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Thick Points for Transient Symmetric Stable Processes

Amir Dembo∗ Yuval Peres† Jay Rosen‡ Ofer Zeitouni§

Abstract

Let T (x, r) denote the total occupation measure of the ball of radius r centered at x for
a transient symmetric stable processes of index β < d in IRd and Λβ,d denote the norm of
the convolution with its 0-potential density, considered as an operator on L2(B(0, 1), dx).
We prove that sup|x|≤1 T (x, r)/(rβ| log r|) → βΛβ,d a.s. as r → 0. Furthermore, for
any a ∈ (0, βΛβ,d), the Hausdorff dimension of the set of “thick points” x for which
lim supr→0 T (x, r)/(rβ| log r|) = a, is almost surely β − a/Λβ,d; this is the correct scaling
to obtain a nondegenerate “multifractal spectrum” for transient stable occupation measure.
We also show that the lim inf scaling of T (x, r) is quite different: we exhibit positive, finite,
non-random c′β,d, Cβ,d, such that c′β,d < supx lim infr→0 T (x, r)/rβ < Cβ,d a.s.

1 Introduction

The symmetric stable process {Xt} of index β < d in IRd does not hit fixed points, hence does
not have local times. Nevertheless, the path will be “thick” at certain points in the sense of
having larger than “usual” occupation measure in the neighborhood of such points. Our first
result tells us just how “thick” a point can be.

Recall that the occupation measure µXT is defined as

µXT (A) =

∫ T

0
1A(Xt) dt

for all Borel sets A ⊆ IRd. As usual, we let

u0(x) =
cβ,d
|x|d−β

(1.1)

denote the 0-potential density for {Xt}, where cβ,d = 2−βπ−d/2Γ(d−β2 )/Γ(β2 ). Let Λβ,d denote
the norm of

Kβ,df(x) =
∫
B(0,1)

u0(x− y)f(y) dy

considered as an operator from L2 (B(0, 1), dx) to itself. Throughout, B(x, r) denotes the ball
in IRd of radius r centered at x.

∗Research partially supported by NSF grant #DMS-9403553.
†Research partially supported by NSF grants #DMS-9404391 and #DMS-9803597
‡Research supported, in part, by grants from the NSF and from PSC-CUNY.
§This research was supported, in part, by MSRI and by a US-Israel BSF grant.
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Theorem 1.1 Let {Xt} be a symmetric stable process of index β < d in IRd. Then, for any
R ∈ (0,∞) and any T ∈ (0,∞],

lim
ε→0

sup
|x|≤R

µXT (B(x, ε))

εβ | log ε|
= βΛβ,d a.s. (1.2)

Remarks:

• Our proof shows that for any T ∈ (0,∞],

lim
ε→0

sup
0≤t≤T

µXT (B(Xt, ε))

εβ | log ε|
= βΛβ,d a.s. (1.3)

• The scaling behavior of stable occupation measure around any fixed time t is governed by
the stable analogue of the LIL of Ciesielski-Taylor, see [11]; for any T ∈ (0,∞] and t ≤ T ,

lim sup
ε→0

µXT (B(Xt, ε))

εβ log | log ε|
=
βΛβ,d

2
a.s. (1.4)

(1.2) and (1.3) are our analogues of Lévy’s uniform modulus of continuity. The proof of
such results for Brownian occupation measure was posed as a problem by Taylor in 1974
(see [12, Pg. 201]) and solved by us in [3, Theorem 1.2].

Our next result is related to (1.4) in the same way that the formula of Orey and Taylor [5] for
the dimension of Brownian fast points is related to the usual LIL. It describes the multifractal
nature, in a fine scale, of “thick points” for the occupation measure of {Xt} (We call a point
x ∈ IRd a thick point if x is in the set considered in (1.5) for some a > 0; similiarly, t > 0 is
called a thick time if it is in the set Thicka considered in (1.6) for some a > 0 and T > 0.)

