Available online at www.sciencedirect.com :
stochastic

SCIENCE dDIHEO" processes
(: and their
applications

5

ELSEVIER Stochastic Processes and their Applications 115 (2005) 1503—1517
www.elsevier.com/locate/spa

Frequently visited sets for random walks

Endre Csaki**!, Antonia Foldes®™?, Pal Révész®!,
Jay Rosen®™?, Zhan Shi!

2Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, P.O. Box 127,
H-1364 Budapest, Hungary
bDepartment of Mathematics, College of Staten Island, CUNY, 2800 Victory Blvd., Staten Island,
New York 10314, USA
CInstitut fiir Statistik und Wahrscheinlichkeitstheorie, Technische Universitdt Wien,
Wiedner Hauptstrasse 8-10/107, A-1040 Vienna, Austria
dLaboratorie de Probabilités UMR 7599, Université Paris VI, 4 place Jussieu,
F-75252 Paris Cedex 05, France

Received 22 November 2004; received in revised form 4 April 2005; accepted 7 April 2005
Available online 4 May 2005

Abstract

We study the occupation measure of various sets for a symmetric transient random walk in Z¢
with finite variances. Let i¥ (4) denote the occupation time of the set A up to time . It is shown
that sup,._« ¥ (x + A)/log n tends to a finite limit as n — oo. The limit is expressed in terms of
the largest eigenvalue of a matrix involving the Green function of X restricted to the set A. Some
examples are discussed and the connection to similar results for Brownian motion is given.
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1. Introduction
Let X,,, n=0,1,... be a symmetric transient random walk in z4 (d=3). We will

always assume that X,, n=20,1,... is not supported on any subgroup strictly
smaller than Z¢. We denote by ,u,)f its occupation measure:

n
py (A) = 14(X)
J=0
for all sets 4 € Z¢. Let q,(x) = P(X,, = x). As usual, we let
[o¢]
G = ¢i(x) (1.1)
k=0

denote the Green’s function for {X,}. For any finite 4 € Z¢ let A4 denote the largest
eigenvalue of the |4| x |4| matrix

Gix,y)=G(x—y), x,ye€A. (1.2)

Theorem 1.1. If X has finite second moments then

w(x+A)

lim sup t—= = —1/log(1 —1/44) a.s. (1.3)
nsoo 4 logn / /44
and
XX+ 4
lim sup M: —1/log(1 —=1/4,4) as. (1.4)
=00 0<m<n log n

For our first example, when A4 ={0}, A4 = G(0) =1/y,, where vy, is the
probability of no-return to the origin, and in the case of the simple random walk
we recover Theorem 13 of [3].

Here are some other examples. Set 1, = P(T', <o0), where T, := inf{s>0: X, = y}.
Let S(0,1)={ei,...,eq,—e1,...,—eq}, B(0,1)={0} U S(0,1), be the (Euclidean)
sphere and ball in Z¢ of radius 1 centered at the origin.

Theorem 1.2. If X has finite second moments, then for any 0%y € Z¢

X

0
tim sup MO s 1) s, (1.5)
n>00 o log n

For the simple random walk

X |
lim sup T SO e 2d( =) as. (1.6)
n—>00 o log n
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and

lim sup M =—1/log (p—i— vp§+2/d> as., (1.7)

n—>00 log n

where p =1—1/2d(1 — y,).

Corollary 1.3. If X has finite second moments, then for any fixed K >0

iy M8 peziey <k ({x, ¥)

n—>00 log n

< —2/log(l —y,) as.

Since the constant for one-point set in Theorem 1.1 is —1/log(l —7y,), this
corollary expresses the fact that any two points with individual occupation measures
up to time 7, both close to the maximum, should be at a distance larger than any
constant K>0. In particular, a neighbor of a maximally visited point is not
maximally visited.

