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Let X be a strongly symmetric recurrent Markov process with state
space S and letLxt denote the local time ofX at x ∈ S. For a fixed element 0
in the state space S, let

τ�t� �= inf
{
s� L0

s > t
}
	

The 0-potential density, u�0��x�y�, of the process X killed at T0 =
inf�s� Xs = 0�� is symmetric and positive definite. Let η = �ηx� x ∈ S� be
a mean-zero Gaussian process with covariance

Eη�ηxηy� = u�0��x�y�	

The main result of this paper is the following generalization of the classical
second Ray–Knight theorem: for any b ∈ R and t > 0,{

Lxτ�t� + 1
2 �ηx + b�2� x ∈ S

}
=
{
1
2

(
ηx +

√
2t+ b2

)2� x ∈ S
}

in law	

A version of this theorem is also given when X is transient.

1. Introduction. The goal of this paper is to generalize the second Ray–
Knight theorem to all strongly symmetric Markov processes with finite
1-potential densities. In [13], Chapter XI, Section 2, the authors use the ter-
minology “second Ray–Knight theorem” to describe the law of the Brownian
local time process �Lx

τ�t�� x ≥ 0�, where τ�t� �= inf�s� L0
s > t� is the right-

continuous inverse of the mapping t �→ L0
t . In its standard formulation, this

theorem says that for any fixed t > 0, the process �Lx
τ�t�� x ≥ 0�, under the

measure P0, is a Markov process in x ≥ 0 and identifies this process as a
squared Bessel process of dimension 0 starting at t. For a general Markov
process X, the methods of [6] can be used to show that the analogous local
time process will not be a Markov process in the state variable x unless X
has continuous paths.

There is an alternate formulation of the second Ray–Knight theorem. It
states that for any t > 0, under the measure P0 × P̃0,{

Lx
τ�t� + 1

2B̃
2
x� x ≥ 0

} = { 1
2

(
B̃x +

√
2t
)2� x ≥ 0

}
in law�(1.1)
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where �B̃x/
√
2� x ≥ 0� is a real-valued Brownian motion, with measure P̃0,

independent of the original Brownian motion. The equivalence of this with
the standard formulation mentioned above is a consequence of the additivity
property of squared Bessel processes, (see, e.g., [13], Chapter XI, Theorem 1.2).
(1.1) is the version of the second Ray–Knight theorem which we generalize to
strongly symmetric Markov processes by replacing B̃x by a different mean-
zero Gaussian process.

Let X = ����t�Xt�P
x�� t ∈ R+, denote a strongly symmetric standard

Markov process with state space S, which is a locally compact separable metric
space, and with reference measurem. The full definition of these terms is given
in [9]. Strong symmetry means that for each α > 0 and x ∈ S, the potential
measures

Uα�x�A� =
∫ ∞

0
e−αtEx�1A�Xt��dt(1.2)

are absolutely continuous with respect to the reference measure m, and we
can find densities uα�x�y�, for the potential measures, which are symmetric
in x�y. Throughout this paper we assume that the densities uα�x�y� are finite
for some, hence all α > 0. This is the necessary and sufficient condition for
the existence of local times; see, for example, Theorem 3.2 of [9].

Let Lx
t denote the local time of X at x ∈ S. Heuristically, Lx

t is the amount
of time that the process spends at x, up to time t. We can define

Lx
t = lim

ε→0

∫ t
0
fε�x�Xs�ds�(1.3)

where fε�x is an approximate delta function at x. Specifically, we take the
support of fε�x to be B�x� ε�, the ball of radius ε centered at x and

∫
fε�x�y�

dm�y� = 1. Convergence here is locally uniform in t, almost surely. Hence Lx
t

inherits from
∫ t
0 fε�x�Xs� ds both continuity in t and the additivity property:

Lx
t+s = Lx

t +Lx
s ◦ θt. Let 0 denote a fixed element in the state space S and let

τ�t� �= inf�s� L0
s > t�	(1.4)

τ�t� is the right-continuous inverse of the mapping t �→ L0
t 	

Let Y denote the process X killed when it first hits 0. Y is a strongly sym-
metric Markov process. We use uα�0� �x�y� to denote its α-potential densities.
These densities, and in particular the 0-potential density u�0��x�y�� are finite
and positive definite. See Lemma 5.1. Let η = �ηx� x ∈ S� be a mean-zero
Gaussian process with covariance

Eη�ηxηy� = u�0��x�y�	(1.5)

(We define Pη to be the measure for η and denote the corresponding expecta-
tion operator by Eη.)

The main result of this paper is the following generalization of the classical
second Ray–Knight theorem (1.1).



