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Abstract. We study the Brownian functional

Wt- Ws)dsdt,

where Wt is a Brownian path in two or three dimensions. For B off the diagonal
we identify α(x, B) with a local time, and establish the Holder continuity of α(x, B)
in both x and B.

1. Introduction

A classical theorem of Dvoretzky, Erdos and Kakutani [1950] states that a
Brownian path Wt will intersect itself in both two and three dimensions. This fact is
at the heart of Symanzik's approach to Euclidean quantum field theory [1969]
where the key role is played by the purely formal expression

SSδx(Wt-W8)dsdt. (1.1)
o o

Here δx is the Dirac delta function concentrated at x. When x = 0, (1 . 1) is meant as a
measure of the amount of time f, 0 ̂  t ̂  /ι, spent by the path in intersecting itself.
This expression also appears in the study of polymers, see Edwards [1965] and
Westwater. In this paper we employ the general perspective of the theory of local
times to analyze (1.1). For an excellent overview of local times, together with
extensive references, we refer to the survey paper of Geman and Horowitz [1980].

The only general method for studying local times of Gaussian processes involves
local non-determinism (LND), a concept introduced by Berman [1973], and
generalized by Pitt [1978] and Cuzick. Since the process underlying (1.1) does not
appear to be locally nondeterministic, we are forced to develop a new approach. We
refer the reader to Rosen [1981], and Geman, Horowitz and Rosen [1981], where
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the local time of other processes are studied without using LND. In the latter paper
we also discuss the question of the general role of LND.

Let us begin with the general definition of local time. If X : RN -» Rd is a Borel
function, then for each Borel set B c RN we can define the occupation measure μB on
Rdby

μB(A) = λN(χ-ί(A)nB). (1.2)

Here λN is Lebesgue measure on RN. If μB <ζ λd we say that X has a local time on B,
and define the local time on B, α(x, B\ by

O L ( x 9 B ) = - ( x ) . (1.3)

Of course, this only defines α(x, B) a.e. dλd(x). Intuitively, we think of α(x, B) as the
amount of time in B spent by our function at x. As a consequence of these definitions,

f /(x)α(x, *)dχ = J/(X(T))dλN(Γ) (1.4)

for all bounded Borel functions/. Finally, if X is a random field, i.e. if X = X(T, ω),
where ω is a point in a probability space (Ω, dP), we say that X has a local time on B,
if AΓ( ,ω) has a local time on J3 for almost all ω. We usually suppress ω in our
formulas.

Now apply this setup to (1.1). Let X: R2

+ -» Rd, d = 2 or 3, be the random field
defined by

X(T) = Wt- Ws, for T = (s, ί). (1.5)

Here R2

+ = {(s, t)\s ^ 0, f ^ 0}. We have

Theorem 1. For any bounded Borel set B^R2

+, X has a local time on B, and

In particular, with H = [0,/z]2, α(x,#)eL2CRd, dλd). Formal expressions of the
form (1.1), with x = 0, are usually interpreted as

lim J J gk(Wt - Ws)dsdt = lim J gk(X(T))dT, (1.6)
fc~* oo o 0 &-* oo H

for a sequence of functions gk converging weakly to δ. For simplicity we take

/2π\"d / 2

gfk(x) = ( ~r~ I exP( — fcx2/2). Using (1.5) we have
\ k J

lim J gk(X(T))dT= lim J a(x9H)gk(x)dλd(x). (1.7)
/C~» 00 H k-^ 00 Rd

If α(x, //) were continuous at x = 0, this limit would be simply α(0, //). Unfortunately,
α(x,H) cannot be continuous at x = 0, and in fact the limit in (1.7) is infinite. As we
now explain, this is related to the fact that the image of a Brownian path in R2 or R3

has zero Lebesgue measure (Itό and McKean [1965]) and consequently Wt itself
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does not have a local time. Let v[0th] be the occupation measure for W on [0, h]. Then