Let W, denote Brownian motion in RY, d>3. We denote by vV its occupation
measure:

T
vi(A) = /0 1,4(W,)dt

for all Borel sets 4 € R?. Let K € RY be a fixed compact neighborhood of the origin
which is the closure of its interior and set K(x,r) = x + rK.
As usual, we let

N
u(x) = N (1.8)

denote the 0-potential density for {W,}, where ¢; = 27'n~4/2I'(¢ — 1). Let A% denote
the norm of

Ref(x) = /K L0~ () dy

considered as an operator from L*(K, dx) to itself. If B(x,r) denotes the Euclidean
ball in RY of radius r centered at x, it is known [1] that A%(O,l) = 2r‘j2 where ry; is the
smallest positive root of the Bessel function J4/5_».

With the notation of the last paragraph, the analogue of Theorem 1.1 for
Brownian motion and convex K is the following. For any S € (0,00) and any
T € (0,00),

li VT(K(xa 8))
m sup

——2Z —24% as. 1.9
e—0 Ix|<S 82|10g 8| K ( )

and

i sup VTEOVi0)

=24% as. 1.10
i~00<<7  &°|log g K (110
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Egs. (1.9) and (1.10) generalize statements (1.7) and (1.9) of Theorem 1.3 in [2]
where instead of an arbitrary convex K only balls were considered. As the proof
would be very similar we omit it.

For any x € R and £¢>0, let e,(x) = x + [0,¢]%, the cube of edgelength ¢ with
‘lower’ corner at x. Set

ZAK)={xeeZ'|ex) S K} and %(K)= |]) elx) (1.11)
xeZ(K)

and assume that
lim 2@ (K)) = 2U(K), (1.12)

where A7 denotes Lebesgue measure. Note that ¢! Z,(K) € Z7.

In view of Theorem 1.1 and (1.9)—(1.10), the next theorem gives an invariance
principle. It reveals a limiting relationship between the largest eigenvalue belonging
to the discretized and scaled version of the set K in the random walk case and the
corresponding largest eigenvalue belonging to K in the Brownian case.

Theorem 1.4. Assume that X has d — 1 moments and covariance matrix equal to the
identity. Then

lim &A1 k) = A% (1.13)

e¢—0

and consequently
— 111% & /log(l — 1/ A1 9 ) = A%. (1.14)

Section 2 states and proves the crucial Localization Lemma 2.2. Theorem 1.1 is
proven in Section 3, Theorem 1.2 and Corollary 1.3 are proven in Section 4, and
Theorem 1.4 is proven in Section 5.

2. Localization for random walk occupation measures

We start by providing a convenient representation of the law of the total
occupation measure uX (A4). This representation is the counterpart of the
Ciesielski-Taylor representation for the total occupation measure of spatial
Brownian motion in [1, Theorem 1].

Let (f,9)4 = > vcaf(¥)g(x), and let do(x) be the function on A4 defined for all
x € A by

5 1 ifx=0,
o) =190 if 0.

Recall that ¢,(x) = P(X, = x).
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Lemma 2.1. Let {X,} be a symmetric transient random walk in Z¢, and let A be a finite
set in Z% which contains the origin. Then,

2 —1
Pl (A)>u) =) hj( f}
j M

) u=0,1,..., @.1)

where J1>2A= -+ = A4 2% are the eigenvalues of the symmetric matrix G4 with the
corresponding orthonormal eigenvectors ¢, (y), hj := (1, $;) 4¢,(0).

Proof of Lemma 2.1. Let ¢ =puX(4) and set G(x—y)= Yoo gi(x —y) =

G(x =) = qo(x = ).
Note that for any m,

[E(/’"):[E({g 1A(Xi)}m> Z [E(H IA(X,,)>
>y (" )z S Lo -0

lii+(fil,:’n] Ak 0<n <---<m<oo j=1

2.2)

Here, k is the number of distinct indices n; < - - - <m; among the indices iy, . . ., i,, and
¢; is the number of times that n; appears, i.e. ¢; = |[{1<j<m|i; = m;}|. The factor
((?] " Ck) is the number of ways to assign the value #; to ¢; of the indices iy, ..., i,, for

each 1</<k.
Also, we have that

Z Z H Dy, (X — Xj1) = Z G(XI)H G(xj — Xj-1)