RAY–KNIGHT THEOREM 1783

Theorem 1.1. Let X = ����t�Xt�P
x� be a strongly symmetric recurrent

Markov process and let �Lx
τ�t�� x ∈ S� be the local time process for X as defined

above.
For any b ∈ R and t > 0, under the measure P0 ×Pη�{

Lx
τ�t� + 1

2�ηx + b�2� x ∈ S} = { 1
2

(
ηx +

√
2t+ b2

)2� x ∈ S} in law.(1.6)

When X is a real-valued symmetric Lévy process, the Gaussian process in
Theorem 1.1 has stationary increments, with η0 = 0	 In particular whenX is a
real-valued symmetric stable process of index β ∈ �1�2�� the Gaussian process
is a fractional Brownian motion of index β− 1	 This is shown in Section 6.

Theorem 1.1 is reminiscent of Dynkin’s isomorphism theorem [3], which is
used in [9], [10], [4] and [5] to obtain many interesting facts about the local
time process �Lx

t � x ∈ S�� by exploiting properties of associated Gaussian pro-
cesses. However, Dynkin’s theorem refers to the total local time �Lx

λ� x ∈ S�,
for the process killed at an independent exponential time λ, or to �Lx

∞� x ∈ S�
for transient processes. Because of this Dynkin’s theorem lends itself primarily
to the study of properties of �Lx

t � x ∈ S� which are uniform in t. Theorem 1.1
allows one to obtain results about �Lx

t � x ∈ S� which may vary with t.
Theorem 1.1 is used in [1] to show that the most visited site up to time t,

of a symmetric stable process, is transient. This result is extended to a larger
class of Lévy processes in [8]. In [11], Theorem 1.1 is used to give a relatively
simple proof of the necessary and sufficient condition for the joint continuity
of the local time of symmetric Lévy processes. (Actually, the proofs in [11] are
also valid for all strongly symmetric Markov processes.)

In Theorem 1.1 the Markov process X is taken to be recurrent. If it is
transient, then with probability 1, L0

∞ < ∞	 Consequently, (1.6) can not hold
for transient processes. To see this, note that it follows immediately from (1.6)
that L0

τ�t� = t for all t, which is impossible if t > L0
∞	

We now present a generalization of (1.6) so that it also holds when X is
transient. When X is transient, its 0-potential, u�0�0�� is finite and, under
P0�L0

∞ is an exponential random variable with mean u�0�0�. When X is
recurrent, its 0-potential, u�0�0�� is infinite. In the next theorem we define ρ to
be an exponential random variable with mean u�0�0�, when u�0�0� <∞ and
set ρ to be identifically equal to ∞ when u�0�0� = ∞. Let τ−�t� = inf�s� L0

s ≥
t�, the left-continuous inverse of t �→ Lx

t 	 Let η be as defined in (1.5) and
take η and ρ to be independent.

Theorem 1.2. Let X = ����t�Xt�P
x� be a strongly symmetric Markov

process and hx �= Px�T0 < ∞�. For any b ∈ R1 and t ∈ �0�∞�, under the
measure P0 ×Pη, we have{

Lx
τ−�t∧L0∞� + 1

2�ηx + hxb�2� x ∈ S
}

=
{
1
2

(
ηx + hx

√
2�t ∧ ρ� + b2

)2� x ∈ S
}

in law.
(1.7)
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In particular, when X is transient,

{
Lx
τ−�L0∞� + 1

2�ηx + hxb�2� x ∈ S
}

=
{
1
2

(
ηx + hx

√
2ρ+ b2

)2� x ∈ S
}

in law.

(1.8)

An important tool used to prove these results is a new interpretation of
a familiar formula due to M. Kac for the moment generating function of the
total accumulated local time process. This is given in Section 3. In Section 2
we present some preliminaries concerning Gaussian processes. In Section 4 we
prove an isomorphism theorem closely related to Theorems 1.1 and 1.2, which
facilitates their proofs. Section 5 is devoted to the proofs of Theorems 1.1
and 1.2. In Section 7 we use the Kac-type formula to give an easy proof of the
first Ray–Knight theorem.

To apply Theorems 1.1 and 1.2 one must obtain the 0-potential density
u�0��x�y�, of the process X killed at T0 = inf�s� Xs = 0�, in order to identify
the Gaussian process η, defined in (1.5). In Section 6 we do this when X is
a real-valued symmetric Lévy process. It turns out that when X is recurrent,
η has stationary increments. In Remark 6.1, we show that when X is a sym-
metric stable process with index β ∈ �1�2�� η is a fractional Brownian motion
with index β− 1.

