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The Intersection Local Time of Fractional
Brownian Motion in the Plane

JAY ROSEN*

University of Massachusetts

Communicated by L. D. Pitt

We show how to renormalize the intersection local time of fractional Brownian
motion of index § in the plane, when 4 < f <2 When f=1, ie., planar Brownian,
such a renormalization is due to Varadhan. € 1987 Academic Press, Inc.

[. INTRODUCTION

Fractional Brownian motion of index f, 0<f <1, is the real valued
Gaussian process F, indexed by ¢ >0, with mean zero and

E(F,F,) =4+ 1 — |s—1|*), (L.1)

so that

E(F,—F)2=1s— 1| (1.2)

Fractional Brownian motion of index f§ in the plane is simply

X, =(F", F{"),

where F(''. F{? are independent copies of the above real valued process.
Note that =1 corresponds to planar Brownian motion. Let

o X2

p(l,x)z—zn-t'— (13)
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and set

ale, B):j jp(g, X(s, 1)) ds dt, (1.4)
B

where X(s, 1)=X,— X,. Since p(s, x) - 5(x) as ¢ >0, formally, as ¢ -0,
a(e, B) should converge to

f j S(X,— X,) ds d1,

B

a measure of the amount of “time” the process spends intersecting itself.

In fact, if a(e, -) is restricted to Borel sets B in {(s, t)|s<t}, then a(e, -)
converges to a measure a(-) supported on L= {(s, £)| X,=X,, s<t}. This
has been used in Rosen [7] to compute the Hausdorff dimension of L, see
also Cuzick [2] and Weber [10]. As B approaches the diagonal {s=1t},
a(-) “explodes.” We wish to explore this phenomenon here.

For the case of planar Brownian motion, =3, Varadhan [12] has
shown that, with D= {(s, 1)|0<s<t<T},

T
a(e, Dr) —5-lg(1/e)

converges in L2, as ¢ —» 0. This result has recently received a great deal of
attention, including new proofs and generalizations to other processes
which share with Brownian motion such properties as independent
increments or at least the Markov property, see Rosen [8-10], Le
Gall [6], Dynkin [3-5], and Yor [13, 14].

In this paper we will show that for the planar fractional Brownian
motion X,, 1< f <3

e, D)~ el T =i (15)

converges in L? as ¢ —» 0, where c(f)=(1/2n) [ (1/r** + 1) dr.

As we will see, the fact that X, does not have independent increments is
compensated to some extent by its property of local nondeterminism, a
property discovered by Berman [1] and used by him in the study of
(nonintersection) local times for the one-dimensional fractional Brownian
motion F,.

It is, above all, the fact that X, is a Gaussian process which allows us, by
direct computations, to overcome the lack of a Markovian structure.

It is hoped that this will be but the beginning of the study of intersection
local times for Gaussian processes.
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2. PROOF

We will prove
THEOREM 1. Let 1< f <3, then
(X(E, DT) - [E(a(gﬁ DT))

converges in L* as ¢ — 0.

Remark. Notice that

E(a(e, D7) = jr [ (2711)2 [e= E(er 20y d2p ds dr

0 Y0
T rt 1
= [l e dpas

o7 1
e s
27J0 L|z—s|2ﬂ+e d

=%ij%me;¢%=§£‘~erf

R 8

:%f;x;fff—l_k_gdt_jgj:ﬂ_ﬂ_ﬂl:g dt ds

1
=c(ﬂ)T£—l;W+0(1), (2.1)

since

jrro ! < ! JT ! ds < o0
o dr st 4e 28—1)g (T—s)¥ 17 :

Thus, (1.5) follows from Theorem 1.
Proof of Theorem 1.

E(a(e, D7) — E(a(e, D7)’

=JDT><D,-J(2—71[)“Heis(”z“’z’/z{lE(eip X0+ X5 1)

_ IE(eip X(s, r)) [E(ei" X(s', t’))}
_ f !
B DTXDT‘[ (27[)4

__e*p2I17SIZ”/2Aq2|1’~S‘|2ﬂ/2}‘ (2.2)

” o oP V2] g Var(p (s, 0+ g X )2
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We will first show how to bound (2.2) uniformly in & The variance in
(2.2) depends on the relative positions of s, 7, s, . We can assume that
s <s' and distinguish three cases.