Ak 0<n <--<m<oo j= Ak
= (1,65 Gado),. (2.3)

Hence (we justify the computations shortly)

o0 m m
‘ { m -
Ee”) =1+ E_l - > D | ]<C1 e (1, Gy Gado) 4

* k=1 € eensCp €[
et =m

00 00 k éfcj 1
+E E E Hj(laGA G 100) 4
k=1 m=k crocpellm j=] ¢
cpttep=m

=1+ (= DK, G Gady) 2.4)
k=1

G4 1s a symmetric matrix. Let y/(p) denote the characteristic function of X;. Then
Y(p) is real and |y(p)|<1. Thus 0<1 — y(p)<2, or equivalently % > 1. Hence,
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using the Fourier transform representation G(x — ) = [ =71 — y(p))~' dp we
can see that >, Ga(x,0)aca, >33 o4 a> for any {a, € R';x € A}). By the
standard theory for symmetric matrices, G4 has all eigenvalues 2%, and the
corresponding eigenvectors of G4, denoted {¢;} form an orthonormal basis of L*(A)
(see [7, Theorems VI.15 and VI.16]). Moreover, since the entries of G4 are strictly
positive, by the Perron—Frobenius Theorem, see [8, Theorem XI11.43], the eigenspace
corresponding to A4 = 4, is one dimensional, and we may and shall choose ¢, such
that ¢,(y)>0 for all y € 4.

Thus we can write (2.4) as

FE) =1+ (e = D (1, Gy ' Gado),
k=1

1] 00

=1+ Z(l, ¢ 4($;,00) 4 Z(el - 1)k()tj - l)kflij
J=1 k

=1
|4] 0

=143 It =Dy Y =D — (2.5
j=1 k

=1

where h; = (1, ¢;) 4(¢;,00) 4. It is now easy to see that we can justify the derivation
of (2.4) and (2.5) if

Ief — )(% — DI<1, V. (2.6)

In that case we can write (2.5) as

. C— 1)y
By =145 h—© A 2.7)
( zj: == D% —1) (
Since Y14 By = 2120 (1,¢)) 4(¢h,80) 4 = (1,80)4 = 1 we have that
. et
Ee*”) =Y h . (2.8)
; == —1)
Letf,=1- 1/4; = (4; — 1)/4;. A straightforward calculation shows that
ci-f)_ e (2.9)
l—ef, 1-(E-D-1) '
so that
v e(1—1)
Ee’) =Y h —. (2.10)
; Tl-ef;

Note that since all /lj>% we have |f;|<1. We can always choose ( so that addition
to (2.6) we also have

let| < 1. (2.11)
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Then we can write

{a
=0-7) P a —f,)Z et .12
J
Hence
/Zl MP(F = k)= EEe) = Z hi(1 = £7) kzl eftrit, (2.13)
k= j —

We can choose {(<0 so that (2.6) and (2.11) hold. Furthermore, both sides of
(2.13) are analytic functions of { in some neighborhood of {, +iR' and agree for
{o + 1y when y is small. This is enough to allow us to conclude that

P(7=ky=> -/, k=12.... (2.14)
J
Hence
P(7>u)=> " hft, u=0,1,.... (2.15)
J

This completes the proof of (2.1). O

With the aid of (2.1) we next provide a localization result for the occupation
measure of {X,}.

Lemma 2.2 (The localization lemma). Let {X,} be a symmetric transient random
walk in Z¢ with finite second moments, and let A be a finite set in Z%. Set
0" =log(A4/(Ag — 1)). Then for some 1<c;<oo, n=ub, and all u>0 sufficiently
large

e <P () =) <Pt (A) = u)<cre . (2.16)

Proof of Lemma 2.2. Let ¢, := u¥(A). Assume first that 4 contains the origin. The
dominant terms in (2.15) correspond to the f;’s with largest absolute value. But since
P(# >u)>0 and is monotone decreasing in u, it is clear that these dominant terms
must in addition be those which correspond to positive f;’s. Thus the f;’s with largest
absolute value are positive, i.e. correspond to 4;’s Wthh are greater than 1. Recall
that ¢, is a strictly positive function on A4, hence in (2.15) we have h; >0. Since
(x = 1)/x =1 — 1/x is strictly monotone increasing on (1,00) we conclude that the
dominant term in (2.15) is precisely the single term corresponding to the largest
eigenvalue 4, = A,4. Hence

-1

/1 u
P(f>u)~/qf’f=h1< 4 ) = hye " 1oea/(4a=1) (2.17)
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implying that
lim P(#>u)e’ = hy € (0,00) (2.18)

Uu— 00

out of which the upper bound of (2.16) immediately follows.

