 0(e~nc\ (6.8)

for some c = c(δ) > 0. Since/ = 1 on the open neighborhood [S2(δ/2)u (M(3/2)c]c c
St(<5/2) of M, (6.8) follows once we have shown

=0(e-ncl (6.9)
&

where £? is any closed subset of ̂  such that J§? n M = φ and c = c($P) > 0. To prove
(6.9), we verify

lim lim sup(l/n)log J e'^^dP^^/nY) = - oo, (6.10)

then appeal to [Varadhan; Sect. 3] and the ^-analogue of [Ellis-Rosen (1);
Lemma 4.1] (the proof of the latter is easily adapted to the case of )̂. The limit
(6.10) follows from the bound (6.2) on F and the fact that
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for all sufficiently small ε > 0 [Simon (2); Lemma 18.2]. This proves (6.8).
We continue with our modification of the proof of Theorem 1, working with

the second integral in (6.8). The functionals ψ and F are assumed to be smooth
on some neighborhood if of M. V contains Mj for some S > 0. Choosing δ <δ,
we have

Thus, ψ and F are smooth on the support of/. For sufficiently small δ, we can

expand ψ(x + z/^/n) and F3(x + z/^/ή) in the normal direction z since we have

||z| |A/rc<<5 in (3.7). Finally, since/ - 1 on 8^(6 β\ the proof of Theorem 5
can be completed as in Sect. 3 once we prove the ^-analogue of Lemma 7 ( || — || 2
replaced by || - || ).

We next prove that S^δ) and S2(δ) are closed in % then prove the modified
versions of Lemmas 3 and 7.

To show the closure of S^δ), let {Y.} be a sequence in St((5) such that Y.-» 7,
where Fis some element in #. For each /, we write 7. = xi-\-z.9 where x.eM,
zteNXi. By the compactness of M, there exists a subsequence {ij of {/} and an
element xeM such that x f ι -» x. Then zίt = 7fi — xίt -> 7~ x. Define z = Y — x.
Since clearly || z || ̂  δ/2, we need only show ze Nx. Since M is a smooth manifold,
for each w near x we can find a basis {φjwιj=l929...9m} for Mw, with each
φ.w smooth in w. For each je{l, ... ,m}, we have as ii-> oo

<Ziι'^ ,χ ί l>^<Z '^,χ>

But (Zί^Φjx. > = 0 since ztieNx. , and so we conclude that zeNx. This proves

the closure of ^((5). A similar proof yields the closure of S2(δ).
We now prove the modified version of Lemma 3 (K a compact, finite dimensio-

nal submanifold of # and φ a bounded, continuous functional on ̂ ). We find that
we must modify the proofs of Assertions (a) and (b). As in Sect. 3, Lemma 3 is
applied to the functional (see paragraph after (3.5))

φ(Y) =f(Y/^n)ψ(Y/^n)exp( - nF(Y/jn))

Because of the choice of the cutoff functional/ this φ was uniformly continuous
in Sect. 3 while in the present section it is only continuous. This explains the new
hypotheses for Lemma 3. The uniform continuity of φ allowed us to prove the
original version of Assertion (a) in a relatively simple way. We now show that the
boundedness and continuity of φ suffice. To prove the modified version of Asser-
tion (a), we need a lemma, which will also be used in the proof of Assertion (b).

Lemma 10. The set of measures {PNχ xeK} is tight. Also, there exists j0 such that

the set of measures {PNj>π.x j ^J0, xεK} is tight.

Proof. We first prove the tightness of {PN xeK}. By hypothesis in Lemma 3,
A~ lx is a smooth f̂ -valued function of x on X, say H(x). Then for xeK

x = AH(x), (6.11)
sothatfori eX^

v = AHf(x)υ. (6.12)
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We now appeal to Lemma 9 with Γ = K and Vy = Kx for γ = x eK. The hypotheses
of Lemma 9 are verified using the smoothness of H'(x) and (4.22). We conclude
that {PNχ 9xeK} is tight.

We now prove the tightness of {PN. n χ j ^jQ,xeK} for some sufficiently large
j0. We choose j0 so large that for all j ^jQ9nj is an embedding of K onto π.K.
In particular, π . is an isomoφhism of Kx onto K. π .x which we denote by π . x.
By (6.12), we have for veKx

π.v = Aπ.H'(x)v = A(π fi' (xfi-^π p (6. 1 3)

u=A(πjH'(x)π-χ-)u. (6.14)

Using (4.18), we can then verify the hypotheses of Lemma 9 with Γ = K x {j\j^j0}9
vy = Kj,njX

 for V = foΛ We conclude that {PNjtnjx 'J ^J0 , xeK} is tight. Q

We now prove the modified version of Assertion (a). By Lemma 10, there
exists j0 such that the set of measures in (4.28) in the z-variable (i.e., the measures
(PN .πχ'J^.j09xEK})is tight. Since the integrands are bounded, we may restrict

our attention to those z lying in some compact set S. It suffices to prove that for
any ε > 0 we have

sup \φ(πix + z)-φ(x + z)\<ε (6.15)
xeK.zeS

for all sufficiently large/ By (6. 1),

\\AY\\ ^ const || 7||2 (6.16)

for all Yejff. By (6.11)

|| n.χ - x || = || A(nfl(x) - H(x))\\ ^ const || πfί(x) - H(x) \\2.