μH(u] = e^w<-w^dsdt = |vA

[ 0 f f c ](n)l2, (1.8)
0 0

so that μH ^ 0, and the monotone convergence theorem now shows that

lim j u(x,H)gk(x)dλd(x)
fc-» 00 jRrf

= lim (2πΓ' J x(x,H)($eiu'xe-u2l2kdu)dld(x)
k^ca R,ι

= lim (2π)-d\μH(u)e-u2l2kdu = (2πΓd\μH(u)du
/c-> oo

= JIW")I2Λ<, by (1.8). (1.9)

But, since J/Ff does not have a local time, a fortiori v[0 > Λ ] does not have an L2

density, so that (1.9) is infinite.
When d = 2, Varadhan in an appendix to Symanzik [1969] has described a way

to "renormalize" (1.1). Instead of using (1.6), which we saw gives oo , Varadhan shows
that it is possible to choose, independently of the path, a sequence of constants

h h
2cfc -> oo such that J J gk(Wt — Ws)dtds — ckh converges in L2(dP). This "renormalized"

o o
version of (1.1) is acceptable for the purposes of quantum field theory.

In this paper we focus on a different, and complementary, aspect of ( 1 . 1 ). We shall
see that the infinite result in (1.6), for both two and three dimensions, stems from the
diagonal A in H = [0, h]2. In fact, we will prove that for any bounded Borel set B in
#+(ε) = {(s, ί)|s, t ̂  0,|s — t| ^ ε},ε > 0 arbitrary, a(x,£) is a continuous function of
x, and then we find the simple identity J \δx(Wt - Ws)dsdt = α(x,£). (By the

B

continuity of the paths, these results persist for x ^ 0 even if Br\Δ ^ 0.) In our
opinion, given the work of Varadhan, the main obstruction to carrying out
Symanzik's quantum field theory program is in understanding the behavior of
α(x, B) for B ̂  R2

+ (ε). We present here a detailed analysis of the local behavior of
α(x,B).

Our main theorem is

Theorem 2. IfB is a bounded Borel set in R2

+ (ε)for some ε > 0, then for any compact
K ^Rd we can choose a version ofu(x,B) such that a.s.

| -
owF

x.yeK X~y\μ

for any β < 1 if d = 2, and any β < 1/2 if d = 3.

Remark. Version refers to the fact, mentioned after (1.3), that oφc, B) can be altered
on sets of measure zero dλd(x). We can in addition require that for each fixed x, α(x, )
be a finite measure on R2

+ (ε).
In proving Theorem 2 we need the following result which is of interest by itself.
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Lemma 1. IfB is a bounded Borel set in R2

+ (ε)for some ε > 0, then for any k we can
find a version of α(x, B) with

a(x,B}eLk(dϊP) for all x.

A celebrated theorem of Trotter [1958] says that the local time α(x, [0,/z]) for
(onedimensional) Brownian motion, Wt, is a continuous function of (x, h). Our next
theorem is an analogue of this. Let

Theorem 3. We can choose a version of the local time such that, a.s., oφc, Qhlyh2) is a
continuous function of(x,h1,h2).

We next study the behavior of α(x,5) as a function of B^R2+(ε).
Theorem 4 will follow easily from our results and the general theory.

Theorem 4. For each compact K ^ Rd, and any p < 1 — d/4, there is a constant c,
and a random variable δ = δ(ω) such that, a.s.,

α(x, B) ̂  c(λN(B))p, for all xεK,

for any square B ̂  R2 (ε)n[0, h]2 of edge length less than δ.
With more work we can show

Theorem 5. For each xeRd, Te#2 (ε) there exist a.s. finite random variables c, δ
such that a.s.

for any square B c K2 (ε)n[0,/f)2 of edge length less than δ, with a corner at T.
Taylor [1966] for d = 2, and Fristedt [1967] ϊoτd = 3, have greatly improved on

the above mentioned theorem of Dvoretzky, Erdόs and Kakutani by showing that
the (Hausdorff) dimension of the set of double points of a Brownian path is 4 — d.
(Wolpert [1978] has provided an alternate proof for d = 2.) Again, our results
together with the general theory will easily yield

Theorem 6. With probability one,

dim{(s,t),s*t\Ws=Wt}=2-d/2.