Turning to prove the corresponding lower bound, let 7, := inf{s: | X,| >z}, and
note that
P(r. >n)<c; exp(—canz"2). (2.19)

Here is a simple proof:
P(t.>n) = P(| X<z 1<k<n)
<P(X <z 1<I<nz?)
<P(X 2 — X 12| <25 1<I<nz™)

[nz]

< [ Paxe — Xoi21<22)
I=1

= (P(1X 2| <22) Tgeealn="], (2.20)
Hence
P(7,>uw)=P( 7, >u)—Plt.>n)=P( 7 >u)— ¢! exp(—cnz?). (2.21)
As usual we use the notation P“ to denote probabilities of the random walk
a+X,, n=0,1,.... We now observe that
sup P(uX (A)>u) < Pk (4)>u) (2.22)
ae

for some ¢<oo and all u. To see this, note that for each ¢ € 4 we can find some n,
with /1, = P(X,, = a)>0. Then using the Markov property,

P(uX () > )= P (4) > 1) © 0,,, X, = @) = hy PG (4) > ), (2.23)

Then (2.22) follows with ¢ = sup,., ;' <oo.
Let ¢’ denote an independent copy of ¢ and T, :=inf{s>0: X, € A4}. Noting
(2.22), and using the strong Markov property, it is not hard to verify that

P(7>u)<P( 7, >u)+ cP( 7 + ¢ >u)sup P'(T 4<00) (2.24)

[v|>z
(cf. [2, (3.6) and (3.7)] where this is obtained for the Brownian motion). It follows
from Theorem 10.1 of [6] that

G(x)< é x| £0. (2.25)

Using this together with the fact that G(X,.r,) is a martingale shows that
Gv) =EB(GXr,), T4<00)= inAf G(a)P*(T 4 < 00). (2.26)
ae
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Therefore
sup PY(T4<oo0)<cz L. (2.27)
|lv|>z

By (2.18) it follows that for some constant C independent of u, which may change
from line to line,

P(7+ 7' >u)=P(f>u)+ > P(J >u—pP(J =y)
y=0
< C [exp(—ub*) + Y exp(—(u — y)0*)P( 7 = y)
y=0

<Cexp(—ub*) + C Y exp(—ub®)
y=0

= C(1 + u) exp(—ub®). (2.28)

Hence, taking z = u* one gets from (2.21) and (2.24) that for some ¢ >0, all n>u®
and u sufficiently large

P(¢,>u)=ce (2.29)

as needed to complete the proof of the lemma when A4 contains the origin. In general
we have

P(uX (A)>u) = P((uX(A)>u) 0 07, T 4 <o0)
=Y Pul(A)>uwP(T, = T,<o0) (2.30)

acA
and since it is easy to see from its proof that (2.18) holds with P replaced by P“ for
any a € A, for some ¢; = ¢;(«) it follows that (2.18) also holds. This completes the
proof of the lemma. [

Remark 2.3. If 4 is replaced by z + A for some fixed z € Z%, note from (1.2) that as
matrices, G..4 = G4. Hence A, 4 = Ay4.

3. Proof of Theorem 1.1

Given Lemma 2.2, Theorem 1.1 follows by the methods of [3, Section 7]. We spell
out the details.

We first prove the lower bound for (1.4). To this end fix a<0' =
1/log(A4/(A4 = 1)).

