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INTERSECTION LOCAL TIMES OF ALL ORDERS FOR BROWNIAN
AND STABLE DENSITY PROCESSES—CONSTRUCTION,
RENORMALISATION AND LIMIT LAWS

By ROBERT J. ADLER! AND JAY S. ROSEN?

Technion and City University of New York

The Brownian and stable density processes are distribution valued
processes that arise both via limiting operations on infinite collections of
Brownian motions and stable Lévy processes and as the solutions of certain
stochastic partial differential equations. Their (self-) intersection local times
(ILT’s) of various orders can be defined in a manner somewhat akin to that
used to define the self-intersection local times of simple :?-valued pro-
cesses; that is, via a limiting operation involving approximate delta func-
tions. We obtain a full characterisation of this limiting procedure, deter-
mining precisely in which cases we have convergence and deriving the
appropriate renormalisation for obtaining weak convergence when only this
is available. We also obtain results of a fluctuation nature, that describe the
rate of convergence in the former case. Our results cover all dimensions
and all levels of self-intersection.

1. Introduction.

(a) Density processes. Perhaps the best way to describe and understand
density processes is via a particle picture. Thus, let X!, X2,..., ¢ >0, be a
sequence of independent, R %-valued Markov processes, with stationary transi-
tion density either

1
1.1 x,y) =p(x —y) = ————e A/
(1.1) p(x,y) =Py y) (27Tt)d/2

(i.e., d-dimensional Brownian motions with infinitesimal generator A = %A,
where A is the d-dimensional Laplacian) or

pi(x,y) =pi(x —y)

(1.2) 1
 (2m)”

dexp(—ip (x—y) —t27°2|pll*) dp
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1074 R.J. ADLER AND J. S. ROSEN

[i.e., d-dimensional symmetric Lévy processes of index « € (0,2), with in-
finitesimal generator A given by the fractional half Laplacian A, =
—(— 3A)*/?]. Both transition densities are taken with respect to Lebesgue
measure, which serves, in both cases, as an invariant measure. Without
further comment, we shall denote the Brownian transition density by both p,,
as above, or pZ. . :

Let I1* be a Poisson point process on %¢ with intensity measure A dx for
A > 0; that is, the number of points of II* in a Borel set A ¢ R is a Poisson
random variable with parameter A times the d-dimensional volume of A and
the numbers in disjoint sets are independent. Since the probability that any
two points of II* lie exactly the same distance from the origin is zero, we can
order them by magnitude, and shall denote them by X}, X2,..., which we
now take as the initial values of the X'

For ¢ € ./, = A(R?), the Schwartz space of infinitely differentiable func-
tions on R decreasing rapidly at infinity, define the following two .#;-valued
random processes:

(1.3) py(d) =271 L o(XY),
i=1
(1.4) n(¢) =A"Y2 Y o'(X]),
i=1
where ol, 0% ... is a sequence of independent Rademacher random variables.
(P{lo? = +1} = P{o' = —1} = 3.) The two sequences {X’}, {c’} and II* are all

assumed independent of one another except for the fact that I1* determines
the initial values of the X'

The density process associated with the Markov process X is the weak limit,
in the Skorohod space D([0, 1], .#5), of 0} as A — . It is also closely related to
the weak limit of A'/%(u} — Eu}), which was studied in some detail by Martin-

Lof (1976).
As is clear from the form of (1.4), n, is a mean zero Gaussian process, with
covariance functional given, for ¢, ¢, € /4 and ¢ > s, by

(1.5)  E{n($1) “mu(2)} = [[Su(x) D o(x,7)bo(y) drxdy.
When s = ¢ we have

(1.6) E{n($1) " 1($2)} = [$1(x)$s(x) dx.

Looked at from this point of view, 7, is a particularly simple process. In fact,
it is also easily seen to be Markovian, and to satisfy the following stochastic
partial differential equation (SPDE) for a € (0, 2]:

(1.7) (57)() = n(8.0) + VEW(&, 29,

(18) nO=Ny
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where we have adopted the convention that A, = A, where N is a Gaussian
white noise on R?; that is, N(B) is mean zero Gaussian for each Borel
B c ¢ with E{N(B,)N(B,)} = Leb(B,; N B,) and where W is a mean zero,
space-time Gaussian process with covariance functional

(19) EW(dy X b)W(y X ) = [“6()bo(t) dt | in(x)() d,

with ¢, € ./, and ¢; € /4. The SPDE (1.7) should be understood in the weak
form of Walsh (1986), namely,

1(8) = [(1(8 ) ds +VE ['[ A, b(x)W(ds,d),

so that W(¢) = [{[rad(x)W(ds, dx).

The weak limit of A'/%(u} — Eu?) mentioned above satisfies the same SPDE,
but with a different initial condition.

While the above SPDE is also valid in the Brownian case a = 2, there is a
simpler representation in this case, for then the square root A; of the
Laplacian can be replaced by a first order differential operator. In particular,
we have

an X
(1.10) - = 1Ay +V2V - W,
where we have now used W to denote a R“valued Gaussian white noise in
space-time based on Lebesgue measure, and the last term in (1.10), after
integration in the time variable, should be understood as

(1.11) fotfmd(v¢(x),W(dx,ds)).

The equivalences between these various representations of the basic SPDE
will be established in Section 3, where we shall also be more precise about the
correct formulation of the SPDE. [Note that, when a # 2, ¢ € ./, does not
necessarily imply that A ¢ € ./, so that, without proper interpretation, the
RHS of (1.7) is not well defined.] A

(b) Intersection local times. Let 8(x) = §,(x) denote the Dirac delta func-
tion on R If it would make sense, we would like to use the following
expression to define a new ./"-valued stochastic process, which we would call
the intersection local time process corresponding to the density process 7,:

(t12)  fldu[ldo [ [ (0, X 0)(8(x = 9))b(x) dxdy,

where 7, X 7, is the usual product of distributions.
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When d = 1 and « > 1 this is quite simple, for then the distribution [/n, ds
has function form. That is, there exists a function L,x), which can be
interpreted as a kind of local time for 7, for which [{n,(¢)ds = [x L(x)¢(x) dx
for all ¢ and ¢. [This follows, for example, from the construction of density
processes in Adler and Epstein (1987) and the existence of a local time for
real-valued Brownian motion and stable processes on f! when a > 1.] In
these cases it is therefore not hard to show that an appropriate interpretation
of (1.12) is given by [g(L/(x))%p(x)dx. Since these cases are simple and
require none of the delicateness of the forthcoming analysis, we shall make no
further reference to them. In general, however, one cannot make mathemati-
cal sense out of (1.12) without introducing a certain renormalisation. For this
we require some notation.

Let G,...,G, be a sequence of zero mean, but otherwise completely
general, Gaussian variables. We define the Wick ordering of their product as

(1.13) Gy G= (-1 T1 E{GG)TI Gy,
A (i,j)eA leA°

where the sum runs over all collections A of pairs of integers from {1, ..., &}
(including the empty pair), |A| denotes the number of elements (i.e., pairs of
integers) in A and A° comprises those integers not in A. For example, if
k = 2, then :G,G,: = G,G, — EG,G,.

Now equip . with the usual topology and let &7,, be the dense subset of
%q made up of functions of the form

N
(1.14) Sn(Xgs..0,%,) = > dP (%) - ¢§k)(xk),
i=1

where ¢/X(x) € 4, foralll <j <k.If n,,...,n, are Gaussian distributions
on ./, then we define their centered, or Wick ordered, product :n; X -+ X n,:
on /,, by setting

N
(115) (X X m)(w) = L (o) - ma(4):
i=1

for test functions of the form (1.14) in 7, ,; and then extending to all of ..
That this is legitimate is standard fare in the theory of Gaussian distributions.
[See, for example, Chapter 6 of Glimm and Jaffe (1987).]

We are now in a position not only to make sense out of (1.12), but also to
extend the order of self-intersection above two. Recall that CZ denotes the
space of C” functions of bounded support.

1.1 DEFINITION. Let f € CF C ./, be symmetric and satisfy [ga f(x) dx =
1. For & > 0, set f.(x) = e %f(x/¢e),and for k > 2, ¢ € -/ and £ > 0, set

i ‘Yk,e(t7 d)) = ‘Yk,e( f: t7 d)) -
1.16 k
( ) - ftdh ”'ftdtk(i"hl D% ntk:) ¢(x1)l_[fs(xi —x)].
0 0 . i=2
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If vy, ., which a priori depends on f, converges as ¢ — 0 (in .#’2, for example)
to a limit, then the limit process is denoted by y,(¢) and is called a %-fold (self-)
intersection local time (ILT) process of m,. It is, of course, an . distribution
valued process, and may, or may not, depend on the choice of f.

Since f, approaches a delta function as ¢ — 0, it is clear that we have now
found a way in which to give meaning to (1.12). The following results will show
that the renormalisation inherent in the Wick ordering of the product distribu-
tion is at least one way to handle the divergences inherent in (1.12). [To
appreciate the need for renormalisation, one should note that without this
reordering a regular product of distributions in (1.16) would lead to v, ,’s that
diverge in .2 in cases where the renormalised variant converges.]

The central question that will interest us is the convergence or nonconver-
gence of v, .. We shall find conditions for convergence and study the rate of
divergence in those cases where vy, . diverges as ¢ — 0. We shall also obtain
fluctuation results, which give even finer information on rates of convergence.
We shall do this via two routes: In the case of the simple ILT, that is, when
k = 2, we shall adopt an approach via stochastic analysis that gives detailed
insight into why our results hold, as well as establishing, en passant, stochastic
evolution equations for the ILT. This approach does not seem to be generalis-
able to higher orders of intersection, however, and so we shall also present an
approach, valid for all d and %, based on moment calculations.

AsmE. The reader who may want to compare the results of this paper with
earlier results in Adler, Feldman and Lewin (1990) (hereafter referred to as
AFL) should note that the definition of 7, , that we have employed involves
time integration over all of [0, ¢]* and not just over an ordered wedge in which
t; <+ <, as was done there, so that results between the two papers differ
by factors of 2%~1.

(¢) The approximate ILT process. To state our first result we need to
introduce the Green’s function

(1.17) GA(x,y) = f:e‘“p:‘(x,y)dt,

corresponding to the transition probabilities (1.1) and (1.2). It is clear from
(1.1) and (1.2) that GXx,y) = GXNy, x) = GX(|lx — yl). We shall write G} * f
to denote the convolution (G} * f)x) = [5«G(x, y) f(y) dy. Note that G2(x, y)
is always well defined for A > 0, but may be identically infinite if A = 0.

A particularly useful result, in the case of simple ILT, is the following,
which allows us to express the simple v, , via an evolution equation involving
n, and a space-time white noise. We bring it in now in order to better
understand Theorem 1.4 below.-

1.2 THEOREM. Let A > 0. The approximate ILT of order k = 2 is given by
the following evolution equation, in whick W is a space-time Gaussian white
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noise with covariance functional (1.9):

yhuw)=m£ﬁm(mmanm«m*Mx—m¢w»

— ZItdu(:nt X nu:)(G;\ * f(x _y)¢(y))
(1.18) °
+2Em4muxmo«u*ﬂu—ymo®

t rS
+2V2 WAy oGl * f(x — )b(+)) du W(dx, ds).
LI mu(BajeGi s fulx = )$(:)) du W(dx, ds)
The stochastic integral is of the type studied by Walsh (1986).
We shall establish this result in the following section, after we have set up

an It6 formula for density processes. It is worth noting at this point, however,
that in the Brownian case we can replace the last term above by

2f(,t/md</;svnu(G§\ * f(x = )¢(+))du, W(dx, ds)>,

where, as in (1.10) and (1.11), we have now moved to a vector-valued white
noise. Although this representation is more natural in the Brownian case, and,
indeed, is at the basis of the results in AFL, we shall not use it again here, so
as to avoid having to write out special arguments for the Brownian situation.

(d) The -£2? convergent case. This is actually the easiest of all cases and
is covered by two results. The first is a basic existence theorem.

1.3 THEOREM. Let a > d(k — 1)/k. Then, for each f € C; with
Jpaf(x)dx =1, ¢ € A, and t > 0, the approximate ILT’s vy, (f: t,¢) =
Y1, (¢, ®) converge in £ 2 as € > 0. Furthermore, the limit random process
v:(t, ¢) is independent of the function f and is called the kth order ILT process

for n,.

The second result is a generalisation to the stable case of a result first
established for the simple (2 = 2) ILT of the Brownian density process in AFL
by completely different methods.

1.4 THEOREM. Let d < 2a. Then, for all A > 0, the pairwise ILT vy,
satisfies the evolution equation (1.18) with vy, , replaced by v, and G * f,
replaced by G throughout the right-hand side.

It is clear that this is simply the evolution equation for vy, , with f,
replaced by a delta function. The proof, of course, requires a little more detail.
[To compare the above equation to the representation given in AFL for the
ILT of the Brownian density process on %2, note that there we take A = § and
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replace the integral operator A, ,, by the differential operator 2~ /2y, This, of
course, is only possible in the Brownian case, a = 2.]