Case 1. s<s' <t<t.
We will use the property of local nondeterminism, which says that for

H<t< - <1

n

n n (23)
Var < Z u; - X(t;, ti~l)> =k Z |ui]2|ti_ tifllzﬁ
i=2 =2
for some constant kK > 0. See Berman {1]. Thus
e-Var(p~X(x, H+q-X(s', t'))/2 < e—k(p2u2ﬂ+(p+q)2b2/‘+q2c23), (24)

where a=s"—s, b=1—3s', and c=1 —t. We integrate out da, db, and dc
using the simple bound

T
22
J- e P dr <

0 1+ p'# (2:3)

to bound our integral by

1 1 1
d’q &
Iremisgrgmirgn e

1 1
Sk[l+pl/ﬂl+pz/ﬁ72d2p<oo (26)

if 3/§—2>2, ie, f<i
The other term in (2.2) is even easier:

J JH o P = s = e = 522
Drx Dr

k

A

da db dc

1 1
f-” (a+b)* (c+b)*

T
kjo G <o (2.7)

A

since 4 —-2<4(3)—2=1.

Case 1. s<s'<t' <1
We try to use local nondeterminism as in Case I:

_ . . Y _ 2( 428 + 28 2828
e Yar(p - X(s. 1) +q X“””Se k(p“(af + Py + (p+ q)°F )’ (2.8)
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where a=5"—s, b=1"—s, and c=1—+¢. We integrate (2.8) first with
respect to ¢, then with respect to p, and obtain

1 1

1 o (2.9)
Assume that 4 > da for some fixed, but arbitrary §. Since 28> 1,
T 1 1
MﬂdbgkaT (2.10)
and we now can bound
jT da JT de <Tda © de
o a1 oa2ﬂ+c2ﬂ\oa4”’2fo [+c? =%

since as before, 48 -2 < 1.
Similarly the double expectation term in (2.2) gives
1 1 1 1

—_
(@a+b+c)*! b = (a+c)F p*

Integrating out db as in (2.10) we need only bound

fT da jT dc <kJT da <o
o aF1 o (a+c)2ﬁ\ o aF-2 :

We can proceed similarly if > dc. However, if both < da and b < éc,
local nondeterminism is insufficient and we must proceed more carefully,
making use of the subtraction term in (2.2).

We first write

Var(p- X(s, 1)+ - X(s', 1'))
= p*lt =5 +2p - qE(X(s, 1) X(s5', 1)) + ¢*|t' — 5|

=pla+b+c)’ +2p-qu+ ¢*b%, (2.11)

where, by (1.1),
v = E(X(s, 1) X(s', 1))
=(a+b)’ —a* + (c+b)*F — ¥

(8 o2

<k(a® b+ ¥ 1b) (2.12)

for & sufficiently smali.
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We now write out the full integrand appearing in (2.2)

e—pz((a+b+¢-)2/’+e)/2(ep qv __ 1) efqz(b2”+c)/2 (2.13)
and integrate with respect to g to obtain
J (e? @ —1) AR LY

2,2 28
epv/2(b +e)_1 ) ) .
! ) (which is positive)

b* +¢
epzvz/ZbZ" 1
<0 (2.14)

By (2.12),
UZ/b2B<k(a4,B72b2~2B+ C4ﬂ72b2—2[;)

, p\2-28 , p\2-28 1 ,
<k a”(; +C'B<; Sz(a+b+c)ﬂ (215)

for & small, which allows us to write

p22bMW 1
—pHa+ b+ )2

e 577
e —pla+b+cyBz—vphy2 e —pXa+b+ )4
— e~p2(a+b+(')2/’/4
b

_p? 2B

$k€ pia+b+c) /4p202/b4ﬂ (216)
using

le=*—e *|<2|x—y|, x, y=0. (2.17)