Let k(n) = (logn)® and N, = [n/k(n)], and ¢, =ik(n) for i=0,...,N,— L.
Writing X! = X, — X, it follows that
sup pX (X, +A)> max 2V,

]

me[0,n 0<i<N,—1
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where ZE") = ,u,)f(:;)" (A) are i.i.d. and by Lemma 2.2, for some ¢>0 and all n large
enough,

* —af*
P max Z(n)ga log n <(1 _ Cn—09 )Nn <e—(‘n Ny,.
0<i<N,—1 '

Since af* <1 this is summable, so that applying Borel-Cantelli, then taking a 1 0,
we see that a.s.

. Y X+ 4
lim inf sup Hy Ko + A)
=00 1e(0,n] log n

>0 (3.1

This gives the lower bound for (1.4).
For the upper bound, fix a>0""". Note that for any m € [0, n]

n n
X+ A) = Ly, a(X) = 14(X; = X,)
j=0

=0

m—1
= > L(X; - X,) + Zu(X Xn)
j=0 Jj=m
1‘*= LX) + Z 1,(X7) 3.2)

~.
||

where {Xj/-, j=0,1,...}, {Xj/-’,j =0,1,...} are two independent copies of {X;,
j=0,1,...} and we have used the symmetry of X. Using this and (2.28),

(sup (X, +A)>a10gn>

me|[0,n]

n

<Y PG (X + A)>a log n)

m=0

<2nP(f + ¢ =a log n)<c(log myn= @ =D, (3.3)

Thus letting n; = n* for k sufficiently large that k(a0* —1)>2, we see from
applying Borel-Cantelli, then taking a | 0*~", that a.s.

, 1 (X + A)
lim sup sup —F———
n—>00  mel0,n] log n

-1
<0

The upper bound for (1.4) then follows by interpolation.

The lower bound for ( 1.3) follows immediately from (3.1). As for the upper bound
in (1.3), we note that uX(x + 4) = 0 unless X, € x + A4 for some m € [0, n]. Thus the
only relevant x’s in (1.3) are of the form X, — a for some m € [0,n] and a € A. Thus

sup X (x+A4) = sup (X, —a+A). (3.4)

xezd me[0.nl.aeA

Recalling Remark 2.3 and the fact that 4 is a finite set, the upper bound for (1.3)
now follows as in the proof of the upper bound for (1.4).
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4. Examples
Proof of (1.5): When 4 = {0, y} we have
G(0) G(y)
Gy = .
G(») G(0)
The eigenvalues are G(0) + G(»), G(0) — G(y) so that A4 = G(0) + G(y) = G(O)(1+

t,) = (1 +1)/y4, where t, = P(T),<00), y, is the probability of no-return to the
origin, and we have used the fact that G(y) =¢,G(0). Then 1 —1/4,=1—7,/

(I+1).
We note that in the notation of Lemma 2.1, h; = 1,4, = 0 so that by (2.1)
Pl ({0, ) >w) = (1 =7, /(1 + 1) u=1,2,... . 4.1

Proof of (1.6): We now consider the simple random walk, and for ease of notation
consider first d =3. Let A = {e}, e, e3,—e1,—ez, —e3} = S(0,1), the (Euclidean)
sphere in Z* of radius 1 centered at the origin. We have

G(0) Gler —e) Gler—es)  Ger)  Gler+e) Gler +e3)
Glex —e1) G(0) Glex—e3) Glea+e) G2e)  Gler+e3)
G Gles —e1) Gles —e) G(0) Gles+e) Gles+e)  G(2e)
SOUT GRe)  Glerte) Gler+e)  GO)  Gler—er) Gler—e3)
Glea+e) G(2e) Glex+e) Glex—er) G(0) G(er — €3)
Glest+e) Glest+e)  G(2e3)  Gles—e) Gles —e) G(0)

Using G(x) = t,G(0), where ¢, = P(Ty <00), and symmetry which allows us to set
a =: lo+,; for i#j and b =: 15, we can write