(e) The .£? divergent case and renormalisation. Although it is not explic-
itly stated in Theorem 1.3, if @ < d(k — 1)/k, then Ev{ , actually diverges as
e — 0, and so it is not possible to define an ILT in these cases. Nevertheless, it
is possible to obtain quite precise information on the rate of divergence.

In order to formulate this precisely, we need to decide on what spaces our
processes live. Let C([0,T], ;) denote the space of continuous .7;-valued
processes. That is, n € C((0,T], #) if n,(¢) is continuous on [0, T'] in the
usual sense for every ¢ € /4. We use = to denote weak convergence on
C((0, 11, #}). [See Walsh (1986) for details.]

We also require some notation: Thus, for d > 1 and a € (0, 2], set

B 27 /2 B I'((d -a)/2)
547 T(qs2)’ ‘4T 7i7T(a/2)

Furthermore, let W® be the ./;-valued Gaussian process with zero mean
and covariance functional

(1.19)

(1.20) EWS($)WR (W) = (s A D" [ $(x)d(x) dx.

If £ =1, then W® is just the time-integrated form of the Gaussian white
noise defined by (1.9).

1.5 TuEoREM. Fix f € C2 such that [ga f(x)dx = 1.
(@) If « = d(k — 1) /k, then
Yk s( f)
1.21 —_——
( ) VIn(1/¢)

as € = 0, where

= oW ®

02 = 0%(d, k, a) = 2kc s k!.
M) If @ < d(k — 1)/k, then
Yk,e( f)

(1'22) (d—(d—a)k)/2 = BfW(k)

as € > 0, where

B} =B*(f:d,k,a)
L = 2k(k - 1)!fmd((G§* £ £)(%))'Go() dx

+(k = 1)(k - 1)!fmd((G3* £ £)(x) (G % £)(x)) da.
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Note that in (1.22) the exponent of ¢ is negative, so that the denominator
diverges as ¢ — 0 and the result therefore captures the rate of divergence of
Yx,. mentioned at the beginning of this subsection. Perhaps the most interest-
ing aspect of this result is that in part (b), for the first time, the function f
affects the limiting distribution for vy, .. Note that this was not the case in
either part (a) or in the .2 convergent situation of Theorem 1.4.

(f) Fluctuation theory for ILT. We now return to the .#? convergent
situation of Theorem 1.3 and obtain a result of a fluctuation nature that
describes the rate at which the .#? convergence occurs. To make the notation
a little clearer, we shall denote a Euclidean inner product, which up until now
has been x -y, by {x,¥).

1.6 THEOREM. As usual, fix an f < C7, but assume that [yaf(x)dx = 0.
Let a >d(k— 1D/k. If a =d =2 and k = 2, then

(1.23) e In(1/¢) = C,W
as ¢ = 0, where C} = 4w [{x,y) f(x) f(y) dxdy. If a = d = 2 and k > 3, then
Yk,s( f) N DfW(k)

(1.24) &/In(1/¢)

ase > 0. Ifa=d=1and k > 2, then
Yk,s(f)

1.25 —t = E.W®
(1.25) VeIn(1/g) !
~as € — 0. In all other cases,
Yk,s( f)
(126) m = FfW(k)

as ¢ > 0. Here D;, E; and F; are rather involved constants whose definition
we defer until Section 5 [equations (5.23), (5.24) and (5.7), respectively] when
we shall have set up the appropriate notation.

Note that under the assumed condition o > d(k — 1)/k, the exponent of &
in (1.26) is positive, as one would expect for a fluctuation result.

(g) About the proofs. By way of an introduction to the following sections,
and for the reader who will leave us before the hard work really starts, we
have two main comments to make about the proofs of the various convergence
results.

The first point to note is that the limit processes in Theorems 1.4-1.6 are
always multiples of the Gaussian W®, which is determined by its moments.
Thus, if one were to concentrate only on a proof of convergence of finite-
dimensional distributions of the variously renormalised versions of v, , to
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their limits, it would suffice to calculate the asymptotic moments. All that is
needed, in principle, to do this is the moment formula of Theorems 2.5 and 2.6
in the following section. (In fact, even the tightness calculation required for
full weak convergence requires little more.) This, in fact, is how our most
general proofs will proceed, and these will form the content of Sections 4 and 5
of the paper.

The second point is that moment proofs do not generally explain why a
result may be true. In particular, it is not immediately clear from moment
calculations what the ubiquitous process W*) has to do with v, ,. This
becomes clearer when, for the case & = 2, a proof is built on the basis of the
evolution equation (1.18). Roughly speaking, G * f, is much better behaved
than Aa ,G2 * f, as € = 0, so that when vy, , d1verges it is because of the last
term in (1 18). That is, after the renormalisations of Theorems 1.5-1.6, this is
the only term left in the evolution equation. It is now not hard to convince
oneself that W® has something to do with the limit process after renormalisa-
tion.

Since this proof seems to us the more attractive, we shall treat it first in
Section 3 of the paper. Unfortunately, however, it only works for the case
k = 2, for which we have an explicit evolution equation for vy, .. The following
section contains a number of technical results required throughout the paper.
We close this section with some comments.

(h) Historical notes. Density processes seem to have been originally intro-
duced into the probability literature by Martin-Lof (1976) and studied in
depth, for the case d = 1, by Itd (1983). An approach based on stochastic
partial differential equations can be found in the notes of Walsh (1986).
Results in two and three dimensions, for the Brownian density process and its
simple ILT can be found in AFL, where it is also shown how the ILT of the
Brownian density process can be related to the ILT’s of the initial Brownian
motions X/ of (1.4) and how this relationship can be exploited to derive a
special case of Theorem 1.4.

Although density processes are of intrinsic interest, it is worth noting that
they are also of additional interest in that they share many qualitative
properties with measure valued diffusions which are, ab initio, much more
difficult to study. Thus density processes are a good test case for their more
complicated cousins. Material on the existence and representation of ILT for
superprocesses can be found, for example, in Dawson, Iscoe and Perkins
(1989), Dynkin (1988) and Perkins (1990), while Rosen (1990) treats renormal-
isation and weak convergence results for the case & = 2. Tanaka-like evolution
equations for the simple local time are given in Adler and Lewin (1992), while
ILT (%2 = 2 only) is treated in Adler and Lewin (1991). Further results on ILT
for superprocesses can be found in Adler (1993).

2. Some technicalities. In this section we shall collect a number of facts
that will be required in the proofs of the results of the Introduction. From the
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point of view of continuity, you can move directly to the following section,
returning here only when you need a specific result.

(a) Fractional Laplacians. Details and proofs related to the claims we are
about to make can be found, for example, in Stein (1970) and Yoshida (1980).

The fractional Laplacian A, has a natural definition via Fourier transforms.
In particular, for a Schwartz function ¢ on :¢ we have

(2.1) (8.8)(p) = —27*/2Ipl*$(p).

An immediate consequence of this representation, plus Parseval’s equality for
inner products, is the following integration by parts formula, which will be
crucial in a number of the calculations to follow:

(2.2) fdeAaﬂ(b(x)lz dx = —fmd¢>(x)Aa¢>(x) dx.

A first principles calculation shows that the Green’s function GO of (1.17)

satisfies G%(p) = 2°/?||pl|”® for all d and for all a € (0, 2], so that an immedi-
ate consequence of (2.1) is that G? is the fundamental solution, in the
distribution sense, of the equation —A_u = 8, where & is the Dirac delta
function. That is, for every ¢ € 7,

(2.3) fmd(—AaGg)(xm(x) dx = ¢(0).

Fourier inversion [see, e.g., Gelfand and Shilov (1964) for details] then gives us
the following formula:

2.1 FormuLA. Assumethat a = 2,d = 3,ora € (0,2),d = 2, 0or a € (0, 1),
d = 1. Then the Green’s function G? is a distributional solution of the
equation —A_u = 8, and is given explicitly by
GO(x) = cq ollxl*77,
where the constants c; , are as given at (1.19). Note that in the cases
a=d=2andd =1, a > 1, the definition (1.17) leads to G = .

At this stage we note the following useful fact, whose proof is an immediate
consequence of either carrying out the convolution integral or, more readily,
looking at Fourier transforms:

2.2 UseruL Fact.  Suppose d > a + B. Then G+ G(x) = G2, 4(x).

Another Fourier argument gives that for all A > 0, the equation
(2.4) (—A, +NDu=5
is solved by G2. In this case, however, there are no restrictions on the values

of d and «. For general A, the Green’s function is somewhat more complicated
than for the case A = 0, and it is not generally possible to give its explicit form.
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Given the general structure of Green’s functions, the following lemma will
be of considerable importance to us in obtaining many of the bounds we shall
require later. The proof is straightforward. As usual, C is a generic constant
that may change from line to line.

2.3 LEmMa. Let U(x): Re > R satisfy |U(x)| < Clix||™? for some y <d.
Let f and f. be as in Definition 1.1. Then

CIIxII Y, if llxll = 2,
WO L= comr, il < 2e.

(b) Density processes. In this section we shall show that the two represen-
tations of density processes—as a Gaussian process on R X ./, and as a
solution of an SPDE—are consistent, as well as tidying up an important
technical point for the latter. At the same time we shall make certain that all
factors of V2, which are inconsistent between various presentations, are
consistent here.

The technical point, for which we are grateful to a careful referee and
Associate Editor, relates to the test function ¢ € ./, appearing in the SPDE
(1.7). As pointed out in Dawson and Gorostiza (1990) [see also Dawson,
Fleischmann and Gorostiza (1989)], unless a = 2 it is not generally true that
¢ € ./, implies that A_¢ € .. (The problem is with decay at infinity.) Thus
the terms on the RHS of (1.7) are not well defined. A way around this problem
involves introducing the spaces

(28)  Co(M) = {9 € CMY): Tim d(x)(1 +1x1)” = 0},
p > 0, with norms

(2.6) 161, == sup lp(x)(1 + =)

reR?

For us, one of the main properties of these spaces is that if p > d/2 and, in
the case a < 2,if p <(d + a)/2, then ¢ € ., implies A,¢ € C, ;. Denoting
the dual of C, , by C, ,, and equipping it with the dual norm designated by
0-1_,, we have under the same conditions on p, that

A€ C, o(RY) € £2(RY) € C) o(RY) © .

Now note that the Gaussian processes n, and W,, are defined, respectively,
by the covariance functions (1.5)-(1.6) and (1.9), as ./;-valued random vari-
ables. However, since ., is continuously, densely embeddable into C 0(ERd)
it is an easy -2 2 calculatlon to check that for the values of p given above both
n, and W, have unique extensions to C, ((5t¢). Thus, in view of the above
paragraph, both n,(A_¢) and W(A, /2¢>) are well defined for ¢ € . for
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p > d/2 and, additionally, p < (d + @)/2 if a < 2. These facts can be used to
make sense of the RHS of (1.7) and similar equations.

This approach has been formalised by Dawson and Gorostiza (1990) (Defi-
nition 3.1), who have used it to introduce the notion of a generalised solution
of the SPDE (1.7). We refer the reader to their paper for details. What is
important for us is that we can now formulate the following result, which,
when « = 2, and when the SPDE is replaced by (1.10), is essentially Theorem
5 of Martin-Lof (1976).

2.4 THEOREM. The zero mean Gaussian process n{$), t = 0, ¢ € ./, with
covariance functional given by (1.5) and (1.6), is a generalised solution in
C((0,%), .4 of the weak SPDE 7(¢) = n(A,$) + V2W(A, ), with n, a
Gaussian white noise on R?, and W a Gaussian white noise in space-time.

Proor. In view of the covariance structure of W given by (1.9), all we need
show to prove the theorem is that for ¢, ¢, € /7,

(2.7) E[(%)(%) a m(A"‘l”jl)H(%)(‘/fz) — (A ¥s)

= 205 A1) [ (Aa/othi(®))(Aajatho(x)) ds,

where the terms involving fractional derivatives should be understood in terms
of the extension described above, with p chosen appropriately.
The easiest way to do this is to extend 7 to a (4 X .#4)-valued distribution

by setting
n(e x0) = [ (W)b(2) dr.

Denoting the (time) derivative of ¢ € ./, by ¢, the SPDE in question then
becomes, in terms of distributions, n(—¢ X ) = n(¢ X A ) + V2 W(¢ X
A, ,5¥), while (2.7) is also appropriately changed. For ease of notation, con-
sider only the case ; = ¢, ¢; = ¢b,. By (1.5) the left-hand side of (2.7) thus
becomes

E[n(¢é x v+ x A )]

28)  =2[[n(d(s) x¥(x) + ¢(s) X A ¥(x))] drds

w

x [ _pi(xdy)[n($(5) X 9 (3) + 6(8) X A4 ()] at.
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Recall that for a transition semigroup S, with generator A and € Dom(A),
we have (S, — )y = [§S; Ay ds. Hence, for ¥, ® € ./ X ./,

[ dx¥(s,x)SA.D(t,x) dsdt
s<t

0P(u,x)
—[ dx V(s, x) S A, ——— dsdt du

— [ dx¥(s,x) S,‘“)sAa———’—dt dsdu

s<u

Il

= —f dx ¥(s, x)(S("‘) - )-j()—(aujﬁ dsdu,

s<u

which, on rearranging, becomes

oP(¢, x)
f dx ¥ (s, x)S(“)(A L(8,x) + 0 dsdt = —f\If(t,x)QJ(t,x) dtdx.
s<t

Putting ®(¢, x) = ¢(¢) X ¢(x), V(¢ x) = A P(¢, x) + (3D(¢, x)) /9t and substi-
tuting the above into (2.8), we obtain that

E[n(¢ x v+ xA4)]" = —2[(A D(t,x) + ia';’ﬂ)cb(t,x)dtdx

= —2[#* ()Y ()8 (=) dr .