Theorem 1.2 Let {Xt} be a symmetric stable process of index β < d in IRd. Then, for any
T ∈ (0,∞] and all a ∈ (0, βΛβ,d],

dim{x ∈ IRd
∣∣∣ lim sup

ε→0

µXT (B(x, ε))

εβ | log ε|
= a} = β − aΛ−1

β,d a.s. (1.5)

Equivalently, for any T ∈ (0,∞] and all a ∈ (0, βΛβ,d],

dim{0 ≤ t < T
∣∣∣ lim sup

ε→0

µXT (B(Xt, ε))

εβ | log ε|
= a} = 1− aΛ−1

β,d/β a.s. (1.6)

Denote the set in (1.6) by Thicka. Then Thicka 6= ∅ at the critical value a = βΛβ,d.

For all a ∈ (0, βΛβ,d), the union Thick≥a := ∪b≥aThickb has the same Hausdorff dimension as
Thicka a.s., but its packing dimension a.s. satisfies dim

P
(Thick≥a) = 1. Equivalently,

dimP{x ∈ IR
d
∣∣∣ lim sup

ε→0

µXT (B(x, ε))

εβ | log ε|
≥ a} = β a.s. (1.7)

Remark:
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• Combining (1.5) and (1.2) we see that

sup
x∈IRd

lim sup
ε→0

µX∞(B(x, ε))

εβ | log ε|
= βΛβ,d a.s.

In particular, the sets in (1.5) and (1.6) are a.s. empty for any a > βΛβ,d, T ∈ (0,∞].

• For any x /∈ {Xt

∣∣∣ 0 ≤ t ≤ T} and ε small enough, µXT (B(x, ε)) = 0. Hence, the equivalence

of (1.5) and (1.6) is a direct consequence of the equivalence between spatial and temporal
Hausdorff dimensions for stable motion due to Perkins-Taylor (see [7, Eqn. 0.1]), together

with the fact that {Xt

∣∣∣ 0 ≤ t ≤ T} − {Xt

∣∣∣ 0 ≤ t ≤ T} is countable.

Our next theorem gives a precise estimate of the total duration in [0, 1] that the stable motion
spends in balls of radius ε that have unusually high occupation measure. Such an estimate (which
is an analogue in our setting of the “coarse multifractal spectrum”, cf. Riedi [10]), cannot be
inferred from Theorem 1.2.

Theorem 1.3 Let {Xt} be a symmetric stable process of index β < d in IRd, and denote
Lebesgue measure on IR by Leb. Then, for any a ∈ (0, βΛβ,d),

lim
ε→0

log Leb
{

0 ≤ t ≤ 1
∣∣∣µX1 (B(Xt, ε)) ≥ aε

β | log ε|
}

log ε
= aΛ−1

β,d a.s.

Theorem 1.3 will be derived as a corollary of the following theorem which provides a pathwise
asymptotic formula for the moment generating function of the ratio µX1 (B(Xt, ε)) /ε

β .

Theorem 1.4 Let {Xt} be a symmetric stable process of index β < d in IRd. Then, for each
θ < Λ−1

β,d,

lim
ε→0

∫ ∞
0

eθµ
X
1 (B(Xt,ε))/εβ dt =

(
IE
(
eθµ

X
∞(B(0,1))

))2
a.s. (1.8)

It follows from the proof that both sides of (1.8) are infinite if θ ≥ Λ−1
β,d.

The thick points considered thus far are centers of balls B(x, ε) with unusually large occupation
measure for infinitely many radii, but these radii might be quite rare. The next theorem shows
that for “consistently thick points” where the balls B(x, ε) have unusually large occupation
measure for all small radii ε and the same center x, what constitutes “unusually large” must be
interpreted more modestly.

Theorem 1.5 Let {Xt} be a symmetric stable process of index β < d in IRd. Then for some
non-random 0 < c′β,d < Cβ,d <∞ we have,

c′β,d ≤ sup
x∈IRd

lim inf
ε→0

µX∞(B(x, ε))

εβ
≤ Cβ,d a.s. (1.9)

Remarks:
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• In particular, replacing the lim sup by lim inf in (1.5) and (1.6) results with an a.s. empty
set for all a > 0.