Using Kaufman's ideas [1969] in the manner explained in Geman, Horowitz
and Rosen [1981], we recover the Taylor-Fristedt result.

Theorem 7. With probability one,

dim{x|x- Ws= Wt,s£t]=4-d.

Finally, let D = [x\x = Ws = Wt, s^t} be the set of double points. Using
Theorem 5 and Kaufman [1969] we can show that, e.g. when d = 2,D has non-zero
Hausdorff measure with respect to ί2|logί|6 + ε. It is a conjecture of Taylor [1973]
that D has zero Hausdorff measure with respect to ί2|logί|2. We have no conjecture
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as to the correct Hausdorff measure function for D, but will put forward the
conjecture that the correct measure function for {(s,ί), s^t\Ws = Wt} is that
appearing in Theorem 5: ί2~d / 2(log|logf|)d / 2.

2. Proofs of Theorems 1-3, and Lemma 1

Proof of Theorem L Let B a [0,/z]2 be a Borel set. It suffices to prove that

Eίl\μB(u)\2dά«x>. (2.1)
\j?d /

From the definition (1.2) of μB we have

$\μB(u)\2du}= J E(\μB(u)\2)du
Ra J Ra

= j f $E(e""mT)-X(T'»)dTdT'du
Rd BB

— Γ f f 0-(ll2W(u'(X(T)-X(T')))jηrjrrt j Π Ί\— } ] } e ui ai au, \^ ^)

where as usual V(x) = E(x2) - E2(x). Let T=(ί l 9ί2), T' = (ί3,ί4). If π denotes a
permutation of (1,2,3,4), let Δ(π) be the set of (ί l 5ί 2 Jf 3,ί 4)eK 4 such that

By checking the few possibilities it is easy to verify that

V(u (X(T) - X(T'))) = I w|2[(ίπ(2) - ίn(1)) + (ίπ(4) - ίπ(3))]

for (T, T')eA(π). Changing variables

( t i 9 t 2 , £3, ^4/~^(^π(l)' ^π(2) ~~ ^π(l)' ^π(3) ~ ^π(2)5 ^π(4) "~ ^π(3)λ

we see that the integral in (2.2) over (B x B)nA(π) is bounded by

ίί '"ί e (1/2^u\2(S2 + S4)ds1 -ds4du <c § (I + u2) 2du, (2.4)

which is finite for d < 4. In (2.4) we used the bound

\e~W2sds=l~e Γ <c(\ + \u\2Yl. (2.5)
0 l«|2 "

Thus (2.2) is finite over each (B x B)nA(π)9 and there are only a finite number of
permutations.

Proof of Lemma L This follows from the arguments used in proving Lemma 1 of
Rosen [1981] and the following lemma which is basic for all our results.

Lemma 2. Let B be a bounded Borel set in R2

+ (ε) for some ε > 0. Then
k Γ / k M

J J Π ^Ίyexp -(1/2)VI X ui X ( T j ) \ \dTdu<ao (2.6)
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for all keZ + and any y <\
1/2 iid = :

k k

In Lemma 2, uί,...ukeRd,T1,...,TkeR2, and dT = Y[dTj, du = \\duj.
7 = 1 7 = 1

Section 3 is devoted to proving this lemma.

Proof of Theorems 2 and 3. Using Lemmas 1 and 2 we can show that for any x and y

k

Rdl<j=l

x J e x p | - ( l / 2 ) v ( X HJ' X(Γ' ))μr</ι<.
sk L \ j = ι / J

The details are spelled out in the proof of Lemma 1 of Rosen [1981]. Using the
bound \e~iuJ'x — e~ίuJ'γ\ < \uj\y\x — y\y for any γ < 1, together with Lemma 2 shows
that for any /ceZ +

1 i f d = 2

1/2 i f d = 3'

This is an "integrated" version of Theorem 2. To go from this to Theorems 2 and 3
we need only refer to Sect. 27 of Geman and Horowitz [1980].