2. Preliminaries on Gaussian processes. In Corollary 2.1 and
Lemma 2.2 we establish some equivalence relationships between the sums of
squares of two independent Gaussian processes which play an important role
in the proof of Theorems 1.1 and 1.2. They are consequences of the following
routine calculation which we provide for the convenience of the reader.

Lemma 2.1. Let ζ = �ζ1� 	 	 	 � ζn� be a mean zero, n-dimensional Gaussian
random variable with covariance matrix '. Assume that ' is invertible. Let
λ = �λ1� 	 	 	 � λn� be an n-dimensional vector and ( an n × n diagonal matrix
with λj as its jth diagonal entry. Let u = �u1� 	 	 	 � un� be an n-dimensional
vector. We can choose λi > 0� i = 1� 	 	 	 � n sufficiently small so that �'−1 − (�
is invertible and

E exp
( n∑
i=1

λi�ζi + ui�2/2
)

= 1
�det�I− '(��1/2 exp

( �γ · u�
2

+ �γ'̃γt�
2

)
�

(2.1)

where '̃ �= �'−1 − (�−1 and γ = �λ1u1� 	 	 	 � λnun�	
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Proof. We write

E exp
( n∑
i=1

λi�ζi + ui�2/2
)

= exp
( �γ · u�

2

)
E exp

( n∑
i=1

λi�ζ2i /2+ uiζi�
)(2.2)

and

E exp
( n∑
i=1

λi�ζ2i /2+ uiζi�
)

= 1
�det '�1/2

∫
exp

(
�γ · ζ� − ζ�'−1 − (�ζt

2

)
dζ

= �det '̃�1/2
�det '�1/2 Ẽe

�γ·ξ��

(2.3)

where ξ is an n-dimensional Gaussian random variable with mean zero and
covariance matrix '̃ and Ẽ is expectation with respect to the probability mea-
sure of ξ. Clearly,

Ẽe�γ	ξ� = exp
( �γ'̃γt�

2

)
	(2.4)

Putting these together gives us (2.1).
We have the following immediate corollary of Lemma 2.1.

Corollary 2.1. Let η = �ηx� x ∈ S� be a mean-zero Gaussian process and
fx a real-valued function on S. It follows from Lemma 2	1 that for a2 + b2 =
c2 + d2,

��ηx + fxa�2 + �η̃x + fxb�2� x ∈ S�
= ��ηx + fxc�2 + �η̃x + fxd�2� x ∈ S� in law,

(2.5)

where η̃ is an independent copy of η.

Let G = �Gx� x ∈ S� be a mean-zero Gaussian process with covariance
u�x�y�. We use the standard decomposition to write Gx = ρx + hxG0, where
hx = u�x�0�/u�0�0� and ρx = Gx − hxG0. Thus ρx and hxG0 are independent
Gaussian processes.

Lemma 2.2. Let G̃ be an independent copy of G. Then{
G2
x

2
+ G̃2

x

2
�x ∈ S

}
=
{
ρ2x
2

+ �ρ̃x + hx
√
2T�2

2
� x ∈ S

}
in law,(2.6)

where T is an exponential random variable with mean EG2
0, independent of G

and G̃.
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Proof. Let Eρ denote expectation with respect to �ρx� x ∈ S� and EG0

denote expectation with respect to G0. Clearly, EG = EρEG0
. Let γ = �γ1� 	 	 	 �

γm� and τ = �τ1� 	 	 	 � τm� be two vectors. We write γ · τ2 = ∑m
i=1 γiτ

2
i . Let

λ = �λ0� 	 	 	 � λn� and λ̄ = �λ1� 	 	 	 � λn�. Let G = �Gx0
� 	 	 	 �Gxn

� and let h =
�hx0� 	 	 	 � hxn�, where x0 = 0. Note that for all λ0� 	 	 	 � λn sufficiently small we
have

EGe
λ·G2/2EG̃e

λ·G̃2/2 = EG0
EG̃0

(
eλ0h

2
0�G2

0+G̃2
0�/2(Eρe

λ̄·�ρ+hG0�2/2)2)�(2.7)

where ρ = �ρx1�			�ρxn �. Also, by Corollary 2.1,

(
Eρe

λ̄·�ρ+hG0�2/2)2 = Eρe
λ̄·ρ2/2Eρe

λ̄·
(
ρ+h

√
G2

0+G̃2
0

)2

/2
	(2.8)

Combining these we see that the left-hand side of (2.7) equals

Eρe
λ̄·ρ2/2EG0

EG̃0
Eρe

λ·
(
ρ+h

√
G2

0+G̃2
0

)2

/2
	(2.9)