• The new assertion in (1.9) is the right hand inequality; the inequality on the left is an
immediate consequence of the existence of “stable slow points”, see [6, Theorem 22].

It is an open problem to determine the precise asymptotics in (1.9), even in the special case of
Brownian motion.

This paper generalizes the results of our paper [3] on thick points of spatial Brownian motion to
all transient symmetric stable processes. There are several sources of difficulty in this extension:

• Ciesielski-Taylor [2] provide precise estimates for the tail of the Brownian occupation
measure of a ball in Rd; the existing estimates for stable occupation measure are not as
precise.

• The Lévy modulus of continuity for Brownian motion was used in [3] to obtain long time
intervals where the process does not exit certain balls.

We overcome these difficulties by

• A spectral analysis of the convolution operator defined by the potential density.

• Conditioning on the absence of large jumps in certain time intervals; this creates strong
dependence between different scales, and our general results on “random fractals of limsup
type” are designed to handle that dependence.

Sections 2 and 3 state and prove the two new ingredients which are needed in order to establish
the results in the generality stated here, that is the Localization Lemma 2.2 and the Exponen-
tial Integrability Lemma 3.1. Applying these lemmas, Section 4 goes over the adaptations of
the proofs of [3] which allows us to establish the results stated above for all transient stable
occupation measures.

2 Localization for stable occupation measures

We start by providing a convenient representation of the law of the total occupation measure
µX∞ (B(0, 1)). This representation is the counterpart of the Ciesielski-Taylor representation for
the total occupation measure of spatial Brownian motion in [2, Theorem 1].

Lemma 2.1 Let {Xt} be a symmetric stable process of index β < d in IRd. Then, for any
u > 0,

P
(
µX∞ (B(0, 1)) > u

)
=
∞∑
j=1

ψje
−u/λj , (2.1)

where λ1 > λ2 ≥ · · · ≥ λj ≥ · · · > 0 are the eigenvalues of the operator Kβ,d with the corre-
sponding orthonormal eigenvectors φj(y), ψj := φj(0)(1, φj)B(0,1) and the infinite sum in (2.1)
converges uniformly in u away from 0.
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Proof of Lemma 2.1: We use pt(x) to denote the transition density of {Xt} and for ease
of exposition write K,Λ for Kβ,d,Λβ,d respectively, and let J = µX∞(B(0, 1)). While u0 is in
general only in L1(B(0, 1), dx), each application of K lowers the degree of divergence by β (this
is easily seen by scaling), so v := Km−1u0, the convolution kernel of Km is bounded and in fact
continuous for m large enough. Fix such m and note that for any n ≥ m,

IE (J n) = IE

({∫ ∞
0

1B(0,1)(Xs) ds

}n)
= n!

∫
B(0,1)n

∫
0≤t1≤···≤tn

n∏
j=1

ptj−tj−1(xj − xj−1) dt1 · · · dtn dx1 · · · dxn.

= n!

∫
B(0,1)n

n∏
j=1

u0(xj − xj−1) dx1 · · · dxn

= n!(1, Kn−1u0)B(0,1) = n!(1, Kn−mv)B(0,1) . (2.2)

Thus, for g(z, u) :=
∑∞
n=m z

n−mun/n!, by the standard Neumann series for the resolvent, for
any z ∈ IC such that |z| < Λ−1 := θ∗,

IE (g(z,J )) =
∞∑
`=0

z`(1, K`v)B(0,1) = (1, (I− zK)−1v)B(0,1) (2.3)

Taking z ∈ [−3θ∗/4,−θ∗/4], we find after m integrations by parts that

IE (g(z,J )) =
∫ ∞

0
g(z, u) dP(J > u) =

∫ ∞
0

ezufm(u)du , (2.4)

where fm(u) is the (m − 1)-fold integral from u to ∞ of P(J > ·). To justify this, we note,
on the one hand, that by (2.2) J has all moments, so that P(J > u) ≤ cN/u

N for any N ,
and therefore fj(u) is bounded and goes to 0 as u tends to ∞ for any j. On the other hand,
dmg(z, u)/dmu = ezu with dkg(z, u)/dku = 0 at (z, 0) for k = 0, . . . , m− 1 which controls the
boundary terms at u = 0, and writing g(z, u) = z−m(ezu −

∑m−1
n=0 z

nun/n!) and using the fact
that z < 0 controls the boundary terms at u =∞.