Now apply the integration by parts formula (2.2) to see that this is precisely
the variance of V2 W, regarded as a space-time white noise, evaluated at

¢) X Aor/2l[/'

(¢) Moment formulae. The moment information of this subsection will be
crucial in virtually all our proofs, including those that are of an essentially
stochastic analysis nature. Despite the fact that at first sight they seem to be
rather complicated, their compact form is in fact a further indication that the
Wick renormalisation inherent in the definition of vy, , actually has a substan-
tial simplifying effect.

We need a little notation to start. Fix 2> 1, m > 2, and consider a
(Feynman) graph based on m distinct vertices, with % distinct legs growing
out of each vertex, and legs paired in such a way that no two legs from the
same vertex are paired together. The totality of such graphs is denoted by <,
and each graph can be described by sets of links of the form {L =
((vy, 1), (vy, 1,))} which describe the vertices v; and legs I; that form the joins
of the graph. We can now state:

2. 5 ForMULA. Let the approximate ILT, v, (, $), be defined as in Defini-
tion 1.1 for k > 2 and t > 0. Then v, , € c(o, T], ) for every £ > 0 and
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0 < T < . Furthermore, for every ¢ € ./, and even mk > 2,

(29) E(yk,e(t’ ¢))m = Z I(G)7

Ged, ,

where

I(G) = f{LI;Iprtvl,ll—tvz,zzl(xUl,11 - xvzvlz)}

(2.10) m B

xT1 {¢(xi,1) ITf(x ;- xi,l)}’
i=1 Jj=2

and the integral is to be taken over all the mk ¥'s in the range [0, t] and the mk
x’s in R, If mk is odd, then E(y, (t, o)™ = 0.

Note that the x’s in (2.10) are at first indexed via the links and later by a
simpler ordering that is independent of the graph. (In both cases, the first of
the two indices describes a vertex, and the second a leg growing from that
vertex.) Although at first confusing, this will turn out to be a useful notation
later on. The proof of (2.9) comes from Glimm and Jaffe (1987). The continuity
follows directly from the continuity of 7, and the simple form of y, , for &
strictly positive.

Whereas Formula 2.5 will generally suffice for proving convergence of finite
dimensional distributions, we shall also require the following for tightness
calculations.

2.6 FORMULA. For every ¢, ¢ € ., and m,n > 1 such that (m + n)k > 2
is even,

(2.11) E(ys,o(t,8)) " (va,5(s,9))" = . ; (@),
where

(G) = f{Lerlc;ul,ll_tuz,lz|(xvl’ll - xvz,lz)}
m

(2.12) X

1

k
{¢(xi,1) ﬂ fe(xi,j - xi,l)}
Jj=2

1

n k
X n {d’(xi/,l) I] fo(xy o= xi',1)},
i'=1 Jj=2

and the integral is to be taken over [0,t] for ¢, if v € [1, mk] and [0, s] for ¢,
with v € [mk + 1,(m + n)k]. Again, if (m + n)k is odd, then the mixed
moment vanishes, and, as in (2.10), there are two indexing systems operating
at once. ’
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3. The stochastic analysis approach for £ = 2. The main aim of this
section is to show that many of the main results of the Introduction result, in
a rather natural fashion, from a basic evolution equation describing the
pairwise ILT vy, .. Although this equation makes the proofs somewhat easier
in this case, there is no free lunch, and some of the moment calculations
required for the general case appear here as well. So as not to make the paper
overlong, and unnecessarily repeat calculations, often in this section you will
be referred to the next one for details of a specific calculation. Nevertheless, we
still feel that the evolution equation based approach has much to offer in terms
of adding insight into the results that in general arise from an approach based
purely on rather formal moment calculations.

Our first task is to establish the evolution equation (1.18) (Theorem 1.2) for
the approximate ILT v, , in the case k£ = 2. Once we have this, we shall
establish the evolution equation for the 2-fold ILT, vy,, when this exists, along
with a fluctuation result and the renormalisation results of Theorem 1.5 when
it does not.

(@) Proof of Theorem 1.2. By Theorem 2.4 and the SPDE representation
(1.7), the real-valued process 7,(¢) is a continuous semimartingale for every
¢ € /. Either a straightforward calculation or a reliance on the notes of
Walsh (1986), shows that the associated increasing process is given by
(n(@)e = 2llA, 5%t = 2t[5a(A,, ,¢(x))? dx. It therefore follows from Itd’s
formula for continuous semimartingales that for ¥ = ¥(¢,x) € C%(R,x R?)
and ¢ € 7,

(6, m(8)) = W(0,m0(9)) + [Wils,m,(8))ds + [¥(s,m,(6))n,(A,9) ds
(31) V2 [ W(5,m(9))A0 20(y)W(ds, dy)

+ 1A, 4017 fo W, (s, m,()) ds,

where the subscripts on ¥ refer to the obvious partial derivatives. Fix ¢ € .
and define the nonanticipating functional ¥: R, x R¢ - R by

¢
(32) W(t,x) = x[ n.() ds.
Now fix ¢ € ./, and apply (3.1) to obtain

[n($)ny(#)ds = ['n,($)n, () ds + [*[n,(4)n,(A,4) duds
(3.3) 0 0 0’0 |
t S
V2 [ [ 19) - Ao jab(y) duW(ds, dy).
Extend (3.3), by linearity, to n X 7 acting on functions of the form

LN (¢, X ¢, in A,. A standard approximation argument (see, for example,
the proof of Theorem 2.1 in AFL for a similar argument) then extends (3.3) to



1088 R.J. ADLER AND J. S. ROSEN

all of /. Apply this to functions of the form ¢(x)y(x — y) € Ay, b, ¥ € A
and ¢ symmetric, to obtain, after rearrangement,

[lds [[du [, #(x)Ab(x =) (0. X 0)(dx,dy)

= [Yds [ | $(x)d(x = y)(m, X n,)(dx, dy)
(3.4) 0 REXR

- flds [, #Cx)(x =)0, X n)(ds,d)

—ﬁj;)t/;)sfmdxmd‘f’(x)Aa/z*ﬁ(x — y)ny(dx) du W(ds, dy),

where we have allowed ourselves the luxury of writing distributions in mea-
sure notation.

Subtract from each term in (3.4) its expectation. This has the effect of
replacing each of the n X 7 terms in (3.4) by their Wick order :n X n:. The
stochastic integral term, however, has expectation zero, so that it remains
unchanged.

Finally, replace ¢ in the resulting equation by G * f. [To justify this, we
must first check that G} * f, € C, , for an appropriate p, so that all terms in
(3.4) are well defined. It is not hard to convince oneself that, in fact, G2(x) is at
most O(|x||"?"*/?) for large x|l [It is also not too hard to prove. The
argument requires the kind of bounding that comes out of the integration by
parts arguments used in Section 5—cf. the argument leading to (5.8). If & > 1,
integrate by parts d + 1 times, as in the argument leading to (5.8), while if
a < 1, after d such integrations work separately on the regions where p, is
less than or greater than 1/||x|l. The case a = 1 can be handled via explicit
formulae. It thus follows that if we choose p € (d/2,(d + «/2)/2), we are
justifying in replacing ¢ by G} * f..]

Now use the relationship (— A, + A)G2 * f, = f, [cf. (2.4)] and the definition
(1.16) of v, , to obtain (1.18) and so the proof of the theorem. O

(b) Theorem 1.3—existence of the ILT: k = 2 and d < 2a. We now wish
to establish Theorem 1.2 for the case k& = 2; that is, that y, ,(f: ¢, ) has a
well defined #? limit as ¢ » 0 and that the limit is independent of f. It
clearly suffices to show that

_)%il;l_)OE{yz,E( fit,d)ys,s(f:t, b))} = constant,
and that if f#f, thenlim, o Ely, (f:¢,¢) — v, (f': 8, #)|? = 0 for every ¢
and ¢. We shall show only the first of these, since the second follows via similar
calculations. .
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Using the symmetry properties of p?, it follows from Formula 2.5 that the
expectation above is given by

(3.5) [, oo P 20PE (3 0) £i(x = ) fi(z = w) () 8(2)

+f[0 tr,fwdpfi—m(x’ w)pi_u(3,2) fu(x—y) f3(z2 = w)d(x)d(2),

where we have left out the eight differentials to save space.

To show that each of these integrals has a finite ¢, 6 — 0 limit, we can use a
dominated convergence argument. Consider the second integral. The first is
similar, but a little more complicated. Let

D, s(x,2) = [

[0,¢]*
st(x _y) fa(z - UI) dydw.

Since for all x # z the function D, ;(x,2) converges to a well-defined limit
when ¢,8 — 0, we need only show that D, ,(x,2z) is bounded by a function
which, when multiplied by ¢(x)¢(z), is integrable. It then follows that the
second integral in (3.5) has a limit, as required. To do this, extend the range of
the time integrals from [0, ¢]* to |* and then perform these integrations.
Then for some constant C,

(3.6) drds du dv fm%plc;_vl(x,w)pﬁ_u,(y,z)

D, 5(x,2) < C_/;nszf(x, w)Gl(z,y) f.(x —y) fs(z —w) dydw

(3.7) = Cf Gl w)fy(z—w)dw[ GXz)f(x~y)dy

< Cllx — 2||**~?,

where the last line follows from Formula 2.1 and Lemma 2.3 as long as « # d.
[For the a = d case, see the next section.] Since the integrability problem for
llx — 2|2 Dp(x)p(z) is at the origin, it is now immediate that 2a > d is
sufficient to ensure integrability. O

In fact, one can now go somewhat further and show that the .2 limit,
established independently for each test function ¢, can be extended to define
v, as a proper distribution. The proof of this fact is based on a result of
Martin-Lof (1976) (Lemma 4) for Gaussian distributions and follows almost
exactly as in the proof of the last part of Theorem 2.2 in AFL.

(c) Theorem 1.4—the evolution equation for ILT: k = 2 and d < 2a. We
now wish to show that if d < 2a, we can send ¢ — 0 in every term in (1.18)
and. so obtain the evolution equation described in the statement of the
theorem. The simplest way to do this is to show that each term has a well
defined -2 limit as ¢ —» 0. We have already treated y, (¢, ¢) itself in the
previous subsection. We now claim that each of the first three terms on the
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right-hand side of (1.18) can be handled similarly and that this is standard
enough to be left to the reader. [To see that this claim is justified, you should
either look at the corresponding argument (albeit for a special case) in AFL or
wait until you have mastered the moment calculations of the following section,
after which this one will seem easy.]

Since four of the five terms of (1.18) are now -£2 convergent, the same
must be true of the fifth; that is, the stochastic integral term. (A priori, this is
a harder term to handle than the others, but this observation makes a separate
analysis of it unnecessary.) This is enough to prove the result. O

(d) Theorem 1.5—renormalisation: k = 2 and d > 2a. Consider the evo-
lution equation (1.18) describing vy, , and the power and logarithmic renormal-
isations of Theorem 1.5. The first claim that we make is that if we divide any
of the first three terms on the right-hand side of (1.18) by the renormalisation
demanded in Theorem 1.5, then its .2 limit, as ¢ — 0, is 0. We leave this to

the reader.
This being the case, we need only concentrate on the stochastic integral

term, which we denote by
(3.8) I(e) = Zﬁf()tf()sfmdnu(Aa/zG;‘* f.(x = )b(+)) duW(dx, ds).

Note that I,(¢) depends on both f and ¢, as well as A and «, although we do
not explicitly display this in our notation. It is, of course, a martingale.
Now let

Afe) = (I(e)
(3.9) =8/’ dsf/f MufBay2Gx fu(x = )6())

X My BaeGa* fo(x = )$(+)) du, duy dx

be the predictable, increasing process associated with I,(¢) and note that the
increasing process associated with the W,*(¢) of (1.20) is t*/5a¢*(x) dx. Then
Theorem 8.3.11 of Jacod and Shiryaev (1987) implies that in order to prove
Theorem 1.5, it suffices to show that when d = 2¢,

A(e)
In(1/¢)

as ¢ — 0, where 6% = 8¢ ,s,, and when d > 2a,

(3.10) —p 1262 fmd¢2(x) dx

(3.11) E{Az;(f%} —p tZB,%f H(x)dx

as & = 0, where B? = 8/3a(G2 * [+ f)x)G(x) dx.

In order to establish (3.10) and (3.11) we shall show that the expectations of
the left-hand sides converge to the expressions on the right and then that the
variances of the left-hand sides converge to zero. This will be enough.
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We start by calculating the expectation of the increasing process A,. With f
fixed and with the properties required in the statement of the theorem, set

(3.12) F(x) =f* f(x) = [ f(x =) f(2)dy
and F.(x) = f, * f.(x) = e ?F(x/¢). It then follows from (3.9) and (1.5) that
EA(e) = 16 ds ["duy [ duy [ A, aGL* f.(x = )9 (0)

X Duy—uf¥1 — Y2) A 2Ga * fu(x = y2)B(y2) dxdy, dys.