Last, set EG2
0 = 1/q, and note that

EG0
EG̃0

Eρe
λ·
(
ρ+h

√
G2

0+G̃2
0

)2
/2

= q

π

∫ ∞

0

∫ ∞

0
Eρe

λ·
(
ρ+h

√
2�s+t�

)2
/2
e−�s+t�q 1√

st
ds dt

= Eeλ·�ρ+h
√
2T�2/2	

(2.10)

Substituting this in (2.9) completes the proof of this lemma. ✷

3. A Kac-type formula. We give a version of Kac’s formula for the mom-
ent generating function of the total accumulated local time process which
enables us to easily obtain the classical first and second Ray–Knight theorems
and generalize the second Ray–Knight theorem. In what follows we use the
notation A�1� for the matrix obtained by replacing each of the n entries in the
first column of the n× n matrix A by the number 1.

Lemma 3.1. LetX be a strongly symmetric Markov process with 0-potential
density u�x�y�. Let L∞ denote the total accumulated local time of X. Let ' be
the matrix with elements 'i�j = u�xi� xj�� i� j = 1� 	 	 	 � n and assume that '
is invertible. Let y = x1. Let ( be the matrix with elements �(�i� j = λiδi� j. For
all λ1� 	 	 	 � λn sufficiently small we have

Ey exp

(
n∑
i=1

λiL
xi∞

)
= det

(�I− '(��1�)
det�I− '(� 	(3.1)
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Proof. By Kac’s moment formula,

Ey

(( n∑
j=1

λjL
xj
∞
)k)

= k!
n∑

j1�			�jk=1
u�y�xj1�λj1u�xj1� xj2�λj2u�xj2� xj3� · · ·

u�xjk−2� xjk−1�λjk−1u�xjk−1� xjk�λjk

(3.2)

for all k. The proof of this is standard; see, for example, [9], (4.7) or [7].
Let β = �u�y�x1�λ1� 	 	 	 � u�y�xn�λn� and 1̄ be the transpose of an

n-dimensional vector with all of its elements equal to 1. Observe that
∑n
jk=1

u�xjk−1� xjk�λjk is an n× 1 matrix with entries �'(1̄�jk−1� jk−1 = 1� 	 	 	 � n	
Note also that �'(�21̄ is an n× 1 matrix and

n∑
jk−1=1

u�xjk−2� xjk−1�λjk−1�'(1̄�jk−1 = ��'(�21̄�jk−2 	(3.3)

Iterating this relationship we get

Ey

((
n∑
j=1

λjL
xj
∞
)k)

= k!β�'(�k−11̄

= k!��'(�k1̄�1�
(3.4)

where we use the facts that x1 = y and β�'(�k−1 is an n-dimensional vector,
which is the same as the first row of �'(�k. It follows from this that

Ey exp
( n∑
i=1

λiL
xi∞
)
=
{ ∞∑
k=0

�'(�k1̄
}
1

=��I− '(�−11̄�1	
(3.5)

Equation (3.1) now follows from Cramer’s theorem. This completes the proof
of this lemma. ✷

Remark 3.1. The 0-potential u�x�y� in Lemma 3.1 is positive definite;
see, for example, [9], Theorem 3.3. Let G = �G�x�� x ∈ S� be a mean-zero
Gaussian process with covariance u�x�y�. Note that �det�I − '(��−1 is the
moment generating function of G2

n/2+ G̃2
n/2, where Gn = �Gx1

� 	 	 	 �Gxn
�, and

similarly for G̃n (see Lemma 2.1). Suppose that we can find a stochastic process
�Hx� x ∈ S� such that �det��I− '(��1��−1 is the moment generating function
ofHx1

� 	 	 	 �Hxn
, and suppose this can be done for all finite joint distributions.

Then we would have that under the measure Py ×PH ×PG ×PG̃,{
Lx

∞ +Hx�x ∈ S} = {
G2
x/2+ G̃2

x/2�x ∈ S} in law.(3.6)
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4. A related isomorphism theorem. In this section we prove an iso-
morphism theorem closely related to Theorems 1.1 and 1.2 which facilitates
their proof. Essentially, for the proofs of Theorems 1.1 and 1.2, we will only
have to verify that the conditions of this section apply.

Let Z is a strongly symmetric Markov process with state space S and
0-potential density v�x�y� which can be written in the following form:

v�x�y� = v∗�x�y� + 1/q�(4.1)

where, q > 0 and v∗�x�y� is positive definite and satisfies v∗�0� y� ≡ 0 for all
y ∈ S. Let �ηx� x ∈ S� be the mean-zero Gaussian process with covariance
v∗�x�y�. We have the following isomorphism theorem.