Since K is a convolution operator on B(0, 1) with locally L1
(
IRd, dx

)
kernel, it follows easily as

in [4, Corollary 12.3] thatK is a (symmetric) compact operator. Moreover, the Fourier transform
relation

∫
ei(x·p)u0(x) dx = |p|−β > 0 implies that K is strictly positive definite. By the standard

theory for symmetric compact operators, K has discrete spectrum (except for a possible accu-
mulation point at 0) with all eigenvalues positive, of finite multiplicity, and the corresponding
eigenvectors of K, denoted {φj} form a complete orthonormal basis of L2 (B(0, 1), dx) (see [8,
Theorems VI.15, VI.16]). Moreover, (f,Kg)B(0,1) > 0 for any non-negative, non-zero, f, g, so by
the generalized Perron-Frobenius Theorem, see [9, Theorem XIII.43], the eigenspace correspond-
ing to Λ = λ1 is one dimensional, and we may and shall choose φ1 such that φ1(y) > 0 for all
y ∈ B(0, 1). Noting that φj are also eigenvectors of (I− zK)−1 with corresponding eigenvalues
(1− zλj)−1, we have by (2.3) and (2.4) that for z ∈ [−3θ∗/4,−θ∗/4],∫ ∞

0
ezu fm(u)du = (1, (I− zK)−1v)B(0,1) =

∞∑
j=1

cj
1− zλj

=

∫ ∞
0

ezu

 ∞∑
j=1

cjλ
−1
j e−u/λj

 du , (2.5)
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where cj := (1, φj)(v, φj) is absolutely summable. Since both integrals in (2.5) are analytic in
the strip Re z ∈ [−3θ∗/4,−θ∗/4], and agree for z real inside the strip, they agree throughout
this strip. Considering z = −θ∗/2 + it, t ∈ IR we have that

fm(u) =
∞∑
j=1

cjλ
−1
j e−u/λj (2.6)

a.e. on u ≥ 0 by Fourier inversion and hence for all u > 0 by right continuity. Considering the
(m− 1)-st derivative of (2.6), the uniform convergence of

∑
j cjλ

−k
j e−u/λj for k = 1, . . . , m and

u away from 0, shows that

P (J > u) =
∞∑
j=1

cjλ
−m
j e−u/λj

for all u > 0. Recalling that v, the convolution kernel of Km, is bounded and continuous, we
have that λmj φj = Kmφj are continuous and bounded functions, and Kmφj(0) = (v, φj)B(0,1).

Therefore φj(0) = λ−mj (v, φj)B(0,1) and thus cjλ
−m
j = (1, φj)φj(0) = ψj for all j, establishing

(2.1). 2

With the aid of (2.1) we next provide a localization result for the occupation measure of {Xt}.

Lemma 2.2 (The Localization Lemma) Let {Xt} be a symmetric stable process of index
β < d in IRd. Then, with θ∗ = Λ−1

β,d, for some c0, c1 < ∞, t ≥ c0u
d/(d−β), and all u > 0

sufficiently large

c−1
1 e−θ

∗u ≤ P
(
µXt (B(0, 1)) ≥ u

)
≤ P

(
µX∞ (B(0, 1)) ≥ u

)
≤ c1e

−θ∗u (2.7)

With h(ε) = εβ | log ε| and any ρ > d/(d− β), considering u = a| log ε| in (2.7), by stable scaling
we establish that for any a > 0 and ε > 0 small enough

c−1
1 εaθ

∗
≤ P

(
µXεβ | log ε|ρ (B(0, ε)) ≥ ah(ε)