Simplify this using the integration by parts formula (2.2) and note that G
solves the equation (—A_, + A)u = §, to obtain

EA(e) = 16['ds [ duy [ duy [ P = 32) () 9(3)

X [G2 % F.(y, — ¥2) — AG2 % G F,(3, = ¥3)] dy1 dys.

Since this is true for all A > 0, it should also be true for A = 0, as long as the
limit is obtained in a continuous fashion. We claim, and leave it to the reader
to check, that this is in fact the case. Thus, setting A = 0 in the above we
obtain

EA(e) = 16'ds ["du [ "do [ p(3n)GE* F(3)
X¢(y1 +¥2)(¥2) dy1 dys
t s s—u
=1 ) O« F.(y)d
6 ds [(du [ dv [ ©)Pu(y)G*F(7) dy,
where ®(y) = [redp(y + x)¢(x) dx. Note that
(3.13) [P dv =G ~ [ () dv,
0 s—u

and substitute into the last line above, obtaining two terms. The first of these
is

16['ds [ du [ @(2)G2()G* F.(y) dy
(3.14) =82 [ 0(»)GI(5)G* F(y) dy

=8t252““’f ®(ex)GO(x)G2 * F(x) dx,
md

where the last line follows from the scaling relationship inherent in For-
mula 2.1.
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Cast 1. Assume now that d > 2a. Since, by definition, ®(0) = [$%(x) dx
and ® is Holder-continuous of any order 8 € [0, 1], it is easy to check that the
last integral in (3.14) converges to B?[¢%(x)dx as ¢ — 0.

Furthermore, we claim that the second term arising from the difference
(3.13) is o(¢2*~?) and therefore not important. Again, the details are similar to
calculations you will find in the following section. This, of course, implies that
when d > 2a, '

At
E{ez—cff%} - t2B?2 fmd¢>2(x) dx

as ¢ — 0, which is almost (3.11). To complete the proof in the case d > 2a, we
need only show that the variance of the above ratio converges to zero.

The same considerations that lead to Formulae 2.5 and 2.6 show that the
variance of A,(e) is given by the sum of two terms, each one of which is
bounded by an expression of the form

C.I[‘O’tlﬁxfmwp'tl‘sﬂ(xl - yl)pltz—le(xz —¥2)d(x1)d(x3)D(y1)d(y2)

X Gc? * F (% — x2)Gc? * F,(y, — y2) ds, dsy dt, dt, dx, dx, dy, dy,,

where once again we have integrated by parts, used (2.4) and glibly taken
A =0. To simplify this, add a factor of exp(—|¢; — s;| — |£; — s50) to the
integrand, extend the time integrals from [0, ¢]* to :#*, and perform the time
integrations to obtain a bound of the form

C[mwGi(xl - yl)G;(xz — )Gl % F(x; — xz)Go? * F(y1— ¥2)
Xp(x1)d(x2)d(y1)d(y2) dxy dxy dy, dy,
< Cf (Gi+GIxF(y = 2))"d(y) drdy

= CGL* Gl GY* GO+ F, x F,(0),

where the last line follows from the fact that for any symmetric function g(x),
Jg*(x) dx = g * g(0) and the constant now includes sup,|é(y)| and [yap(y) dy.

Set H.(x) = F, * F(x) and note that H, satisfies the usual scaling relation:
That is, H.(x) = ¢ %H(x/e), with H = H,. Again applying the equivalence
between [g%(x)dx and g * g(0), rewrite the last line of (3.15) as

(3.15)

| GExGY(x)G* G2« H () dx
R

= Gl+Gl(x)G2+* G2+ H (x)dx + O(1),
lxl<1
where the O(1) comes from the fact that H,_ has bounded support.
Recall the Useful Fact 2.2, and the fact that GX(x) < G%(x) for all x implies
that C|lx||>**~¢ serves as an upper bound for G2 * G2(x). These bounds, along
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with scaling, yield that the first term above is bounded above by

(3.16) gt [

llxll<e™

1||x||2“—d( [ Je + I H () dy).

Once again, we must split the argument, this time into three separate cases.
First, assume that d > 4a. Then the integral in (3.16) is convergent and thus

var{w} < Ce4,

EZa—d

which obviously goes to zero as ¢ — 0. If d < 4a, then the integral in (3.18) is
of the order of

/ ll* 3¢ dx = O(e97%),
1

<l|lxll<1/e
so that in this case,

A,(e
2(d - 2a)
var{—EZQ_d } < Ce @,

which, since we are still in the case d > 2a, also goes to zero as ¢ — 0. If
d = 4a, then the integral in (3.16) is of order log(1/¢) and the same conclusion
holds. This concludes the case d > 2a.

Case 2. It remains to treat the case d = 2q, in order to complete the proof
of Theorem 1.5. The primary difference in this case is, obviously, in the
treatment of the last term of (3.14). Since d = 2a, there is no power of ¢
. before the integral. What one has to show is that as ¢ — 0, the integral itself
has a logarithmic singularity. The second part of the argument, that is,
showing that the variance term converges to zero, is as in the previous case.
Details are left to the reader. O

(e) Theorem 1.6—fluctuation theory. We claim that the fluctuation result
of Theorem 1.6 can, for the case k& = 2, also be proven from the evolution
equation of Theorem 1.4, much along the lines of the previous proof. To be
honest, however, we should note that we have not carried out the detailed
calculations necessary to justify our claim. Since the previous proof, treating
the divergent case, serves the didactic role we required of it, and an alternative
proof for Theorem 1.6, valid in greater generality, follows in Section 5 below,
there did not seem to be sufficient justification to do so.

4. Proof by moment analysis. In this section we shall prove our results
relating to the .2 convergence -of the ILT when this occurs, and the weak
convergence of the renormalised ILT when .#? convergence fails, via the
method of moments. The following section will treat the fluctuation
result—Theorem 1.6—for the former case. -
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(a) Proof of Theorem 1.3. We assume that a« > d(k — 1)/k and have to
prove the .#? convergence of the approximate ILT Y, It suffices, of course,
to show that Ev, .y, , converges to a finite constant as &,7 — 0.

Let = = (y,...,m,) represent a permutation of (1,..., %) and let &, be
the collection of all such permutations. Then from the definition (1.16) of
Yr,e = Yr,{[: t, ) and the moment formula (2.11) we have that

k
v hn = L f[o oy (E0P D) TTRG (2 = 92)

k k
X gfs(xi - xl) f‘r](yi _yl) ];-_[1 dsi dtt dxi dyi‘

(Note that here, as in similar formulae below, the subscripts following the
various products are not purely dummy subscripts, that is, the ith subscript of
each product must match with the ith subscript of the others.)

Change variables in the above as follows: X, =x, —x,, ¥, =y, — ¥, i =
1,...,k, x =x, and z = x; — y,. Note that x; and ¥, are both identically zero
and so their appearance below is as dummies. Nevertheless, they serve to keep
the formulae relatively tidy. Then Evy, .y, , is equal to

E [, el )¢<x—z)np.t a2+ E =T,

‘rrE.@
k k k
X I_Ifg(fi)f,,(ii) dxdz [ | d%; dy; [ ] ds, dt,.
ie2 i=2 i=1
Setting ®(2) = ¢ * $p(2) = [Pp(x)Pp(x + z) dx and
(4.1) GO(x) = -[ dr[ dspi_,(x) = [ dr[ pX(x) ds,
we obtain
k
E‘Yk,s‘}’k,n = E Zk/ 2kq)(2') I_.[ Gc(vt)(z + ‘fi - y‘n’,)
Te, R i=1
(4.2) k
k k
X Qfg(fi) fn(yi) dz 132 dx; dy;.

Note that so far we have not used the assumption‘ d < ka/(k — 1), so that
(4.2) is valid in general. Now, however we shall use it. Note first that, for each
l = ]. k,

mZkG‘S‘t)(z + ‘fi _5,"1') fe(fi) fn(yz) dxi dyl - Gc(yt)(z)
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as &,n7 — 0 and that

const - [|z]|*~¢, fora <d,

4.3) G te'Gl(2) <
(4.3) « (2) < te'Gy(2) < const - log(1/llzll), fora=d=1,2,

where the last inequality is a consequence of Formula 2.1 for & < d, Formulae
2.3 and well-known properties of Green’s functions for the cases o = d = 2
and a = d = 1. Dominated convergence then gives us that, under the condi-
tion d < ka/(k — 1),

. _ k @) k
(4.4) Jim By, v, = k12 fmd(Ga (2))"®(2) de.

This proves the #? convergence of Theorem 1.3. What remains to be proved
is that the limit of vy, ,(f: ¢, ¢) is actually independent of f. This is left to the
reader and can be shown by noting that if f and f’ are two functions in Cg
satisfying the conditions of the theorem, then

!i_l}(l) Elye, (f:t,¢) — v, (f": t,d)> =0

for every ¢ and t. The calculations are similar to those we have just carried
out. O

(b) Second moment calculations for the .£% divergent case. In the follow-
ing subsection we shall prove the convergence of the univariate distributions
required to establish Theorem 1.5. The argument will proceed by first showing
convergence of all moment sequences and then noting that the limit moments
are precisely those that characterise the limit process of the theorem. Since the
limit process is Gaussian, the second moments play a central role in the
argument.

Our starting point will be (4.2) with & = 7, so that we need to study the
terms appearing there a little more carefully. We start with the useful inequal-
ity [cf. (1.9)]

pi(x) = fmdBXP(—ipx — t27%/%pl|*) dp

(2m)?

(4.5) e
< const /;Rdexp(—t2 lpll*) dp

= const ¢t ~¢/¢,

the last line following from a scaling argument.

Note that since we are now interested only in the case a < d(k — 1)/k, we
have that d > a, and so the Green’s function G is well defined for all A > 0
and when A = 0, it has the explicit form G2(x) = cd’allxll"‘_d. We can therefore
write ’

(4.6) [ipe(x) ds = G2(x) ~ [ pi(x) ds.
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Note that (4.5) implies

(4.7 [ p&(x)ds < const ¢17%/,
t

Since it is also trivially true that [pZ(x)ds is also bounded above by G2, it
follows that for any y € [0, 1], we have ,

o (G2(x))
(4.8) [t p;(x) ds < const 7@ /a—1IX1—) °

Fix 8 > 0, and use the definition (4.1) of G, (4.6) and (4.8) to see that, for
any y € [0, 1],

GO (x) = (j:dr + [:dr)(/:ps“(x)ds)

= 0(8)G(x) + O(87 =X/« D)(G2(x))’
+(¢t —8)GO(x).
We are now in a position to tackle the following version of (4.2):

k
Ey}.= L 2"[o(2)[1GY(z +7 -7,
ﬁegk i=1

(4.9)

(4.10) \ \
X Qfe(fi) f.(¥;) dz [=I2 dx; dy,.

We shall show that if we replace G in this (divergent as ¢ — 0) expression
by (4.9), then the main part of the divergence comes from the last term in
(4.9). Furthermore, we shall identify the rate of divergence. To do this
precisely, consider the following term, one of many that come from such a
substitution:

Y (t- 6)k2kf d(2) ﬁGf(z + X; —y,,)
k i=1 !

- R
(4.11) <%

k k
X l:,[zfe(:zi) f(¥;) dz 1:12 dx; dy;.

We shall treat this by treating the two cases a = d(k — 1)/k and a <
d(k — 1)/k separately, and then in each case breaking the z integral in (4.11)
into the two integrals corresponding to ||z|| < 4¢ and ||z|| > 4e. We start with
the case @ = d(k — 1)/k and commence by recalling from Formula 2.1 and
Lemma 2.3 that

Cllzl*™?, if llzll = 4e,
Ce* ¢, if ||z]| < 4e.

Since we have a = d(k — 1)/k, it is easy to see that doing the full %;, y,

ffe(u)Gf(z + u) du < {



ILT FOR DENSITY PROCESSES 1097

integrals in (4.11) and integrating z over the sphere ||z|| < 4¢ yields a result
that is O(1).
In the region ||zll > 4¢, we replace GJ(z + X; — ¥, ) by G2(2) for an error of

”"Ei - ,)_'.,,-l”

— _ ja-d -d
llz + %, = 3, II°7° = 2117 < CW_‘QT{,

which, after integration, also yields a factor of O(1). (Note the importance here
of the fact that ® € ./, which ensures the convergence of the integral.)
Therefore it remains to consider what happens after this replacement. Since
the x; and y,. integrals each give a unit contribution, all that we need to
consider is

4zll>45¢’(z)(G3(z))k dz.