3. Proof of Lemma 2.

Proof of Lemma 2. Let Tj = (sj9tj) and write (z1,z2,...,z2fc) = (51,ί1,52,ί2,...5fc,ίk).
We may assume B c {(5, t)\t > s}9 for otherwise, in the region s / > f / , change uj

to — uj. We may also assume that Bk is replaced by Bk n A(π) for some permutation π
of {1,..., 2/c}, where A(π) = { ( z ί 9 . . . 9 zk)\zπ(1) < zπ(2) < zπ(2k)}, since (2.6) is a sum of
integrals over such regions.

Let us define disjoint intervals

Rt = [zn(i)9zπ(i + υ], 1 ^ i ̂  2k - 1. (3.1)

Setting X(Rt) = X(zπ(i),zn(i +1}), we see that

X(TJ)= X X(Ri). (3.2)

The X^ ) are independent so that

on introducing the notation

M f = y uj. (3.4)
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For later use, we let .R0 be an interval on the left of R19 ana R2k an interval on the
right of R2k _ j . We set ΰ° = 0, U2k - 0.

By (3.3), to prove (2.6) it suffices to show that

J J fl\ul\vQχp(-Σ\ΰi\2\Ri\)dTdu<oo. (3.5)
Rd'< BkπA(π) 1=1 i

From this, it is clear that we may assume \J[sj9 ί,.] connected — by working with
j

each component separately.
Each interval [si?ίj is a union of adjacent jR;. We define /(/) and r(ΐ) by re-

quiring that Rf(l) is the first and R^- ^ the last of the R. intervals in [s^fj. Thus

{5hίj} =Λ / ( I ) uR / ( I ) + 1 u. . .uΛ r ( l ) _ 1 . (3.6)

Equivalently, zπ/(/) - sl9znr(l) = tt.
Clearly from (3.4)

,_;«> -"(o-i (3 7)
(^ — U — U — U ,

and therefore

. (3.8)

Since the 2k points si9 tj can be assumed distinct, the maps

/:{!,. ..,*} + {!,. ..,2fc-2},

r : { l , . . . , f c } + {2,...,2fc],

are injective with disjoint range. Now (3.8) yields

Π| ι/ |^Π( |ΰ / ( / ) | + |^^
1=1 1=1

^c2γ[(l + \ff\2y/2, (3-9)
i = 1

since each i is either an/(/) or an r(l) for a unique /, and either an/(m) - 1 or an
r(m) — 1 for a unique m, and we always have x < 1 + x2.

To estimate the inner integral in (3.5),

J expί-ΣIS^I^DdT, (3.10)
BkπA(κ) i

we first change variable: (T1

9...9T
k)-^(zn(ί)9\R1\9R2\,...,\R2k-1\R2k-1\). Since

\Sj — t j \ ^ ε 9 for each 7, l^y 'g/c, we can choose some Rd(j} ^ [sj9 ί,-] such that
|JRd ( j ) |^fi/2fc. (Note: the map d(-) is not necessarily injective.) For the d\Rd(j}\
integral we use

J e-\^^dt^ce-δ\^2^c(l +\ΰd(j)\2Γ2k. (3.11)
El 2k
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For the other integrals we use (if B £ [0,/z]2)

o \ύ I

Using (3.9), (3.11), (3.12) we see that the integral in (3.5) is bounded by

j Π(i + lt/ / oη 2)- 1 +^ / 2(i + ι^η2)-1+^2(i + |wd°η2)-1^
Rdkj=l

Γ k -fU) 2 -2 + y T/2

~U-M + u j
Γ k Ίl/2

x r T\ (\+ \ur(^\2}~2 + y(\+\ud(^\2}~2du
I dk —

(3.13)

We will prove the following simple lemma.

Lemma 3. The ΰf(1\ ΰf(2\ ..., ΰf(k) are a nonsingular set of coordinates for Rdk.