By (2.12), (2.14) is bounded by

4—2 | 4f-2
—pz(a+b+c)2ﬂ/4p2 (a +c )

e KIEE (2.18)
We integrate with respect to p and need only bound
a2 4 -2 1
”f (a+b+c)* g dadb de
1 1
<kﬂj (a+b+c)2.b4ﬁ'2dadb de
1
<k | (1+1g(b)) g— db < 0, (2.19)
b4ﬁ 2

Since as before, 48 —2 < 1.
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Case III. s<t<s' <t
Once again we first trye to use local nondeterminism which shows that
our integrand is bounded by

—k(p2a + )
e I’

where a=1t—s, b=s"—t, and ¢ =1t —s'. After integrating with respect to p
and g we need to bound

J”%,—z%dadbdc.

In general this will diverge. However, in the region a > Mb, ¢ > Nb, and N,
M fixed but arbitrary, we have

T T da T de T db
[l ), m)<r ] e
as before.
For relatively large b we will have to proceed more carefully. Consider
Var(p-X(s, 1)+ q-X(s', ")) = p*a® + 2p - qv + ¢°c**, (2.20)
where

v=E(X(s, 1) X(s', ') =(a+ b+ ) —(a+b)*! — (c+b)* + b*. (2.21)

Let us first suppose that both a<§,b, and ¢ <5,b, where §, and S,
small will be specified later. From our last equation we see that

28 28 28
u=b2”[<1+-§+§> —<1+g> —<1+§> +1]

sdc

bb

=kb? ~2qc. (2.22)

< kb?

As in Case IT we integrate with respect to ¢ first,

20272028
epv/2c -1

J(e,,..,,,_ 1) e= A +on2 dZ(IS—czB—'" (2.23)
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By (2.22),

v2/c*P < kb¥~4a2c?/c?

228 2-28
28 (8 ¢
ka (b) (b)

g% a® if §,,8,<8,small (2.24)

As in Case IT this allows us to bound

pZUZ/ZCZﬂ 1
22 e -
je pa /2<____6T) dzp

<k f e PP Pp . p? P

02 pA—4
<k—gp<k—pmg— by (222) (2.25)

Now 4—4f>4-3=1 so that

db k
j\/(; b4—4ﬂ gv(ac)3/2—2ﬁ’

Taking into account (2.25), we need only bound

da dc
Jazpvl/z fcz/ffx/z <,

since 2f —3<2(3)—1i=1.
This handles the case a<d,b and ¢ < 5,b. We finally consider ¢ < ;b
and a>4,b. Return to (2.21) and note

v=(a+b+c)* —(a+by*—(c+b)*+b*
<lla+b+c)?—(a+b)#| +|(c+b)¥ — b
<k(a+b)* ‘¢, (recall 28— 1 >0). (2.26)
Thus instead of (2.24) we have

228
U2/52/i<k(a+b)4ﬁZCZ—Zb:k(a+b)2ﬂ< ¢ >
a+b
<k(a+b)2‘*5§‘zﬁ<ka2”<l +5_1279> 83
4
<i”  if 6,<6%and 6,< 6, small. (2.27)

This follows from the fact that 28 <3, while 2—28> L
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As before we need only integrate

M =< ] S

T da
Skf B 2J 3
0 /83

s4b A

7 Ig(c)
skfo iz de< oo (2.28)

as before.

All that remains in order to show uniform boundedness in Case III is to
verify that by an appropriate choice of 01, 0,, 03, and 8, we can handle all
possible cases. Take d, smaller than 83 A 53 <3, A &, where §, and &, are
described in (2.24) and (2.27). If a>5 b then either

c<o3b

or

c=83b,

both of which are covered by the above analysis.
On the other hand, if a < J,5 then either

c<oPh
or

> 615,

Since 617 < J,, these cases are also covered.

This shows that (2.2) is uniformly bounded in &, and convergence will
follow from a careful use of the dominated convergence theorem. Actually,
we can show

E([a(e, D7) — E(ale, D7)]~ [a(e’, D7) — E(a(¢', D1))])?
<kle—¢|®  forsomed>0
by using the bound
|e~pza/2 . e—pze’/2] S kp25 18 - 8/'6

and following the lines of our proof of boundedness.
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