)
≤ P

(
µX∞ (B(0, ε)) ≥ ah(ε)

)
≤ c1ε

aθ∗ (2.8)

Proof of Lemma 2.2: Let Jt := µXt (B(0, 1)). Recall that φ1 is a strictly positive function on
B(0, 1), hence in (2.1) we have ψ1 > 0 and θ∗ = λ−1

1 < λ−1
2 , implying that

lim
u→∞

P(J∞ > u)eθ
∗u = ψ1 ∈ (0,∞) (2.9)

out of which the upper bound of (2.7) immediately follows.

Turning to prove the corresponding lower bound, let τz := inf{s : |Xs| > z}, noting that by [1,
Proposition VIII.3] for some c > 0 and any u > 0, z > 1, t > 0,

P(Jt > u) ≥ P(Jτz > u)−P(τz > t) ≥ P(Jτz > u)− c−1 exp(−ctz−β) . (2.10)

Let J and J ′ denote two independent copies of J∞. Noting that Py(J ′ > u) ≤ P(J ′ > u) for
any y ∈ IRd, u > 0, and using the strong Markov property, it is not hard to verify that

P(J∞ > u) ≤ P(Jτz > u) + P(J + J ′ > u) sup
|v|>z

Pv(inf
s≥0
|Xs| < 1) (2.11)
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(c.f. [3, (3.6) and (3.7)] where this is obtained for the Brownian motion). Recall that

Pv(inf
s≥0
|Xs| < 1) ≤ c(β, d)|v|−(d−β) ∧ 1

(see [11, Lemma 4]). By (2.9) it follows that for some C <∞ and all u > 0,

P(J + J ′ > u) ≤ C(1 + u)e−θ
∗u (2.12)

(c.f. [3, (3.8)] for the derivation of a similar result). Hence, for some C1, C2, c0 large enough,
taking z = zu := C1u

1/(d−β) and tu := C2uz
β
u = c0u

d/(d−β) one gets from (2.10) and (2.11) that
for some c′ > 0 and all t ≥ tu

P(Jt > u) ≥ c′e−θ
∗u (2.13)

as needed to complete the proof of the lemma. 2

3 Exponential integrability

Lemma 3.1 Let {Xt} denote the symmetric stable process of index β in IRd with β < d and
ψ(x) := |x|−β1{|x|≤1}. Then, for any θ ∈ (0, d− β) and

λ < Λ−1
β,d(θ) := 2β

Γ(d−θ2 )Γ(β+θ
2 )

Γ(d−θ−β2 )Γ( θ2)
, (3.1)

there exists κλ,θ <∞ such that for all |y| ≤ 1

IEy
(

exp(λ

∫ ∞
0

ψ(Xt) dt)

)
≤ κλ,θ|y|

−θ. (3.2)

Proof of Lemma 3.1: As before, u0(x) = cβ,d|x|β−d denotes the 0-potential density for {Xt}.
Fixing θ ∈ (0, d− β) let Λβ,d(θ) denote the norm of

Kf(y) = |y|θ
∫
B(0,1)

u0(y− x)|x|−(β+θ)f(x) dx

considered as an operator from L∞ (B(0, 1), dx) to itself. Recall the Fourier transform relation∫
ei(x·p)u0(x) dx = |p|−β , implying that

Λβ,d(θ) = sup
y∈B(0,1)

(K1)(y) = sup
y

∫
IRd

cβ,d|y|θdx

|y− x|d−β |x|β+θ
=

cd−θ,d
cd−θ−β,d

. (3.3)

Since cα,d = 2−απ−d/2Γ(d−α2 )/Γ(α2 ) for any α ∈ (0, d), we obtain that

Λβ,d(θ) = 2−β
Γ(d−θ−β2 )Γ( θ2)

Γ(d−θ2 )Γ(β+θ
2 )

, (3.4)

as stated in the lemma. For g(y) = |y|θ and λ ∈ (0,Λβ,d(θ)
−1), the series

G(y) =
∞∑
n=0

λn(Kg)n(y)

8



converges uniformly in L∞ (B(0, 1), dx). It is easy to check that for all n,

In(y) :=
1

n!
IEy

({∫ ∞
0

ψ(Xt) dt

}n)
= IEy

∫
0≤t1≤...≤tn<∞

n∏
j=1

ψ(Xtj) dtj


=

∫
· · ·
∫
u0(y − x1)ψ(x1)

n∏
j=2

u0(xj−1 − xj)ψ(xj) dxj dx1

= |y|−θ(Kg)n(y) .