Recall that @ is rapidly decreasing at infinity and that it is C*. To make our
lives a little easier, we shall also assume that it has compact support, which we
shall denote by A. This assumption makes no intrinsic difference to the
following argument, but makes the notation a little easier. Thus, throughout
its support we have ®(z) = ®(0) + D(z), where D(z) < C||x|| for some finite
C. Consequently, the above integral is equal to

k k
cp(o% » I,(2)(G(2))" dz + 4 “>41A(2)D(z)(03(z)) dz.
Since G? is given by Formula 2.1, it is immediate from the fact that o =
d(k — 1)/k, that is, 2 = d/(d — «), that the second integral is O(1), while the
first is equal to

I,(z 1
®(0)ch [ i(j} dz = ®(0)Ck s, log(——) +0(1).
izl e 2]l ’ &

[The O(1) term comes from the boundedness of A. Recall that s, is given by
(1.19).]

To complete the calculation of Ey,f,e for this case we need to consider the
effects that the other terms in (4.9) have on (4.10). It suffices, for the moment,
to take y = 0 in (4.9). It is then easy to see, relying on the above calculations
where necessary, and summing over the k! permutations of (4.10), that

Ey}, = 2*k!(¢ — 8)"®(0)ck .5, log(1/e) + O(8log(1/¢)) + O(8+1-4/),
By sending first ¢ - 0 and then 6 — 0, we thus obtain
Ey;,.
4.12 lim —————
(4.12) c0 log(1/s)

» This completes the case a'= d(k — 1)/k. We therefore now assume that
a <d(k —1)/k and continue, as before, from (4.11). Consider the integral
there, and note that since it is over a finite region, the domain can be taken to
be ||zl < 1, with the introduction of an O(1) error only. Now transform

= 2*R1*D(0)ck .54
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X;/e > x;, y;/e¢ > y; and z - ez. Then use the scaling inherent in Formula
2.1 to see that for fixed x; and y,, the z integral is equivalent to

k
gd—h(d-a) ) q;(gz)_]_[Gf(z + x; _yn-,-)
lzll<e™? i=1

(4.13) . .
X I:I2f(xz) f(y;) dz IJz dx; dy;.

Introduce the function K: (R9)* x (R9)* - R! by

(4.14) K(xq,-- 3 %5 Y15-++>Y) = Zga/ ]_[G (2 +x; +y,,)dz.

Note that the integral here is well defined for almost every x; and y,, and,
because of the symmetry properties of G, is separately symmetric in the x,’s
and y,’s. Recall, also, that in (4.13), x, and y, are actually zero, and have
appeared in all of the above as dummy variables.

Now, following the lines of the previous argument, replace ®(sz) in (4.13)
by ®(0) + O(ez), again relying on the assumed compactness of the support of
® and the fact that it is C*. Then, since a < d(k — 1)/k, the integral there
(i.e., without the initial factor of £) converges for all £ > 0 and so we have that
(4.13) is equal to

gdkd-a) D(0)K(0,29,...,%4,0,¥9,...,5;)

llzll<e?!

k k
X TT7F (%) F(y;) dz T] dx; dy; + o(e47%¢"),
i=2 i=2

Substitute this into (4.11) and also consider the other terms that arise out of
(4.10) from the substitution of (4.9). This time, however, take vy close to 1 in
(4.9). Then it is easy to see that

EYk €
b!l_l;%m 2ktk<l>(0)/K(O,x2,...,xk,O,yz,...,yk)

(4.15) . .
X Qf(xi)f(yi) dz I=_I2 dx; dy;.

This completes the second moment calculation for the case a < d(k — 1) /k.
0O

Before moving on to higher moments, it is worth noting that (4.12) and
(4.15) give the appropriate variances for (1.21) and (1.22). In the former case
sthis is immediate, once one takes into account (1.20) and the fact that
®(0) = [¢%(x) dx. In the latter, note that there are (k£ — 1)! permutations in
the &, of (4.10) with y, =y, to give the first summand in the B of (1.22),
while the other (¢ — 1)(k — 1)! terms lead to the second summand.
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(¢) Proof of Theorem 1.5—univariate distributions. In this subsection we
shall tackle the hardest part of the proof of Theorem 1.5, in that we shall show
the convergence of univariate distributions in (1.21) and (1.22). Multivariate
distributions will follow in the following subsection and tightness after that.
These will complete the proof of the theorem [cf. Walsh (1986)].

In view of the fact that we claim a Gaussian limit, it clearly suffices to show
that for every even n = 2m,

2m
(4.16) Eyp .= ( ), (Ev2.)" +o((EvE.)"),

where o refers to ¢ —» 0, whlle forodd n = 2m + 1,

: Yk, e "
4.1 ImE| —————] =
(4.17) , 0 ( log(1/¢) ) 0
if a =d(k—1)/k or

. yk,e "
(418) llmE(m) = 0,

e—0
if a <d(k — 1)/k. We start with (4.16).
To evaluate the left-hand side of (4.16), we start with Formula 2.5, which,
in the notation of Section 2(c), means summing over all graphs G € &4, ,,
expressions of the form

I(G) = 2"/ [ T] #(2,) [T GP(2, — 2 + %, = %:,1)
velG LeG
(4.19) .
X TT I fu0,0),

where the passage from Formula 2.5 to this result involves integrating out the
time variables as in (4.1) and performing the same type of substitution
required to get to (4.2). The indices v, v and v relate to vertices of the graph
G, while I and [ refer to legs. Thus, for example, L = (v, 1), (T, 1)) is a link
from the /th leg on the vth vertex to the /th leg on the Uth vertex.

It is immediate from the form of (4.19) that if G is made up of M

disconnected components G, ..., G,,, then
M

(4.20) I(G) = TT1(G).
i=1

The following important stage of our proof is an immediate consequence of
this product formula, (4.19) and (4.10) and counting graphs:

4.1 LEMMA. Let n = 2m and suppose that the graph G has m disjoint
components, each with two vertices. Then

(4.21) I(G) = (Ev.)"
Furthermore, there are (2m)!/(2™m!) such graphs G in &, ,.
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This lemma shows where the first term on the right-hand side of (4.16)
comes from. What remains is to show that all the remaining graphs in &, ,
contribute the remaining, lower order, term. In fact, it will be sufficient to
show that for any connected graph G with at least three distinct vertices,

(4.22) I(G) = o (Ev2.)"").
To start showing this, for z € RY, let

(4.23) u, (2) = (max(llzl,e)) 7,
so that
(4.24) Ug—a,(2) = cglmin(cq o977, G _o(2)),

the last line following from the fact that we are still in the case a < d(k — 1)/k
so that d > a. Then we have:

4.2 LEMMA. Let G be a connected graph with at least three distinct vertices.
Then

(4.25) 1(6) < Cf TT ¢(2.) T ta-s, (2 = 2)-

Proor. Note first that, by (4.3), I.(G) is bounded above by a k- and
n-dependent, but ultimately unimportant, constant times

k
(4.26) J.(G) = [ T #(2,) T1 Gz, = 2+, =2, ) TT T £,

Note also that by Lemma 2.4, we have
(427) GS* fe(z) < Cud—a,e(z)’ Gc?* fE* fe(z) < Cud—a,E(z)'

We shall use these two inequalities and (4.26) to prove the lemma. Compari-
son of (4.26) and (4.27) indicates how the proof must proceed: We need to
integrate out the x variables in (4.26) by putting them into convolution with
G? and then bound this by (4.27). The main technical problem arises from an
essential asymmetry in the variables in (4.26), for, although everything looks
symmetric, it is important to remember that for the first leg out of each vertex
[i.e., a leg of the form (v, 1)], we have x, , = 0.

Suppose that in the graph G there are no links made up between first legs
of different vertices. Then one can do the x integrals in (4.26) as just described
and so (4.25) follows from (4.26).

On the other hand, suppose that there is a one link between the two first
legs of vertices v and ¥. Then one of the terms in (4.26) is actually of the form
‘GY(z, — z;) and there are no corresponding x terms. All other terms in the
product, after doing all the x integrals, are of the form G * f(z, — z;) or
G f. * f.(z, — z;) (including the possibility that one of our specific vertices v
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and v appears) and they can be nicely bounded, in preparation for (4.25), by
(4627). We now have to provide a similar bound for the term involving
Gz, — z,).

Note, however, that over that part of the integral for which ||z, — z,ll > &,
we can replace GJ(z, — z;) by u,_, (2, — 2;) for the cost only of a multiplica-
tive constant. Therefore we restrict attention to ||z, — z;ll < e. Cons1der fixed
2, for the moment and bound all the u factors 1nvolv1ng z; by

(428) ud—a,s(zv - Z;) < Cud—a,s(zv - zv)'

Once this has been done, the only place z, still appears is in G2(z, — z,).
However,

[Gf(z,, —2;)dz,dz; = C Iz dz

llzll<e

— ng—(d—a)
= fud_a(z,, — 2;)dz, dz;.

Thus, u,_(z, — 2;) can be used to replace G(z, — z,) throughout the inte-
gral. Now use (4.28) once again, this time to replace the z, factors lost above,
and the lemma is proven also for this case. A similar argument holds if more
than one set of first legs match up and this completes the proof in general. O

The first step towards exploiting Lemma 4.2 is the following lemma. A
collection of vertices and legs, {v;,[; 1,1; J}X; in G is called a chain of length
N if all the links L = (v;,1; 5), (0,1, 0;41.0), i = 1,..., N — 1, appear in G.
The same collection, but without either one or both of the legs I, ,, Iy 5, is also
a chain. If the link (v, !, ;),(vy, Iy ) also appears in G, the collection is
called a cycle of length N. The numbering system used in this definition, is, of
course, incidental to the definition.

4.3 LEMMA. All connected graphs G containing at least three distinct
vertices also contain a cycle of length at least three.

Proor. Denote the vertices of G by vy,...,vy, N > 3. Let v, be linked to
vy. Since G is connected and there is at least one more vertex, not all legs
issuing from v, can be connected to legs of v,. Let one of the legs of v, be
linked to a leg of vs. If v, is linked to v,, we are done. If not, the same
argument shows that not all legs issuing from v4 can be linked to those of v,
and so there must be a link between vy and some v,. Continuing in this
fashion, we find that the finiteness of the graph implies there must be a cycle
of length at least three. O
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We shall also require the following technical result.

44 LEMMA. Letn>1,B8>0,y=nB —(n— 1d and let u,, . be as de-
fined at (4.23). Let ¢, ..., d, be a sequence of functions from ;. Then

N 1, if y <O,
(4.29) fmndljl%(zi)uﬁ,e(zi —2_4)dz;<C (10g(1/8))n_1, if v = 0,
- e, if y >0,

where the constant C depends on the ¢; and we set z, = z,,.

Proor. We commence by showing that we can replace each of the ¢; of the
lemma by the indicator function of the unit sphere. )

Let M = (my,..., my) be an integer lattice point in R¢, with each compo-
nent m, even and M,,..., M, be n such points. Set C; = {z = (2,...,2,) €
M?: |z, < 1} and note that R? = U (M + C,), where + is the usual set
translation. Then the integral in (4.29), which we shall denote by I, is clearly
less than

XMIEM,,( sup d’i(zi))n

sup ( Hf uB,s(zi —2;_1) dz;
M,,..., M, 2,€M,+C,

,,,,, i=1"2z,€M;+C, e,

<CJ] ug (2, — 2z;_y) dz;,
i=1 “Z,'—Z,_lllﬁl

which is what we wanted to show. Now set x;, =2, —z,,i =1,...,n,x, = 2,,
to see that the above (after integrating out x,) is bounded by

C[ g (x)up (%2~ 2)

[lx, <2
X oo uB,s(xn—l - xn—Z)uB,e(xn—l) dxl T dxn—l
= CE_Yf ug (%) ug (%5 = 21)
[lx;ll<2/e
X oo g (X,_q = Xp_g)Up 1(X,_q) dxy =+ dxy_y.

For ease of notation, set x, = x, = 0 and rewrite the integrand above as

iliuﬁ’l(xi —Xi1) = ﬁ (l_[ (up,(x; = xi_l))1/<n—1))'

i=1\j+#i

A generalised Hélder inequality-then gives that

1/n
f I1 (u;;,}(xi - xi—l))n/(n_l)) .

llx;ll<2/€ j+i

I”SCS'YI_I(

€
i=1
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Each of the integrals here can be written as

n-1

n—1
[ T de = ([ wylew
lu;ll<4/e i=1 lull<4/e =

n—-1

A 4 /¢ —Bn /(n—
sC(1+f Pl “du)
1

C(max(1,e~@Fr/=D )71y 2 0,
<
C(max(1,log(1/2)))" "}, ify=0,

C max(1,7), if y # 0,
< _
C(log(1/¢))" ™", ify =0,

which is precisely what we have to prove. O

We can now finally return to the proof of (4.22). Before establishing this
inequality in general, however, we shall first do so under restrictive but
simplifying assumptions that should make the ideas behind the general proof
somewhat clearer.

We shall assume that the order of intersection is even and that G can be
expressed as the union of k/2 subgraphs, G,,...,G, , each one of which is
the union of disjoint cycles. The subgraphs are not necessarily disjoint, in that
they may have vertices, but not legs, in common. Assume also that one of the
subgraphs, say G, contains a cycle of length at least three. We can bound the
contribution to the moments of vy, , from each one of these cycles by Lemmas
4.2 and 4.4.