Theorem 4.1. Let Z be a strongly symmetric Markov process with
0-potential density v�x�y� satisfying �4	1�, and let �Lx

∞� x ∈ S� denote the
total accumulated local time of Z. Then under the measure P0 ×Pn,{

Lx
∞ + �ηx + b�2/2�x ∈ S} = {�ηx +√

2T+ b2�2/2�x ∈ S} in law(4.2)

for all b ∈ R, where T is an exponential random variable with mean 1/q.

Proof. Set

φx = ηx +G0�(4.3)

Where G0 ∼N�0�1/q� so that �φx� x ∈ E� is the mean-zero Gaussian process
with covariance function v�x�y�.

Let ' be the covariance matrix of φx1� 	 	 	 � φxn where x1 = 0 and x2� 	 	 	 � xn
are arbitrary. Note that �'�i� j = v�xi� xj� and in particular �'�j�1 = v�xj�0� =
1/q. Consider det

(�I − '(��1�). Subtract the first row of the matrix in this
determinant from each of the other rows. Using this row operation it is clear
that

det��I− '(��1�� = det�I− '̃(̃��(4.4)

where '̃ is the covariance matrix of ηx2� 	 	 	 � ηxn and (̃ is the natural restriction

of (, that is, �(̃�i� j = λi+1δi� j� 1 ≤ i� j ≤ n− 1. That is, the reciprical of (4.4)
is the moment generating function of �1/2��η2

x1
� 	 	 	 � η2

xn
�+�1/2��η̃2

x1
� 	 	 	 � η̃2

xn
�,

where η̃ is an independent copy of η. (Note that we can include η2
x1

since it
is equal to 0). Taking into account the comments made in Remark 3.1 we see
that we have obtained{

Lx
∞ + η2

x/2+ η̃2
x/2�x ∈ S} = {

φ2
x/2+ φ̃2

x/2�x ∈ S} in law(4.5)

under the measure P0 ×Pφ ×Pφ̃.
To obtain (4.2) we note that it follows from Lemma 2.2 that

�φ2
x/2+ φ̃2

x/2�x ∈ S� = �η̃2
x/2+ �ηx +

√
2T�2/2�x ∈ S� in law,(4.6)
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since by assumption hx = v�x�0�/v�0�0� ≡ 1	 Substituting this in (4.5) we get{
Lx

∞ + η 2
x /2+ η̃2

x/2�x ∈ S} = {
η̃2
x/2+ �ηx +

√
2T�2/2�x ∈ S} in law,(4.7)

which implies that{
Lx

∞ + η 2
x /2� x ∈ S} = {�ηx +√

2T�2/2� x ∈ S} in law.(4.8)

Since T is independent of the Gaussian processes it follows from Corollary 2.1
that {(

ηx +
√
2T
)2
/2+ �η̃x + b�2/2� x ∈ S}

= {
η2
x/2+ (

η̃x +
√
2T+ b2

)2
/2� x ∈ S} in law.

Thus we see that adding �η̃x + b�2/2 to each side of (4.8) gives us (4.2). ✷

5. Proofs of Theorems 1.1 and 1.2. Let X be a strongly symmetric
Markov process. Two Markov processes determined by X play an important
role in these proofs. The first is the process Y = �Yt� t ∈ R+�, which is X
killed when it first hits 0. This process is introduced prior to the statement
of Theorem 1.1. To define the second, let T = T�q� be an exponential random
variable with mean 1/q. We define Z = �Zt� t ∈ R+� by

Zt =
{
Xt� if t < τ�T�,
:� otherwise,

(5.1)

where τ�t� is defined in (1.4).
Recall that u�0��x�y� denotes the 0-potential density of Y; consequently

u�0��0� y� ≡ 0, for all y ∈ S.

Lemma 5.1. Both Y and Z are strongly symmetric Markov processes. If X
is recurrent and ũ�x�y� denotes the 0-potential density of Z, then

ũ�x�y� = u�0��x�y� + 1/q	(5.2)

Furthermore, both u�0��x�y� and ũ�x�y� are finite, symmetric and positive
definite.