1 a a b a a
a l a a b a
a al a a b
Gson = GO) b a al a a
a b a a1l a
a a b a a 1

It follows from the Perron—-Frobenius Theorem that the largest eigenvalue is
Aso,1) = G(0)(1 + 4a + b) with eigenvector (1,1,1,1,1,1). Also, it is easy to see
by symmetry that y; = P(T,, = c0). Then again by symmetry P(T,, = oo) =
AP(Tey—e, = 00) + L P(T2e, = 00), i.e. 6y3 = 4P(T,,—, = 00) + P(T5,, = 00). Hence
Aso.1y = GO)(1 4 4a + b) = G(0)6(1 — y3) = 6(1 — y3)/v;. For the case of general
d>=3, Gso,) is now a 2d x 2d matrix, which is G(0) times a matrix in which
each row has a single entry of 1, a single entry of b =: t5,, and 2d — 2 entries of
a =: ly+,, Where as before 7, = P(T,<00). It is easy to see by symmetry that
vqa = P(T,, = 00). Also, as before, it is easy to see by symmetry P(T,, = o0) =
QEDP(T,, _p,=00) 455 P(Ta, = 0), ie. 2dy,=P(T2,=+00)+(2d — 2)P(T¢, o, =
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+00). Hence As,1) = G(0)(1 + (2d — 2)a + b) = G(0)2d(1 — y,) = 2d(1 — y;)/v4 for
all d=3.

We note that in the notation of Lemma 2.1, sy =1, =0,¥j#1 so that
by (2.1)

P(ufo(S(O, D)>u)=0—v,/2d(1 —p)), u=12,.... 4.2)

Actually, (2.1) assumes that 0 € 4 which does not hold here, but using (2.30) and
symmetry we have that P(uX (S(0,1))>u) = P (uX (S(0,1))>u) and (4.2) follows.

Proof of (1.7): We again consider the simple random walk. Let now 4 = {0}U
S(0,1) = B(0, 1), the (Euclidean) ball in Z“ of radius 1 centered at the origin. With
s=P(T,<o0)and §=(s,...,5) € R* we have

1 5
G,y = G(0) ( 5 M)

with M the 2d x 2d matrix in the previous example. M is a self-adjoint matrix, and
as mentioned the principal eigenvectoris I = (1,...,1) € R4 . Ifu;, i=1,...,2d — 1
denote the other orthonormal eigenvectors of G(0)M with eigenvalue 4; <As(,1),
then since they are orthogonal to I it is clear that (0,u;), i=1,...,2d — 1 will give
us 2d — 1 orthonormal eigenvectors of Gpp,1) with eigenvalues A;<Agq,1). The
remaining (two) orthonormal eigenvectors must be of the form (v,wl) and the
corresponding eigenvalues will be G(0) times those of the 2 x 2 matrix

(1 2ds>
L= ,
s A

where we abbreviate A = Ag(,1)/G(0) = 2d(1 — y,). The eigenvalues of L are

(14 4) /(1 + 47 — 44— 2d5)
2 b

(4.3)

so that

2 (A= 0+ A7 — 40— 245%)
G(0) 4(A — 2ds%) ’
Since s = 1 —y,; we have A4 — 2ds? = 2dy,(1 —y,) = y44 we have

1+ A)— /(1 + A2 —4y,4
(I+4)—/(1+2) Va 45

1/ Aoy = (4.4)

1/ Aoy = o ,
so that
(A=1)+ /(1 + A) —dy,4

(1= 1/4) + /(L + 1/4) — 4,/ 4
- : .

(4.6)
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Setting p = 1 — 1/4 we can write this as

P+ Q=p) —4y,/4

2
_ VPP HA—4p—4,/4

2
24+2/d
_prVp+2/d i +2/d 4.7)

We note that in the notation of Lemma 2.1, #; = 0 for the 2d — 1 orthonormal
eigenvectors of the form (0,u;), i = 1,...,2d — 1 above. For the principle eigenvalue
we have (4.7) and for the other ‘surviving’ eigenvalue the corresponding expression is

e Vp;ﬂ/d Hence by (2.1)

PGB0, 1)>10 = Iy (PWW) iy (p—PH/fl) |

2
u=1,2,..., (4.8)

where /1, hy can be calculated in a straightforward manner. We observe that since

p<+/p*+2/d, the expression in (4.8) is not a mixture of geometric random
variables.