Since H(x) is continuous and K is compact, we see that π.x-> x uniformly on K.
The inequality (6.15) now follows from the continuity of φ and the compactness
of K x S. This completes the proof of the modified version of Assertion (a).

In Assertion (b), we need to prove that for each xeK

PNj π χ -> PNχ weakly on V. (6. 1 6)

We denote by AN* nf°(s9t) and ANχ(s,t) the covariance functions of PN x and
PNχ , respectively. We next prove

ANj "J*(s9 1) -> ANχ(s9 ί), 0 ̂  s, t g 1, as j -> oo . (6.17)

The weak convergence in (6.16) will follow from (6.17) and the tightness of the
measures {PN.π x 'J ^J0}, proved in Lemma 10. Concerning (6.17), let [φix\i =
l9...9k = dim(Kx)} be an orthonormal basis of Kx. Then for all j sufficiently
large, the elements {πjφitX i = 1, . . . , fc} are linearly independent, and so an ortho-
normal basis of K . can be constructed from them. We claim thatJ,TtjX

πA*-*^,> '̂ i = l > •••>*• (6-18)

Then (6.17) follows from (6.18) and the representations (6.5) and (6.6) with
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A = ANj'nJx and A = ANχ. Using (6.12) and (6.16), we have for veKx

|| Ό - Tip || = || A(H'(x)v - πfl'(x)o) \\ ̂  const || H'(x)υ - πfif(x)v \\ 2,

which tends to 0 as 7-^ oo. This proves (6.18) and completes the proof of the modi-
fied version of Assertion (b).

We now prove the modified version of Lemma 7. It suffices to show the existence
of b > 0, d < oo such that for all a > 0 and xeM

-ba2'2. (6.19)

Let Q be any mean zero Gaussian measure on #. The proof of Theorem 1.9 in
[Marcus-Shepp] shows that if for some s > 0,

then for alia > s

Q{Y\\\Y\\>a}ίe-<*\

where t = (24s2)-1 log|>/(l - «)]. We prove (6.19) by finding s > 0 and q > 1/2
such that for all xeM

PB(x){z\\\z\\^s}^q. (6.20)

To prove (6.20), it suffices to find a compact subset y of <β such that

• for all xeM. (6.21)

By Lemma 10, for any εe(0, 1), we can find a compact subset &~ε a <g such
that

^ 1 - ε for all xeM. (6.22)

Wenow use |ms-Rosen(l);Lemma4.4] with J^! ^Nχ9Al ^ ANχ,Λ = (F"(x))Nχ,
and Bi = B(x\ for xeM (cf., (4.30) above). We have PB(x) <^ PNχ and as one can
show,

(6.23)

for some p > 1. In fact, using (4.23)(α) above, we can choose p > 1 so that

II β, I = [f \β,\pdPκJ
llP ^ 7 < oo for all xeM. (6.24)

By (6.22)-(6.24), we have for any εe(0, 1)

where q is the conjugate index to p. Now (6.21) follows if we choose ε sufficiently
small. This proves the modified version of Lemma 7 and completes the proof
of Theorem 5.
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Appendix

We prove a result on the tightness of certain Gaussian measures on C[0,1].
This result is used in the proof of Lemma 9 in Sect. 6.

Theorem Al. Let Γ be an index set and {Py yeΓ} a family of mean zero Gaussian
measures on C[0,1] with covariance functions {Ay; yeΓ}. Define ζ(u) = u~^'
[log(l/w)]~1/2. Assume that there exist numbers ce(0, oo) and εe(0,1/e) and a
nondecr easing function β on [0,1] which is continuous on [0, ε] and satisfies β(O) = 0.
Assume that

Ay(Q, 0) ̂  cfor each y e Γ, (A. 1)

\A (s, t)- Aγ(s,' t)\ £β(\s - s'\)for each yeΓ, all0 ^s, s', ί ̂  1, (A.2)

lβ(u)ζ(u)du<oo. (A.3)

Then the family {Pγ yeΓ} is tight.

Proof. By [Billingsley; Theorem 8.2], we must prove that for each sequence
[Pn n = \9 2,...} c [Py γeΓ} and for each ε > 0, there exists an a ̂  0 such that

nQ such that

The bound (A.4) holds because of (A.I). By a straightforward extension of the
proof of [Jain-Marcus; Theorem IV. 1.3] one proves that there exists numbers
sm -> 0 as m -> oo such that for all m sufficiently large, all h satisfying 2~m~ l < h ̂
2~w,andalln

(A.4)

We must also prove that for each α > 0, ε > 0, there exists a c)e(0,1) and an integer

P i V l cn-r* I YYcΛ Vίt\\ "> /v\ <Γ ί? M >• M /Ά S^I 1 ISUp j 1 [S) — I \l)\ £l Otj ^ c, /? ̂  ΛΪQ. ^/TL.J^

Pn{Y\ max su
j=l,...,2m \u\£h

where α(A) = const $β(u)ζ(u)du + (logl/h)i/2β(h) . Since a(h)^0 as A-*0,(A.5)
follows. Lo J [j
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