Therefore,

IEy
(

exp(λ

∫ ∞
0

ψ(Xt) dt)

)
=
∞∑
n=0

λnIn(y) = G(y)|y|−θ

resulting with the bound (3.2). 2

4 Proofs

Throughout we write θ∗ for Λ−1
β,d, h(ε) for εβ | log ε| and take ρ(ε) := | log ε|ρ for some ρ > d/(d−β)

as in the localization bound of (2.8).

Proof of Theorem 1.2, lower bound: In proving the lower bound it suffices to assume that
T is finite; by stable scaling, it is enough to consider T = 2 or equivalently, −1 ≤ t ≤ 1 in
(1.6). Our proof follows closely the proof of [3, Corollary 4.1] to which the reader is referred
for notation and details. Take εn = n32−n/β , n = 1, 2, . . . and bεn = 1 − | log εn|

−2. With
I = [t, t + 2−n] ∈ Dn, define Ĩ = [t − nv2−n, t], v = 3β + ρ. Let ZI = 1 if the following two
(independent) conditions hold:∫

Ĩ
1{|Xt−Xs|<εnbεn}ds ≥ ah(εn) and sup

t′∈I
|Xt′ −Xt| ≤ εn| log εn|

−2. (4.1)

Therefore, if I ∈ Dn and ZI = 1, then
∫
Ĩ 1{|Xs−Xt′ |<εn}ds ≥ ah(εn) for every t′ ∈ I . Using

stable scaling and [1, Proposition VIII.4] it is easily verified that the second condition in (4.1)
has probability at least 1/2 for n sufficiently large. By stable scaling, the lower bound of (2.8)
directly implies that for all I ∈ Dn and n sufficiently large

P

(∫
Ĩ
1{|Xt−Xs|<εnbεn}ds ≥ ah(εn)

)
≥ 21−aθ∗n/β .

Noting that the two conditions in (4.1) are independent, we see that for I ∈ Dn, and all n large
enough,

pn := P(ZI = 1) ≥ 2−aθ
∗n/β . (4.2)

We will now apply [3, Theorem 2.1] with gauge function

ϕ(r) = r1−aθ∗/β| log2 r|
v+1.

For intervals I, J ∈ Dn the variables ZI and ZJ always satisfy Cov(ZI, ZJ) ≤ IE(ZI) = pn, and
if dist(I, J) > nv2−n, then ZI and ZJ are independent. Therefore, fixing m < n and D ∈ Dm,
each I ∈ Dn satisfies Cov(ZI ,Mn(D)) ≤ nvpn. Consequently

Var(Mn(D)) =
∑

I∈Dn, I⊂D

Cov(ZI,Mn(D)) ≤ 2n−mnvpn .
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The lower bound on the Hausdorff dimension in Theorem 1.2 now follows as in the proof of [3,
Corollary 4.1], with the results about Packing dimension obtained by applying [3, Corollary 2.4].

The fact that Thicka 6= ∅ at the critical value a = βΛβ,d follows by the same argument as in [3,
Section 4], using here the dense open sets

Thick(a, h) :=
⋃

ε,ε′∈(0,h)

{
0 < t < T

∣∣∣ µXT (B(Xt, ε))

εβ | log ε|
> a and

µXT (B(Xt− , ε
′))

ε′β | log ε′|
> a

}
,

where we used the fact that the process {Xt} is right-continuous with left limits and has only a
countable set of jumps.