Note first that by Lemma 4.2 and the product formula (4.20), we have

1(G) = Cf TT () T #a-s, (2, = 2)

k/2

(4.30) -¢f Jl]l(LI;J(MzV))Z/kud_a,E(zv - ))

/2 2/k
<OI1{f I saue -2

LEGj

Where the last inequality follows from a generalised Holder inequality.

To estimate the integrals here, use Lemma 4.4 with 8 = k(d — a)/2. Cycles
G; of length n = 2 give y = k(d — @) — d in (4.29), in which case we have that
the upper bound that arises for each cycle is precisely of the order (in &) of
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Ey} .. If n > 3, however, we have
y = tnk(d —a) — d(n — 1) < in(k(d - a) — d),

since 4n < n — 1 for n > 3 and these are bounds of a lower order. Now add up
all the exponents of ¢ to see that we have established the crucial (4.22) for this
special case.

We now turn to the somewhat more involved general case, which will
complete our task for even moments. Our aim is to divide the graph G into
subgraphs which, if they are not cycles, are at least close to cycles in some
sense. We shall then obtain moment bounds on each of the simpler subgraphs,
as we did for the special case above in which the subgraphs were all cycles. The
construction we are about to describe will in fact divide G into subgraphs
which are cycles with extra chains dangling from some of the vertices.

Let G be a general graph on n > 2 vertices, with % legs issuing from each
vertex. Let C; be a cycle in G containing the maximum number of vertices
available to cycles. (By Lemma 4.3 it must contain at least three vertices.) Let
G, be the subgraph of G obtained by removing from G all the vertices of C;
and all legs issuing from such vertices. Now, if possible, perform the same
operations on G that were just performed on G, the only difference being that
the cycle chosen out of G1 may no longer have more than two vertices. Keep
doing this until you run out of cycles. If all the vertices have been used up this
way, call the collection of cycles thus obtained G;. If some vertices remain,
then link these to one another and the cycles in some fashion and call this
collection of cycles and chains G,. Form G, in an identical fashion from
G\ G, (except for the fact that G, may not contain cycles of length at least 3)
and continue inductively, until all the vertices and legs in G have been
exhausted. Let the subgraphs so obtained be denoted by G, ..., G, Note that
in G, we are assured of the existence of a cycle of length at least 3 and that
M < ik if & is even, while M < [3k] + 1 if & is odd.

To use this construction, cons1der first the case of even k. Then we can
partition out the term ¢(z,) to the various subgraphs as we did in the first line
of (4.30) and then continue as there with the generalised Holder inequality.
Thus,

k/2 2/k

(4.31) 1(©) =cll ( [ I b(z)ub2, (2~ )

(If M < 1k, then we interpret the empty products here as being equal to 1. )
Now, however we can no longer use Lemma 4.4 to complete the argument in a
simple fashion, since the G; are no longer necessarily cycles. We shall return to
(4.31) in a moment, but shall first derive a corresponding inequality for the
case of odd k.

Here there are two subcases. If M < 3k, then the same argument as above
remains valid and (4.31) still holds. If M = [3k] + 1, however, then in Gy,
there can be no more than one leg issuing from each vertex and so a slightly
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different application of the generalised Hélder inequality leads to
[k/2]

2/k
IE(G) =< C I—I ([ ].—.[ d’(zv)ug/—za,s(zv - Z;))
(4.32)

X

1/k
f I_.[ ¢’(zv)u§—a,e(‘zv - zl_/)) N
LeGy

Since we are trying to prove (4.22), which is an order of magnitude
relationship, we lose no rigour, but gain considerably in notational simplicity,
if we ignore the specific choice of ¢ in (4.31) and (4.32). In fact, we shall adopt
the rather unusual convention in what follows of letting ¢ denote a generic
function from ./ that may change from line to line. [We cannot, of course,
completely ignore the effect of the ¢; in (4.29), since they play a major role in
ensuring that certain integrals converge at infinity.] We thus claim that if we
could prove that

O(Ey2 )", forj=+1,

Ny/2

(433) ]._,[ ¢’(zu) I_.[ u —«a ,s(zv - Z;) =
fvEG LeG; (/D= o(Ey,f,s) , forj=1,

where N, is the number of distinct links in G;, then we would be done. The
reasoning behind this is as for the special case considered previously, applied
to the bounds (4.31) and (4.32) and using the fact that ¥N; = nk/2. Thus it
remains to prove (4.33).

Consider then one of the subgraphs G; and recall that it is made up of a
number (perhaps 0) of disjoint cycles joined by chains with perhaps further
chains dangling from some of the cycles. We shall establish (4.33) by consider-
ing one subgraph at a time, and removing the various chains sequentially,
while carefully bounding their contributions until only cycles are left. Their
contributions can then be bounded by Lemma 4.4,

Let z,...,2, be the vertices of a chain in G; that joins two cycles. (The
cases of a chain dangling from one cycle, or a free chain in a subgraph without
cycles, can be handled in a similar, but simpler, fashion.) Note that both z,
and z, also appear as vertices of a cycle. Rewrite the integral over a subgraph
in (4.33) as

n
(4.34) fI—Il¢(zi)u(1/2)k(d—a),s(zi -z_)F,
i

where we use F to denote all the terms that no longer explicitly appear. (F
also includes a ¢ for each vertex appearing in it.) Noting that

n
[q¢(zi)u(1/2)k(d—a),e(zi —2z;)F
ie

n
/(=1 11/
= /nl ( I;[(‘f’(zj)ua/mk(d—a),s(zj —2_1)) FY )
i==1 \ j#i .
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we can again use a generalised Hélder inequality to bound (4.34) by

n 1/n
(4.35) l=r[1 (f]l]id’(zj)(u(l/Z)k(d—a),e(zj - zj—1))n/(n_1)F) .

Consider one of the inner products here and integrate out z,,...,2,_; in the
order 2;,4,...,2,_; and then z;.4,...,2;. Since none of these variables
appear in F, the translation invariance of & /5)q—a),. gives us that (4.35) is
equal to

(n—-1)/n

I'1 (f¢’(z)(u(l/z)k(d—a),e(z))n/(n_l)) ' [F

i=1

- (/‘f’(z)(u(l/z)k(d—a),e(z))n/(n_1))n_ . [F

_ 0(8d—nk(d—a)/2(n—1))n-1 . /F

O((Ev2.)"") - [F, forn=2,
o((Eyf’e)n/z) . /F, for n > 3.

If we now substitute this back into (4.33), then what has happened is that
nothing has changed, other than the fact that the n — 1 internal vertices
(= 2n legs or n links) of our chain have disappeared from one of the graphs
and there is a factor of O((Ey} ,)"/?) appearing before the integral. We can
continue in this fashion, removing the chains that either link or dangle from
cycles, as well as free chains, until only cycles are left. Simple counting and the
lower order contribution of cycles of length at least 3 (as in the special case
above) now complete the proof of (4.33).

This almost completes the proof of the convergence of the univariate
distributions, since the asymptotic result (4.16) for the even moments of v, ,
has now been established. It remains only to show that the odd moments, after
normalisation, converge to 0 with e. By Formula 2.5, if mk is odd, then we
automatically have Evy;", = 0 for all &. If mk is even, we argue as follows:

Note that the argument for the even moment case hinged on the fact that
the only graphs that made an asymptotic contribution to Evy;’, were those in
which there were no cycles of length 3 or more. However, it is easy to see
(along the lines of the proof of Lemma 4.3) that in the case of odd moments,
which means an odd number of vertices in the graph, every graph must
contain at least one such cycle. This fact, together with the bounds above,
establishes the asymptotic negligibility of the moments in this case. O

(d) Proof of Theorem 1.5—Fidi distributions and tightness. As is custom-
ary, we shall not give a full proof of the convergence of the finite-dimensional
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distributions to the right limit, but shall merely indicate why an argument
based on the Cramér—Wold device works.

There are two free parameters that we have to worry about—the time ¢ and
the test function ¢. However, the linearity of y, . and the limit process w®
as functionals on ./ implies that we need only worry seriously about the time
parameter. Since the limit process, being based on a time changed Brownian
motion, has independent increments, what we now need to prove is that this is
also approximately true of vy, (¢, ¢) for each fixed ¢. Indeed, we claim that if
we could show that (for example)

E('Yk,e(t’ ¢)7k,s(s’ lﬂ))

gd—(d—a)k

E(yy, (s, 0)v1,:(s, %))

gd—(d—a)k

= lim
e—0

(4.36) lin:)
for the case a < d(k — 1)/k and s < ¢, along with an analogous result for the
case @ = d(k — 1)/k and similar expressions for higher, more complicated
moments, convergence of the finite-dimensional distributions to the appropri-
ate limit would follow easily. Details of this are left to the reader and we shall
concentrate on establishing (4.36). As a first step, let s < ¢ and write

t s t s
(4.37) fodufodvpl";_ul(x) = G¥(x) + j dujodup;;_vl(x),

where G{*) was defined at (4.1) and, by Formula 2.6, is the function underlying
the calculation of (4.36). Consider the rightmost term here, which we shall
now show is of lower order, for small ||x|l, than G{)(x), and which we rewrite
as

A du A " dpE (%)

t—s t
(438) =j(‘) du/(;dvp|u+u|(x)

< Cfowdu f:dv [mddye‘““"’p,‘f(x — 9)pa(y)

< CG* + GM(x),

where the second line follows from Chapman-Kolmogorov and the last is true
for any A > 0.

When 2a < d, it follows from the Useful Fact 2.2 that G?xGX(x) =
Cllx|I**~¢, so that this serves as an upper bound for (4.38). When 2a > d, it is
easy to check that G! € #? (Lebesgue) and so by Cauchy-Schwarz, G2 * G2(x)
is uniformly bounded in x, as is (4.38). When 2a = d, we return to the first
line of (4.38) to see that

T du fsdvpf;+u_ul(x) < Cftre'rp;"(x) ar.
0 0 0

Now use the scaling relation pj(x) = ¢ ¢/*pf(xt~'/*) and the fact that
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d/a = 2 to see that the last expression is equivalent to

ftr‘lpi“(xr'l/"‘) dr = ft/”x”ar_lp‘l"(l) dr
0 0

= flr'lpi“(l) dr + ft/”x”ar_lpf(l) dr
0 1

< CG2(1) + log(¢lxl™),

the last line again following from a scaling argument.

Our earlier calculations show that the first term on the right-hand side of
(4.37), G¢X(x), is, near the origin, of order O(llx]|*~%), which by the above
calculations is larger than the order of the second term. Now recall from the
proof of the above subsection that it is the divergence at zero of terms like
(4.37) that determines the asymptotic normalisation in ¢, and so it is only this
first term that is asymptotically important. But since this is G{*(x), which is
the core expression for the calculation of the right-hand side of (4.36), the
equality there is now clear. A similar argument works for higher mixed
moments, and so the proof of the convergence of the finite-dimensional
distributions is complete. O

We turn, finally, to the question of tightness. We shall consider only the
case a < d(k — 1)/k, leaving the similar case of a =d(k — 1)/k to the
reader. All we need to show is the tightness of {¢#@~~9/2y, (-, ¢)}, for each
fixed ¢ € .#;. This, in turn, will follow if we can show that some m > 1 and
all0 <s <t

(439)  E(y,.(t0) = viu(5,8))"" < CemFe-o-d(; —5)".

To see this, note, from the original integral form of y, , [cf. (1.16)] and
Formulae 2.5 and 2.6, that when we write the expectation in (4.39) as a sum
over graphs, each graph will contain a total of m factors and each one of these
will contain, along with other multiplicative factors and integrals over the
space dimensions, either a term of the form

t ot t—s rt—s
fj;pﬁt—vl(x) dudv = j; j;) P —y(x) dudv < C(t — 8)G2(x),
or of the form
ftj:pl";_vl(x) du dv.

Since the latter term is what appears in (4.37), we can argue as above to show
that it, too, is bounded by C(¢ — s)G2(x). This fact, together with the observa-
tions made above about order of magnitude relationships, is enough to prove
(4.39), and we are done. O

5. Proof of the fluctuation result—Theorem 1.6. In this section we
prove the fluctuation result, Theorem 1.6, for the ILT when « > d(k — 1)/k,
that is, when there is #? convergence. In principle, the proof follows the
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lines of the previous section. We start by calculating second moments and then
show that the higher moments relate, asymptotically, to the second moments
exactly as Gaussian higher moments relate to a variance. This gives conver-
gence of the one-dimensional distributions as the first part of a weak conver-
gence argument. The extension to general finite-dimensional distributions and
the problem of tightness are both left to the reader, since the treatment here is
no more difficult than that of the previous case.

Unfortunately, however, the higher moment calculations in the present case
are somewhat more involved than those of the previous section, in that there
are a number of special cases to consider. In particular, we shall have to
differentiate between the two cases a =d =2 and « =d = 1 and all other
permissible cases. These two special cases, in which the underlying processes
of (1.3) and (1.4) are neighbourhood recurrent, did not arise in the proof of
Theorem 1.5, as these parameter choices can never meet the conditions of that
theorem. Thus this section will be divided into a large number of subsections,
primarily in order to treat all special cases in a readable fashion.