Proof. The fact that Y is strongly symmetric follows easily from Hunt’s
switching identity; see, for example, [9], Section 3, where the reader will also
find a proof that u�0��x�y� is positive definite. [Although the results of that
reference are stated for the process killed on existing a compact set, the proofs
hold just as well for u�0��x�y�	� The finiteness of u�0��x�y� follows from the
finiteness of u1�x�y� and the well-known fact that Lx

T0
is exponential under

Px, hence Lx
T0

would be infinite a.s. if u�0��x� x� = Ex�Lx
T0
� were infinite. The

strong symmetry ofZ follows from more general results in [12] or [14]. Finally,
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to prove (5.2) we use the fact that τ�T� = T0+τ�T�◦θT0
and the strong Markov

property at T0 to see that

ũ�x�y� = Ex�Ly
τ�T�� = Ex�Ly

T0
� +E0�Ly

τ�T��
= Ex�Ly

T0
� +Ey�L0

τ�T�� = Ex�Ly
T0
� +Ey�T�

= u�0��x�y� + 1/q�

(5.3)

where the third equality uses the symmetry of ũ�x�y� in the form

E0�Ly
τ�T�� = ũ�0� y� = ũ�y�0� = Ey�L0

τ�T��	
This completes the proof of Lemma 5.1. ✷

Proof of Theorem 1.1. Given X, with local time process �Lx
t � x ∈ S�,

we consider the associated Markov process Z defined in (5.1) with 0-potential
ũ�x�y�. By Lemma 5.1, Z satisfies the conditions of Theorem 4.1. Also, the
total accumulated local time process for Z is precisely �Lx

τ�T�� x ∈ S�. Hence
by Theorem 4.1, under the measure P0 ×Pη,{

Lx
τ�T� + �ηx + b�2/2�x ∈ S} = {(

ηx +
√
2T+ b2

)2
/2�x ∈ S} in law(5.4)

for all b ∈ R. (1.6) follows from this by taking the Laplace transform. ✷

Proof of Theorem 1.2. Suppose now that the Markov process X is tran-
sient. Let u�x�y� denote its 0-potential, which is finite. Under P0, the total
accumulated local time of X� L0

∞ has an exponential distribution with mean
u�0�0�. Let ρ to be an independent exponential random variable with mean
u�0�0�. Consider the Markov processes Y and Z defined in (5.1), for the tran-
sient process X.

Lemma 5.2. The potential density of the Markov process Z with respect tom
is given by

ũ�x�y� = u�0��x�y� + hxhy
1
q′

(5.5)

where hx = Px�T0 <∞� = �u�x�0�/u�0�0�� and 1/q′ = E�T∧ρ�. Both ũ�x�y�
and u�0��x�y� are symmetric and positive definite and u�0��0� y� ≡ 0, for all
y ∈ S.

Proof. The fact that the potential of Z is a absolutely continuous with
respect to m, is symmetric and positive definite is the content of Lemma 5.1.
Let ũ�x�y� be its density with respect to m. Then

ũ�x�y� = u�0��x�y� +Px�T0 <∞�ũ�0� y�
= u�0��x�y� +Px�T0 <∞�ũ�y�0�
= u�0��x�y� +Px�T0 <∞�Py�T0 <∞�ũ�0�0��
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where the second equality follows from the symmetry of ũ. We now recall
that ũ�0�0� = E0�L0

τ�T��, and that L0
τ�T� is equal to the minimum of the

two exponential random variables, T and L0
∞. This completes the proof of

Lemma 5.2. ✷

Note that Lemma 5.2 is actually a generalization of Lemma 5.1 since when
X is recurrent hx = Px�T0 <∞� ≡ 1.

Proof of Theorem 1.2 (Continued). Let At be a continuous additive
functional of X and let RA�ω� �= inf�t�At�ω� > 0�. We call At a local time
of X at x ∈ S if Px�RA = 0� = 1, and Py�RA = 0� = 0 for all y �= x. If At

and Bt are two local times for X at x ∈ S, then At = cBt for some constant
c > 0. It is easy to check that Lx

t defined in (1.3) is a local time of X at x with
potential

Ey

( ∫ ∞

0
e−αt dLx

t

)
= uα�y�x� ∀ α > 0	(5.6)

We call Lx
t the normalized local time of X at x. However, note that for any

real-valued function g�x� > 0� x ∈ S� g�x�Lx
t is also a local time for X at x,

which we call a nonnormalized local time of X at x [unless g�x� ≡ 1].
Dividing (5.5) by hxhy we get

ũ�x�y�
hxhy

= u�0��x�y�
hxhy

+ 1
q′
	(5.7)

It is easy to see that the function hx is excessive for X�Y and Z. Let Xh

be an h-path transform of X taken with respect to hx and let Px/h denote
the measure corresponding to Xh. Denote by Yh and Zh the corresponding
h-path transforms of Y and Z. Note that �u�x�y�/hxhy�� �u�0��x�y�/hxhy�
and ũ�x�y�/hxhy are the potential densities of Xh� Yh and Zh, respectively,

all with respect to h2
xm�dx�. Clearly, they are all symmetric. Let L̂y

t be the
normalized local time at y of Xh with respect to h2

xm�dx�, so that

Ex/h
∫ ∞

0
e−αt dL̂y

t = uα�x�y�
hxhy

	(5.8)

Consider �ηx/hx� x ∈ S�. This is a mean-zero Gaussian process with covari-
ance �u�0��x�y�/hxhy�. By (5.7), Zh satisfies the conditions of Theorem 4.1.