Proof of Theorem 1.2, upper bound: This follows as in [3, Section 5] where the bound

P
(
µX∞(B(0, (1 + δ)ε)) ≥ (1− 2δ)ah(ε)

)
≤ cε(1−4δ)aθ∗ (4.3)

follows from (2.8), and for the standard estimate for stable hitting probabilities

P(σε(x) <∞) ≤ c(β, d)(
ε

|x|
)d−β ∧ 1, (4.4)

with σε(x) := inf{t ≥ 0 : Xt ∈ B(x, ε)}, see [11, Lemma 4].

Proof of Theorem 1.1: With the above estimates, as well as the lower bound (2.8) of the
Localization Lemma 2.2, this follows directly as in the corresponding proof of [3, (1.7)], using
now δε = εβρ(ε).

Proof of Theorem 1.4: In the course of proving Lemma 2.1 we verified among other things
that IE(exp(θµX∞(B(0, 1))) < ∞ for all θ < θ∗ (see (2.3)). While u0 /∈ L2(B(0, 1), dx) for
β ≤ d/2, we have that Kiu0 ∈ L2(B(0, 1), dx) for all i large enough, which is all that one needs
when extending [3, Lemma 7.2] to the present context. Thus, adapting the proof of [3, Theorem
1.4] amounts to replacing each Brownian scaling in [3, Section 7] with stable scaling.

Proof of Theorem 1.3: Our proof follows closely the outline of [3, Section 8], to which the
reader is referred for notation and details, where we take now h(ε) = εβ | log ε| and δn = εβnρ(εn)
as needed for applying the lower bound of (2.8). For ρn = εβn| log εn|−3β and the i.i.d. random
variables

Y
(n)
i :=

1A(n,i)

h(εn)

∫ 2iδn

(2i−1)δn
1{|X2iδn−Xs|<εnbεn}

ds ,

where
A(n, i) = { sup

t∈(0,ρn)
|X2iδn+t −X2iδn| ≤ εn| log εn|

−2}

we combine [1, Proposition VIII.4] with (2.8) to provide the lower bound on P(Y (n) ≥ a/(1−δ))
leading to [3, (8.2)] (see the derivation of (4.2) for a similar application).

Proof of Theorem 1.5: We follow the outline of [3, Section 9], relying on Lemma 3.1 to control
the exponential moments instead of Girsanov’s theorem used in [3, Lemma 9.1].

To deal with the occupation measure of balls not centered at the origin take 0 < α < 1 and fix
b = 1 + α > 1. For k ∈ (1,∞), let Γk = {x : |x| ∈ [k−1, k]} and for a > 0,

Da := {x ∈ Γk
∣∣∣ lim inf

ε→0

µXT (B(x, ε))

εβ
≥ a} .
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Set ηn = 2−n and δn = η1−b−1

n for n = 1, 2, . . .. Let {xj : j = 1, . . . , Kn}, denote a maximal
collection of points in Γk such that inf 6̀=j |x` − xj| ≥ αηn. Let An be the set of j ; 1 ≤ j ≤ Kn

such that

inf
ε∈[ηn,δn]

µXT (B(xj, bε))

εβ
≥
a

b
. (4.5)

We will shortly prove that for some Cβ,d <∞ and all a ≥ Cβ,d

IE|An| ≤ c2η
γ
n (4.6)

where γ > 0. Assuming this for the moment, let Vn,j = B(xj , αηn). Then, for any x ∈ Γk there
exists j ∈ {1, . . . , Kn} such that x ∈ Vn,j and B(x, ε) ⊆ B(xj , ε+αηn) ⊆ B(xj , bε) for all ε ≥ ηn.
Fixing a ≥ Cβ,d, if x ∈ Da then a.s. for some m1(ω, x, b)<∞ and all n ≥ m1,

inf
ε∈[ηn,δn]

µXT (B(x, ε))

εβ
≥
Cβ,d
b

.