We start with second moment calculations. Here, as throughout most of this
section, we shall make the simplifying assumption that the test functions are
not only in ./, but are supported in the unit ball. In the last subsection we
shall indicate how to remove this condition, although most of the work will be
left to the reader. If you do not want to do this work, then you can simply add
the condition of compact support to the statement of Theorem 1.6.

(a) Second moments for the general case. Throughout this and the follow-
ing section, we shall assume that d # «. Our aim, therefore, is to prove (1.26).
We start by recalling some finite difference notation. For a function :
Re > R and a, b,z € R, set

Aa¢(2) = ¢(Z + a) - ¢(2)$
2o(2) =¢(z+a—>b) —¢(z+a) —y(z-0b) +y(z).

We now turn to Eyk .» which, as before, is given by (4.10). However, we can
make use of the condition f f(x)dx = 0 to add and subtract terms to (4.10),
each with total integral zero, to see that Eyk’e is given by

k
2* [0(2)GO(2) n 8,0, GO(2) %) f3:) dz T d, dy,

'n'Eng m=1

(51) + ¥ 2¢[®(2)4, GO(2)A, ., GO(2)

reP, m#1
k k
X 2I—[ Ax,,wa(t)('z) I_—sze(xi) fo(y;) dz lr[2 dx; dy;.

The point of this change of form is to ensure the convergence of certain
integrals [such as (5.5) below] that will appear later.
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We shall now show how to obtain the ¢ — 0 limit of the first integral in
(5.1). All the other terms can be handled similarly. To do this, note that for
each ¢ € (0,1/5), we can break up the z integral into the regions 0 < ||z|| < 5¢
and 5¢ < ||z]l < 1. In the first case, we split G into the sum of three parts,
obtaining a result analogous to (4.9), and then apply Formula 2.1 and Lemma
2.3, as before, to G? = f.(2), to see that the integral over 0 < ||z|| < 5¢ is of the
form : :

k
(t=8)"[  ®(2)Gl(2) [14%,,G(2) (%) f(3:) dzdx; dy,
llzll<5e i=2 U7
(5.2) +0(8) [ M Dde
llzll<5e
+ 0(5—(1—vxd/a—1))f [|2]|7@ Dgla—dXk=D) g,

llzll<5e
for any y € [0, 1]. Since the last two terms here are clearly
0(6)£d+k(a—d) + 0(6—(1—y)(d/a—l))o(ad+k(a—d))’

it follows from the normalisation in the denominator of (1.26) that these terms
converge to 0 in the ¢ — 0, § — 0, limit, and so can be ignored.
We shall show below that for 5¢ < ||z]| < 1 and |lx; ]|, lly;|l < e,

d/a -2

A%, GO(2) = (t - 8)&, ,GI(2) + 0874/ %)%zl ""G(2)
(5.3) o L y
+ 0(80 =4/ (|2l T°G2(2))

Apply this and (5.2) to the first integral in (5.1) and scale all variables, to
find that the integral is of the form

k
MOt = 0)" [(e2)GP(2) [T 8%, G2(2) £ () i dy dz
(5.4) -
+O(82_d/a)£d_k(d_a) + 0(6(1—y)(l—d/a))o(ad—k(d—a))’

The integral is easily seen to converge as ¢ — 0 and the last two terms are,
again, unimportant in the § — 0 limit, since @ > d(k — 1)/k implies that
d/a < (k — 1)/k < 1. Thus, all that remains is

k
(5.5) el H=0tkd(0) [G(2) [T43, ,G2(2) () () d; dy; da.
i=2

By analysing the other terms in (5.1) in a similar fashion, we thus obtain
that )
Evi,.

k
2@ (d-ak) -t q)(O)Ffz
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as ¢ — 0, where

k
(5:6)  FP =2t [R50, 30) T () F(30) dx, dy,
and

K(xz,...,xk,yz,---,yk)

k
=¥[G], 6z dz

rTeP,:m=1

k
L [8G@A G T K, Gle) de

TeP, m#1
k
= (k- 1)!]Go?(z)i=]_[2A2x“ina?(z) dz

k
+(k = 1)(k = 1)![A,G2(2)4,G22) [T 4, ,G(2) da.
i=3
Noting the symmetries in these sums we obtain

F? = 2%k - 1)![Go?(z)(fA§,yG§’f(x)f(y) dxdy)k_zdz
(5.7 +(k—1)(k — 1)!f(foG£(z)f(x) azx)2

k—2
x([42,60) () () dedy) .

This gives the constant F; of (1.26).

Thus, in order to complete the derivation of the second moment, all that
remains is to establish (5.3). We start this by obtaining some new estimates for
the transition density p/(x).

Assume that min(|x,|, ..., lx,) > 0 and, without any loss of generality, that
lx;] > max(lx,], ..., [x ). Then differentiate the expression (1.2) twice to obtain

2« _ '
0°p; (x) _ 1 p~p‘e_ip.x_t2_a/2”p"a dp
dx; 0 (2m)* Ipa

1 92
=— | eirx —(p.p.e~t27IPI%) dp,
(27) a2 Jyoe™ sz oeps )av
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the last line a result of integrating by parts, twice, with respect to p,. Thus

9*pi (x) 1 9 2
< —(p;p;e~ 2 IPI°) | dp,
ety | = @y et ot )
d

) mfmd l(l +extllpl® + Cz(t||p||a)2)e"2_“/zllp||“| dp
m)%llx . .

< Cllx|| "2/,
Thus, if we now set

h(s,x) = [ pi(x)dt,

then we have
82

9?h(s, x)

dx; é)xj

0

sf dt

s

3x-0xjpt (x)

12

< Cllx||”2¢t-4/e,
The mean value theorem then implies that, if 4(la| v b)) < |lx[|, then
(5.8) |A2 ,h(s,x)l < Clal - [B] - llx|I "¢t =4/,

We can now turn to proving (5.3). Using the definition (4.1) of G and
noting (4.6), we have

t S
AzxninC("t)(z) = Az“r'i:.’ﬁ]‘O ds Lpf(z) dr
(5.9) =A%, Go(2) — Athyi/(“)th(s,z) s

8 t
=tA% ,GY(2) - /;)Azxi,yih(s,z) ds — j’;Azxvylh(s,z) ds.

Recall that we only have to prove (5.3) under the assumptions 5¢ < [|z]| < 1
and |lx;ll, lly;]l < e. Thus we can apply (5.8) to see that the first integral in the
last line of (5.9) can be bounded above by

(5.10) fosAiny,h(S, z) ds < Ce?6279/9|g||”?

< Ce25279/%||2]|"2G0(2).
The addition of the seemingly redundant factor of G%(2) is permissible since
we are assuming that ||z|| < 1 and can change the:constant in (5.10) at will.
A similar argument gives a bound of Cz2||zl"2G2(2) for the second integral
‘in (5.9), and noting the bound inherent in (4.7), we get an interpolated bound
“of the form

(5.11) O(80~M1=4/) (||| 2GY(2))’
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for any y € [0, 11. The requisite (5.3) now follows from (5.9)-(5.11) and we are
done. O

ReMARk. The last few lines of the above proof seem to contain bounds that
are somewhat forced, in the sense that factors [such as G2(2) in (5.10)] seem to
have been introduced without need and thus equation (5.3) has actually been
made more complex than is necessary. ‘The reason for this will become clear
when we come to subsection (d) below, in which we shall indicate how to lift
the above proof from test functions of compact support to test functions in /.
The extra term of G2 then gives us extra integrability, required to keep
certain integrals finite.

(b) Higher moments for the general case. The calculation of the higher
moments for the case a > d(k — 1)/k is, in principle, much the same as in the
previous section for the case a < d(k — 1)/k and relies on the summing over
all graphs G € 4, , expressions analogous to (4.19). As we did in calculating
the second moment, however, we change the G terms appearing in (4.19) to
AGY or A2G®, if one or both (respectively) of the x variables is not identically
zero. Again, the fact that [f(x)dx = 0 means that the overall expectation has
not been changed.

We can then carry out the graph theoretic counting as before, until we reach
(4.30) and the later similar equations. Once again, it is easy to see that the
graphs G made up only of cycles of length n = 2 are precisely those required
to give moments of vy, (f)e~ "/ 2(d—(d=®k) that are asymptotically Gaussian.
This will, therefore, be all that we require, once we have proven that graphs
containing longer cycles make asymptotically negligible contributions to the
moments.

It follows much as before that each cycle of length n > 3 makes a contribu-
tion of the form

n

(512)  IL(n) =gl bonk@z [ TTVi(z - 2,) dz,
lzll<1/ei=1 "

where, for j = 0,1, 2,

(5.13) Vi(2) = Upa-asrjys2,1(Z) = (max(llzll, 1)

To see this, there are four facts that must be taken into account. First, the
factors of G that appear, unchanged, in the expressions described above all
contribute a term V,, to (5.12). This is obvious.

Second, factors of the form AG® and A*G{’ each contribute terms corre-
sponding to Aljy_ny21 and AU g —ay2,1» TESPECtiVEly. But the effect of
differencing is, by the mean value theorem, effectively the same as differenti-
ating, so that these terms correspond (up to unimportant constants) to the V;
and V, terms of (5.12).

Third, the fact that 1/¢ appears as the lower limit of the integral in (5.12)
comes from the fact that throughout this section we have agreed to work with

) —k(d—a+])/2
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test functions of support in the unit ball. Finally, the factors of ¢ that appear
before the integral in (5.12) that do not appear, for example, in (4.30) arise
since a scaling argument has already been carried out to obtain (5.12).

In view of the closing arguments of the previous section, it will therefore
suffice for us to show that

(5.14) I(g) = o(&™@—kd-o/2),

Our first step towards this is the following easy lemma.
5.1 LemMA. Let B,y > 0. Then

[ (2 = ¥ ami (%) d < Citgo1(2)-

ProoF. Since u4_, ; is bounded and u,,,; €7, it is clear that the
integral is bounded and so we need only consider ||z[ > 1

We split the domain of integration into two parts. If [lx|l > llzll/4 > 1/4,
note simply that there exists a C such that uy_, (x) < Cu,_, ((2) and then
use the fact that u 4, ; € #" to show that the integral over this region is no
greater than Cu ,_, 1(z) If llxll < llzll/4, note that

f ud+y,1(z_x)ud—a,l(x)dx
llxll<lizll /4

< C ua+y,1(z - x)ud—a,l(z - x)ud—a,l(x) dx
llxll <ll2ll /4

< Ct g (2) [ any (¥ = D)hgg i) dx

=< Cud—a, 1(2).

This completes the proof. O

We now turn to the proof of (5.14). Unfortunately, the proof occasionally
uses quite delicate relationships between the various parameters, and so has to
be tailored to each dimension d separately. We shall give the proof only when
d = 2, leaving the other cases (d = 1,3) up to the reader. The necessary
changes are not hard.

Consider, therefore, (5.12). Since a« > d(k — 1)/k and d = 2, we have
k(2 — a)/2 < k(2 — @) < 2 and so it is clear from (5.13) that V,, & 1. On the
other hand, V, is always in -#*. To find out what happens with V;, we must
consider two cases.

CasE 1. V, € Z': We are in this situation when & > 4/(3 — a).
 Use Lemma 5.1 to eliminate all factors of V; and V, from (5. 12), so that all
"that remains is the product over a chain of length m = #{i: j, = 0}. If m < 1,
then it is easy to see from (5.12), the definition of V, and the fact that
a > d(k — 1)/k that (5.14) is satisfied.- Thus we can assume that m > 2 for
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the rest of this case. Write the integral in (5.12) as

m m m

f ~ ]._[VO(zi —2;_1)dz; = f _ Il HV()I/(m_l)(Zi_zi—l)) dz;
llzll<eti=1 llzll<e"ti=1\i=1
i+l

m ) m 1/m
m/(m—1

(5.15) = ll:[l (’4z-|l<e*1il—=-[1v0 / (2z; — 2;_1) dz;

B Y

)(m—l)/m

m/(m—1)
il:-[l ('42”55‘1V0 (Z) dz

< Cgmk(Z—a)/Z—d(m—l),
where the last inequality relies on the specific form of V, and uses the fact
that
m k(d—a)
m-—1 2
It is now an easy task to check coefficients in the above and (5.12) to see that
(5.14) is satisfied.

<k(d-a)<d.

Cast 2. V, ¢ Z1: We are in this situation when % < 4/(3 — a).

We argue as in Case 1, but this time we can, a priori, only eliminate the V,
factors from (5.12). The number of terms remaining is now m = #{i: j, = O or
J; = 1}. Corresponding to the second last line of (5.15) we obtain

m (m—-1)/m
( -1

[ vmme(2) de

i=1\"]

The terms with j;, = 0 are treated exactly as before [i.e., as in the last line of
(5.15)]. For the other terms we use

lzll<e

0o(1), if n > 2,
= O(In(s_l)), if n =2,

)(m—l)/m
O(Ek(3—a)/2~2(m—1)/m), if n < 2,

([ v/ mmD(2) dz

-1 J1
llzll<e~?!

where n = mk(3 — a)/(2(m — 1)). The proof can then be completed as in Case
1, by comparing coefficients. Note that each of the three subcases has to be
treated separately and that the comparison of coefficients will take you a few
lines in each case. Nevertheless, since nothing more than elementary algebra
and a little patience is now required, the details are left as an exercise for the
reader.