Also, the total accumulated local time process for Zh is precisely �L̂x
τ�T�� x ∈

S�. Hence by Theorem 4.1, under P0/h ×Pη,{
L̂x
τ�T� +

�ηx/hx + b�2
2

� x ∈ S
}

=
{�ηx/hx +√

2V+ b2�2
2

� x ∈ S
}

in law,

(5.9)
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where V is an exponential random variable with parameter q′ and T is an
exponential random variable with parameter q. Equivalently, under P0/h×Pη,{

L̃x
τ�T� +

�ηx + hxb�2
2

� x ∈ S
}

=
{�ηx + hx

√
2V+ b2�2
2

� x ∈ S
}

in law,

(5.10)

where L̃x
t = h2

xL̂
x
t . Then L̃ �= �L̃x

t � x ∈ S� is a nonnormalized local time for
Xh. Its potential with respect to the process Xh is

Ex/h
∫ ∞

0
e−αth2�y� dL̂y

t = uα�x�y�h2
y

hxhy
= uα�x�y�hy

hx
�(5.11)

which is the α-potential ofXh with respect tom. This is precisely the potential
of L with respect to the processXh, where L �= �Lx

t � x ∈ S� is the normalized
local time for X. Since Xh is X killed at the last exit from 0, conditioned to
hit 0 after time 0, we see that L̃x

t = Lx
t until the last exit of X from 0. Let

τ−t �= inf�s� L0
s ≥ t�. It follows that L̃x

τ�T� = Lx
τ−�T∧L0∞�	 Therefore (5.10) is

equivalent to the statement that under P0 ×Pη,{
Lx
τ−�T∧L0∞� +

�ηx + hxb�2
2

� x ∈ S
}

=
{�ηx + hx

√
2�T ∧ ρ� + b2�2
2

� x ∈ S
}

in law�

where ρ is an exponentially distributed random variable with mean u�0�0�
independent of T. Since this is the Laplace transform of (1.7), the proof of
Theorem 1.2 is complete. ✷

6. u�0��x� y� for symmetric Lévy processes. To apply Theorems 1.1 and
1.2 one must obtain the 0-potential density u�0��x�y�� of the process X killed
at T0 = inf�s� Xs = 0�, in order to identify the Gaussian process η, defined
in (1.5). In this section we do this when X is a real-valued symmetric Lévy
processes.

Let X be a real-valued symmetric Lévy process defined by

EeiλXt = e−tψ��λ��	(6.1)

We assume that X has a local time, which is equivalent to the condition that
1/�1 + ψ��λ��� ∈ L1. It follows simply from (6.1) that the α-potential density
of X,

uα�x�y� = 1
π

∫ ∞

0

cos�λ�x− y��
α+ ψ�λ� dλ	(6.2)

Since, in this case, uα�x�y� depends only on �x−y�, we also write it as uα�x−y�.



RAY–KNIGHT THEOREM 1793

In our presentation we distinguish between whetherX is transient or recur-
rent. Consider the integral ∫ 1

0

1
ψ�λ� dλ	(6.3)

The Lévy process X is transient when this integral is finite and is recurrent
when this integral is infinite.

Theorem 6.1. When X is recurrent,

u�0��x�y� = φ�x� +φ�y� −φ�x− y��(6.4)

where

φ�x� �= 1
π

∫ ∞

0

1− cosλx
ψ�λ� dλ� x ∈ R	(6.5)

Consequently, the Gaussian process η defined in �1	5� is such that η�0� = 0
and

E�η�x� − η�y��2 = 2
π

∫ ∞

0

1− cos�λ�x− y��
ψ�λ� dλ	(6.6)

When X is transient we can define the stationary Gaussian process �Gx�x ∈
R� as the process with covariance u�x�y� �= u0�x�y�, given in �6	2�. Let ρx
be the projection of Gx in the subspace of L2 orthogonal to G0. That is, we
write Gx = ρx + hxG0, where hx = Px�T0 < ∞� = u�x�0�/u�0�0� and ρx =
Gx−hxG0. Thus ρx and hxG0 are independent Gaussian process. In this case,

u�0��x�y� = E�ρxρy�(6.7)