Now we prove Corollary 1.3. For any y € Z¢ we have t§<l — 74, Since 1}2, is the
probability that the random walk hits y and then returns to 0 in finite time which is
obviously less than the probability 1 — y, that the random walk returns to zero in
finite time. This implies (1 4 ¢, — 7,)* <(1 4 £,)*(1 —y,,) which in turn, implies

—1/log(l —v,/(1 +1,))< —2/log(l —7,)

and taking sup, < x we obtain the Corollary 1.3.

5. The Brownian connection

This section is devoted to the proof of Theorem 1.4.

Since Rg is a convolution operator on a bounded subset of R? with locally
L'(R?, dx) kernel, it follows easily as in [4, Corollary 12.3] that R is a (symmetric)
compact operator on L*(K,dx). Moreover, the Fourier transform relation
[ePud(x)dx = c|p|>>0 implies that Rg is strictly positive definite. By the
standard theory for symmetric compact operators, Rg has discrete spectrum (except
near 0) with all eigenvalues positive, and of finite multiplicity (see [7, Theorems VI.15
and VI.16]). Moreover, if we use (f, ), x to denote the inner product in L*(K,dx), we
have that (f, Rkg), x >0 for any non-negative, non-zero, f, g, so by the generalized
Perron—Frobenius Theorem, see [8, Theorem XII1.43], the eigenspace corresponding
to the largest eigenvalue, AOK, is one dimensional.
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Let Rk, be the operator on L*(K,dx) with kernel
”(}(,g;(X,J/) = Z U0(z — )45 (X) Loy (D). (5.1

z#7eZ(K)

Since the sum is over disjoint sets, it can be checked easily that for any
l<p<d/(d-2), u?{,s(x,y) is bounded in (K x K,dxdy) uniformly in &> 0:

/ |uy (x, p)IP dxdy = / 1’z — 2)P dxdy
KxK s eZ,(K) Y e@)xe )
1
2d
= C¢& .
z#7 €L (K) |Z -7 |17(d—2)
1
_ . 2d—p(d-2)
= c¢ Z 7” —j|1’(d_2) <C. (5.2)

i#jeZ il il <k/e

Also uf (x,y) — u’(x — y) as ¢ — 0 for all x#y. Hence, using (1.12)

im (7, Ricaf ok = > Rf g ¥f € CK). (5.3)
By Uchiyama [9]

G(x) = (1 +06(x)u’(x) Vx#0 (5.4)
with J(x) bounded and limy_ « 6(x) = 0 so that

&G %) = (1 + (e ) (x) Vx € LK), x#0. (5.5)
Let Gk be the operator on L*(K,dx) with kernel

= > ZG6ET (= o)) (5.6)

247 Z,(K)

Using (5.5), the same argument leading to (5.3) shows that

lgr(l)(f, GK,éIf)Z,K = (f’ RKf)Z,K Vf € C(K) (57)

Furthermore, since G(0)< oo, if we let 6Ké be the operator on L?(K, dx) with kernel

W= > @6 @ = DDl () (5.8)
z,27/€ % (K)

it follows from (5.7) that
(. G.of ok = (. R ¥/ € CK). (5.9)

It now follows from [5, Theorem VIIL.3.6,] that, if A(GK,E) denotes the largest
eigenvalue of the operator Gk

lim A(Gg,) = A(Rg) = AY%. (5.10)
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If /'is any eigenvector for éK,E with eigenvalue { >0, it is clear that fis in the image
of Gk, so that we can write

[ =Y le@f©) (5.1D)

zeZ(K)

and the eigenvalue equation 61(,8 f = {f becomes

Lot Y [ enla0f )by =06z e 24K (5.12)

ZeZ(K)
Noting that the dy integration picks up a factor &, this implies that

EGE 1z —-2N() = (2) Vze Ly(K). (5.13)
ZeZ(K)

Hence A1 4,k = 8*2/1(51(,8). Together with (5.10) this completes the proof of
Theorem 1.4.
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