Therefore, Da ⊆ ∪n≥m ∪j∈An Vn,j for any m ≥ 1. Therefore

∞∑
n=1

P(|An| ≥ 1) ≤
∞∑
n=1

IE|An| ≤ c2

∞∑
n=1

ηγn <∞.

Thus, by Borel-Cantelli, it follows that a.s. An is empty for all n ≥ m2(ω), implying that the
sets Da are a.s. empty for all T <∞. By [13, Lemma 5], a.s.

lim inf
ε→0

µX∞ (B(0, ε))

εβ
= 0 .

Thus, taking k ↑ ∞ completes the proof of the right side of (1.9), subject only to (4.6).

To prove (4.6) fix T < ∞, a > 0, 1 < b < 2, η > 0, δ = η1−b−1
and x ∈ IRd. Clearly, for

Us := |Xs − x|,
{µXT (B(x, v)) > 0} = { inf

s∈[0,T ]
Us < v} . (4.7)

Setting Z =
∫ T
0 U−βs ds, also

bβZ =
∫ T

0

∫ ∞
b−1Us

βdε

ε1+β
ds =

∫ T

0

∫ ∞
0

1{|Xs−x|≤bε}
βdε

ε1+β
ds

=
∫ ∞

0

βdε

ε1+β
µXT (B(x, bε)) ≥

∫ δ

η

βdε

ε1+β
µXT (B(x, bε)) . (4.8)

If
inf

ε∈[η,δ]
ε−βµXT (B(x, bε)) ≥

a

b

then µXT (B(x, bη))> 0 and∫ δ

η

βdε

ε1+β
µXT (B(x, bε)) ≥

a

b

∫ δ

η

βdε

ε
= −βab−2 log η .
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Thus, for v = bη, by (4.7), (4.8) and Chebycheff’s inequality,

P( inf
ε∈[η,δ]

µXT (B(x, bε))

εβ
≥
a

b
) ≤ P(Z ≥ −βab−2−β log η, inf

s∈[0,T ]
Us ≤ v)

≤ ηλβab
−2−β

IE[eλZ1{infs∈[0,T ] Us≤v}]

≤ ηλβab
−2−β

(
IE[epλZ]

)1/p
(

P[ inf
s∈[0,T ]

Us ≤ v]

)1−1/p

(4.9)

for any p > 1. From Lemma 3.1 it follows that when λ < Λ−1
β,d(θ),

IE
(
eλZ

)
= IEx

(
exp(λ

∫ T

0
|Xt|

−β dt)

)
≤ c0e

λT |x|−θ ,

for some c0 = c0(λ, θ, k) < ∞ and any x such that |x| ∈ (0, k]. Using this together with (4.4)
and (4.9) we see that for λ < p−1Λ−1

β,d(θ) and some c = c(λ, θ, k, T )<∞,

P( inf
ε∈[η,δ]

µXT (B(x, bε))

εβ
≥
a

b
) ≤ cηλβab

−2−β+(d−β)(1−1/p)|x|−(d−β)(1−1/p)−θ/p .

Choose θ = (d− β)/2, p > 1, λ < p−1Λ−1
β,d(θ), and then Cβ,d so large that f := λβCβ,db

−2−β +
(d− β)(1− 1/p) > d. Note that g := (d− β)(1− 1/p) + θ/p < d and we have

P( inf
ε∈[η,δ]

µXT (B(x, bε))

εβ
≥
Cβ,d
b

) ≤ cηf |x|−g, (4.10)

where g, f, Cβ,d depend only on b, β, d and our free parameters p, λ.

Using (4.10), since g < d, for some c, c1, c2 <∞ independent of n,

IE|An| =
Kn∑
j=1

P( inf
ε∈[ηn,δn]

µXT (B(xj , bε))

εβ
≥
Cβ,d
b

)

≤ cηfn

Kn∑
j=1

|xj|
−g ≤ c1η

f−d
n (1 +

∫
{|x|≤k}

|x|−g dx) ≤ c2η
γ
n

where γ := f − d > 0. This completes the proof of (4.6) and hence of our Theorem. 2
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