This completes the proof of the fact that the only graphs that make
asymptotically nonnegligible contributions to the moments of
Vi, o e~ /BE=(@=0k) gre those made up only of cycles of length two, which is
what we had to prove. O )
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(¢) The ““recurrent case”. We now turn to the cases a =d =2 and a =
d =1, in which the underlying processes—planar Brownian motion and the
real-valued Cauchy process—are neighbourhood recurrent. These two cases
are special within density processes for which @ > d(k2 — 1)/k in that they are
the only ones for which G? is not defined [cf. Formula 2.1] and so the analysis
of the preceding subsections requires an essential change. Fortunately, the
required change is not too drastic and, as we shall show below, the basic
approach is as before, but with G? replaced by G2, which does exist, through-
out.

This change, however, carries with it some technical difficulties, since G} is
not as simple a function as G?. Nevertheless, we have already seen, on
numerous occasions, that what is important in deriving normalisation factors
for v, . is the behaviour of the Green’s function at the origin, with its
behaviour elsewhere being required only to establish finiteness of some inte-
grals. In both of the cases to be treated in this subsection, the Green’s function
has a logarithmic singularity at the origin, and, in fact,

5.1 li Gé(a) = d=2

(5.16) 81—13[‘1)@_ , =2,
1

(5.17) im ) Ty

cSoIn(l/z) V2

To see how we move from reliance on G? to G, recall that the key function
in the moment calculations is really neither of these, but rather G\, which,
previously, we bounded via G°. Note, however, that

GO(x) = ['dr [ py(x) ds
(5.18) = ];tdr{j;re'spf(x) ds + j:(l —e *)pX(x) ds}

=tGl(x) — fotdr j:we'sp;"(x) ds + j:drfor(l —e *)pd(x)ds.

Since for fixed ¢ the integrals here are bounded in x, it is clear that the
behaviour of G at the origin is identical to that of G!. Thus, in all that
follows, we shall replace G by G! wherever the former appears. It is left to
the reader to justify this replacement, following the approach taken at (4.9)
and (5.2).

We have to prove (1.23)-(1.25) of Theorem 1.6. We shall proceed as follows.
As a first step, we shall calculate the asymptotic second moment of vy, , when
a =d =k = 2. This will give the normalisation required for (1.23). We shall
then indicate how to do the same thing for « = d = 2, but & > 3. This does
the same for (1.24). We shall then treat the (by now) easy case of « =d = 1,
and general k, to obtain the normalisation for (1.25). Finally, we shall show
how to treat higher moments. As in the previous subsections, full weak
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convergence, including the convergence of the finite-dimensional distributions
and tightness, is left to the reader.

STEP 1. @ =d =k = 2: By (5.1), and our above agreement to replace G
by G, we have

Ey;, = 4t2f|

[ 2/ AL, In(1/l2l) f(%) () dedy de

+4t2[  ®(2)A, In(1/lIzl)A, In(1/lzl) £,(%) f.(y) dxdy dz

llzll<1

(5.19) _ 482t2j|'| . ®(£2)[In(1/¢) + In(1/llzll)]

X &% In(1/llzll) f(x) f(y) dxdydz

+ 4£2t24 ) ®(ez)A, In(1/l12l)A, In(1/ll2ll) f(x) f(y) dxdydz.
zZ(l< £
Consider the first term of the last line. Use the fact that ®(z) = ®(0) +
O(||z|) for z small, say ||z|| < 1, to rewrite it as

42®(0)2 4 z”<1/€[1n(1 /e) +In(1/12l)] A% , In(1/llzl)

Xf(x) f(y) dxdydz

plus lower order expressions. Break up the z integral here into the regions
0<llzll<1 and 1 <|z|l < 1/e. In the first of these, write out Azx,y as a
difference, remember that because of the finite support of f, the x and y
- integrals are over the unit disk, and use the fact that In(1 /x) is integrable near
the origin to see that the total integral is O(In(1/¢)). For the second, use the
mean value theorem to first replace A% In(1/lzI) by x - yllzll™% with a
bounded error that after integration is O(In(1/¢)). (As usual, x - y denotes the
inner product ¥2_,x;y;.) Hence the first term of the last line of (5.19) is equal
to

(5.20)

4s70(0)¢2 [In(1/¢) + In(1/1l21)]((x - ¥) /ll2ll®)

1<|lzll<1/e

(5.21) Xf(x)f(y)dxdydz + O(&?In(¢))

= 4me?®(0)¢2 In*(1/z) [x - yf (%) f(y) dx

+ 0(s?In(1/¢)),

the, final factor of In(1/¢) and-the 7 coming from the z integral after a
transformation to polar coordinates.

If we could now show that the second term of the last line of (5.19) was
O(n(1/¢)), then this would be precisely what is required to establish the
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normalisation for the case @ = d = & = 2. This, however, follows as above, the
lower order of In(1/¢) coming from the lack of this factor in the integrand. O

STEP 2. a =d =2, k > 3: To handle this case, we must treat the second
moment as given by (5.1). There are two summations here. Consider first a
typical term in the first sum.

These terms can be treated precisely as in Step 1, until (5.21), which will be
replaced by

2k£2P(0) ¢ f [In(1/¢) + In(1/llzll)]
1<llzll<1l/e
(5.22)

k
X ( .ljzAzxnyﬂi In(1/llzll) £(x;) f(;) dx; dyi) dz,

plus a term o(In(1/¢)). But now the z integral no longer involves a singularity
(which is why we cannot simplify the above via the mean value theorem) and
the only divergence comes from the In(1/¢) in the integrand. Remember that
there are (£ — 1)! terms of the above form in the first sum in (5.1), to see that
the total asymptotic contribution of this sum is £ In(1/£)®(0)D?, where

k-1

(5.23) D2 = 2*(k — 1)!17[([A2x,yln(l/llz||) F(x) f(y) dedy| de

is the normalisation for (1.24). Thus our proof for this case will be finished
once we know that the contribution of the second sum in (5.1) is of lower order
than the above. But this is easy, since we once again follow the same argu-
ment, but now the integrals we end up with (because of high negative powers
of |z|)) are convergent and are therefore negligible compared to the O(In(1 /¢))
divergence of the first sum. O

STEP 3. @ =d =1, k > 2: This case is identical to the previous one, with
the single exception that (5.22) is preceded by a factor of (7/ v2)* [cf. (5.17)].
In this case there is no divergence in the z integral for any £ and so the only
terms that are asymptotically important are those that arise from the In(1/¢)
in (5.22). Doing the z integral (this time without the necessity to introduce
polar coordinates and factors of =) it follows as in the above cases that
Evy; . = ¢ In(1/£)P(0)E7, where

k-1
(5.24) E2 = (V2m)"(k - l)lf(fAzx’yln(l/IIz“) f(x)f(y) dxdy) dz,
which gives the required normalisation for (1.25).

StEP 4. HIGHER MOMENTS. We shall treat only the case « = d = £ = 2. The
.others are handled similarly (but nevertheless do involve some work) and are
left to the reader.

Our starting point is the expression (4.19), to which we apply differences as
in (5.1). Continuing in the spirit of subsection (b) above, it will suffice to show
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that, for n > 3,

(5.25) I(g) = o(eIn(1/¢))",

where

(5.26) L(e) =2 D[ TIVi(z—z_1)dz,
llzll<l/si=1 7

and

In(1/(ex)), iflxl >3,

Vo(2) = 1 1n(1 /ey, if x| < L

with V; = u; ; for j = 1, 2. Note that, as opposed to (5.13), V, is still a function
of &. Thls is not the case for V; and V,. The reasoning behlnd (5.26) is basically
the same as for the justification of (5.12), noting only that there are some
other terms in the expression of the higher moments that arise out of the
scaling argument, but that are asymptotically of smaller order than I,(¢). Note
that

0(8_2)’ if j=0,

Axw/gvj(x) dx ={0(s7Y), ifj=1,
O(In(1/¢)), if j=2.
It is only the first of these three cases that requires justification. In this case

/ Vo(x) dx = [ In(1/z) dx + | In(1/(zx)) dx
llxll<2/e llxll<1/2 1/2<llxll<2/¢

= 0(In(1/(¢))) +f rln(l/(sr))dr

= 0(In(1/(¢))) + 0(s7?)
= 0(e7),

which is precisely what we require.

Now consider the integral (5.26). Recall the convention that z, = z, = 0 and
since the cyclic nature of the product allows us to start anywhere, assume that
Jn = 0. It then follows, from the definition of Vj, that

‘/jn zn - zn—l) = VO(Zn—l) < 11’1(1/8)

Now integrate, in turn, over z,_;,2,_o,...,%; in (5.26), using the above
trichotomy to bound the integrals. Letting a, b and c, respectively, denote the
number of V,, V; and V, terms in (5.26) (so that a + b + ¢ = n), it then
follows that

(527)  I,(e) < Ce**~P(e72)" (7))’ (In(1/¢))“(In(1/e)),

the last term coming from V; .
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Since we are in the case k£ = 2, a little thought shows that a = ¢, so that
2a + b = n. It thus follows from (5.27) that

I(¢) < Ce"(In(1/2))° .

But since a = ¢ implies that ¢ < n/2, we have that ¢ + 1 < n, so that (5.27)
implies (5.25), and we are done. O

(d) On going from bounded support to .#;. We now have to show that all
the proofs of this section, for which it was assumed that the test function ¢
had bounded support, also hold for general ¢ € ..

Unfortunately, this is not trivial. Furthermore, we do not have a simple
recipe for lifting all proofs at once, but, rather, each proof requires its own
little tricks. Thus what we shall do is show how to carry out this extension in
one particular case, in the hope that this will both convince the reader that
this is possible in general and show him, basically, how it is done. For the
reader who remains unconvinced, there is always the option of adding the
condition of compact support to the assumptions of Theorem 1.6.

The case we shall treat is the calculation of Ey? , for the case d + a. This
is, of course, the most important of the moment calculations and covers all but
two cases. Returning to the proof in subsection (a) above, one sees that the
only place that compact support was actually used was in establishing the
crucial inequality (5.3). Once we have shown that this holds in general, we
shall be done.

We start, as there, with some preliminary inequalities, in particular for the
function

S

(5.28) g(s,x) = fop,"‘(x)dt.
As before, assume that min(|x |, ..., lx,]) > 0 and, without any loss of general-
ity, that |x,| > max(|x,], ..., |x,|). Integrate by parts in (1.2) to obtain

C ; —a a
(5.29) pi(x) = — [tpllpll* %’ =2 pl" gp,

X1
so that

C s
= —ip-x a—2 —t2=2/2 p||
g(s,x) x1 fe P p4llpll (Lte P dr) dp

C
= — [p—ipx =s272|p||¥|| ||~ 2
(5.30) e pi(se Ipl™*
+(e—32_01/2”p”a _ l)llp”—(2+a)) dp
= gi(s,x) + gy(s,x),

say. Consider the first of these terms. Differentiating with respect to x;, and
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then integrating by parts gives
dgi(s,x) C ; -
R = [e-ipx =s27||p|||| || =2
o, e (p1se Ipl
+p%se'32'“/2||p"a||p||_4 + szpfe_32_“/2"’7“ullp||°‘_3) dp.

Repeating this procedure, we obtain

2g.(s, x) C . e
(5.31) T =3 =P (pyse ™2 1P p|I72) dp,
i i

plus other similar terms, with higher powers of s and larger, negative, powers
of ||pll. Bounding the complex exponential in (5.31) by 1, a simple change of
variables gives that the integral is bounded above by Cs!~@~V/« In fact, the
same is true of the other integrals and in general,

C
I E

The same is easily seen to be true for dg,/dx; dx;, so that it follows from
(5.30) and the mean value theorem that

el lyl
llzII®

plus terms of higher order in ||x| and [ly|l. Since in (5.3) we are only interested
in [lxll, [lyll < &, we can replace the numerator in (5.3) by ¢2 and note that the
higher order terms are now of no asymptotic interest. Furthermore, we shall
now restrict ourselves to the case d = 2. (The one-dimensional case is easier
* and the three-dimensional case is a little more difficult. Neither, however, are
all that different.)

Under these restrictions, (5.32) implies

2

T el
We now return to the definitions (4.1) of G and (5.28) of g to note that

¢ s
8,60) = [[(8,[pr(2) dr | as

?g.(s, x)
dx; 0xj

sd—@d=1/a)

(5.32) 142 g(s,2)l < sd-@-1/@

x,y

=ft( fp;"(z) dr) ds +fo ,8(s,2)ds
(5.34) ?
= (t—8)A ,G)(2) +fo ,8(s,2) ds

—f [43,(G(2) - g(5,2))] ds.
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The first term here matches the first term of the required bound in (5.3). By
(5.33), the integral over [0, 8] is bounded by Cz?l|zll >G%(2)8%~1/* and this
matches the second term there. As far as the last term is concerned, note that
by (5.33) and (4.7),

[18%,(G(2) — 8(s,2))] ds

for any y € [0, 1].
This is precisely the last term of (5.3) and so the proof is complete. O

20 Y
< CB(l—yx1—2/a>( E_GLZ))
ll211?
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