= u�x�y� − u�x�0�u�y�0�
u�0�0� 	(6.8)

Proof. It follows from (6.2) that

uα�0� − uα�x� = 1
π

∫ ∞

0

1− cos�λx�
α+ ψ�λ� dλ

�= φα�x�	
(6.9)

Consequently,

lim
α→0

�uα�0� − uα�x�� = 1
π

∫ ∞

0

1− cos�λx�
ψ�λ� dλ

= φ�x�	
(6.10)
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Using the Markov property at time T0 shows that

uα�x�y� = Ex

( ∫ ∞

0
e−αt dLy

t

)
= Ex

( ∫ T0

0
e−αt dLy

t

)
+Ex

( ∫ ∞

T0

e−αt dLy
t

)
= uα�0��x�y� +Ex�e−αT0�uα�0� y�	

(6.11)

It follows from (6.11) that

uα�0��x�y� − uα�0��x�0�
= uα�x− y� − uα�x� − �uα�y� − uα�0��Ex�e−αT0�
= φα�x� +φα�y�Ex�e−αT0� −φα�x− y�	

(6.12)

The assumption that X is recurrent means that Px�T0 < ∞� = 1. Conse-
quently, limα→0 E

x�e−αT0� = 1. Also, clearly, uα�0��x�y� tends to u�0��x�y� as α
decreases to zero. Therefore we can take the limits in (6.12) and use the fact
that uα�0��x�y� = 0 to obtain (6.4). Since

E�η�x� − η�y��2 = u�0��x� x� + u�0��y�y� − 2u�0��x�y�(6.13)

we get (6.6).
Now suppose that X is transient. Since the 0-potential of X exists in this

case we can simply take the limit α→ 0 in (6.11) to get

u�0��x�y� = u�x�y� − px�T0 <∞�uα�0� y�	(6.14)

Using Px�T0 <∞� = u�x�0�/u�0�0� we get (6.7). ✷

Remark 6.1. When X is a symmetric stable process with index β ∈ �1�2�,
ψ��λ�� = �λ�β. Using this in (6.5) and making the change of variables λ�x−y� =
s� we see that

E�η�x� − η�y��2 = cβ�x− y�β−1�(6.15)

where

cβ = 2
π

∫ ∞

0

1− cos s
sβ

ds	(6.16)

7. First Ray–Knight theorem. We show that the first Ray–Knight
theorem is an immediate consequence of our version of Kac’s moment formula.

Theorem 7.1 (First Ray–Knight theorem). Let B be Brownian motion on
R+, starting from y > 0 and let �Lx

t � �x� t� ∈ R+ ×R+� denote its local time
process. Let T0 denote the first hitting time of 0. Then, under the measure
Py × P̃0

1 × P̃0
2,{
Lx
T0
� 0 ≤ x ≤ y

} = {
B̃2

1� x + B̃2
2� x� 0 ≤ x ≤ y

}
in law,(7.1)
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where �B̃i� x� x ≥ 0�� i = 1�2 are independent real-valued Brownian motions
with measures P̃0

i , independent of the original Brownian motion B.

Proof. We apply Lemma 3.1 to the process Y which is Brownian motion,
starting at y > 0 and killed the first time it hits zero. In this case LT0

is
the total accumulated local time of Y. The 0-potential of Y is u�0��x�y� =
2��x� ∧ �y�� when xy ≥ 0 and u�0��x�y� = 0 and when xy < 0. This is well
known and is also included in Theorem 6.1. We take y = x1 > · · · > xn > 0
and 'i�j = u�0��xi� xj� in Lemma 3.1. In the next paragraph we show that
det��I−'(��1�� = 1, which implies that Hx in Remark 3.1 is identically zero.
Consequently, (7.1) follows from (3.6) since the Gaussian process G in (3.6),
with covariance 2�x ∧ y� for x�y > 0, is equal in law to

√
2B.

LetD be the matrix obtained by subtracting the first row of �I−'(��1� from
each of the other rows. Clearly,Dj�j = 1� j = 1� 	 	 	 � n� Dj�1 = 0� j = 2� 	 	 	 � n;

andDj�k = 0� k = j+1� 	 	 	 � n. This shows that the matrix D̃ �= �Di�j�ni� j=2 is
a lower triangular matrix; that is, all its entries above the diagonal are equal
to zero. Thus det��I − '(��1�� = det�D� = D1� 1 det�D̃� = 1. This completes
the proof of this theorem. ✷
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