By this lemma, changing coordinates in the first integral of the bottom line of
(3.13), we see that this integral is finite if

which means d < 4 — 2y, i.e. y < 2 — d/2.
The second integral is handled similarly with the help of the following less simple

lemma. This will complete the proof of Lemma 2.

Lemma 4. We can choose a nonsingular set of coordinates for Rdk from the set

Before proving Lemmas 3 and 4 we offer a simple illustration. Let fe = 2 and
S1<s2<t2<t1. Then ΰ1=u\ u2 = u1 + u2, ΰ3=u\ M4 = 0, /(I) = 1, /(2) = 2
and clearly {w1,^2} are a nonsingular set of coordinates for R2d. Here r(l) = 4,
r(2) = 3, d(l) =d(2) =2, and we see again that {w3,i/2} are a nonsingular set of
coordinates for R2d.

Proof of Lemma 3. Let p be the permutation of {!,..., fe} suchthat/p(l) <fp(2) < ...
</p(fe). We prove our lemma by showing inductively that

span{^ω|7 ̂  /} = span{Mp(Λ|7 ̂  /} for / = 1, . . . , fc. (3.14)

Equation (3. 14) is true for / = 1, since necessarily ΰfp(1} = ΰ1 = up(1\ Assume (3. 14) for
/= l , . . . , m — 1. Then by the definitions of/ and p

ύfp(m] - up(m}E spsin{up(j)\j ^ m - 1},

so that (3.14) holds for / = m if it holds for / = m — 1.
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Proof of Lemma 4. We cannot expect wκι), ΰr(2\..., ΰr(k} alone to be a non-singular
set of coordinates since ΰr(k} = U2k = 0. We begin by showing

span{zr(1>, ff(ί\ ΰr(2\...,«**>} = span{«Ί[s i,ί,.]n([jR r ( j )) φ 0}. (3.15)
j

A more suggestive way of expressing (3.15) is to call uj a component of ti if it appears
in (3.4), and then (3.15) says that the span of (if(1),..., ΰr(k}} is equal to the span of its
components.

Let q be the permutation of {1,..., k) such that rq(\) < rq(2) < ... < rq(k\ We
establish (3.15), by showing, using downward induction, that

)Rfq(j))ί0}, /=! , . . . ,* . (3.16)
i

Equation (3.16) is easy for / = fc, since rq(k) = 2k, and both spans are 0.
Assume (3.16) for / = m + 1. Then by the definitions of r and q the components of

ΰrq(m} with the one possible exception of uq(m + υ are included among the components
of ΰrq(m+ υ, so that (3.16) is true for / = m if it is true for / = m + 1. This proves (3.15).

We now study these ul which do not appear in (3.15). Consider an i such that

[5ίΛ ] n U^KJ) = 0 Since Rd(i) c [s/5ίj, we have that ul is a component of ΰd(l\
j

Since ul is not a component of any ΰr('\ we must have (if r(l) is the first of the r's with
d(ϊ) < r(l)) that the component of ΰd(l} — ul are included among the components of
wκί). Hence from (3.15)

span{^(1),...,^(kUd(ί)}^K}.

This now shows

span{^(1),..., ΰr(k\ ΰd(i\..., ΰd(k}} = Rdk

and proves Lemma 4.

4. Proofs of Theorems 4, 5 and 6

Proof of Theorem 4. Consider the inner integral in (3.5)

Let p be any real number such that l/p < 1 - d/4. Then if 1/p + l/q = 1, we have

d<4/4. (4.2)

Applying Holder's inequality to (4.1) we find

J "̂̂  \ ~,_ ,, , . /
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The proof of Lemma 2 shows that

k

ί < 00

as long as

d < 4/q - 2γ. (4.4)

By (4.2) we can choose y so small that (4.4) holds. As in Lemma 1 and Theorem 2 this
implies

and

) ̂  c(λN(B))k/p\x - y\k\

With these two inequalities, the proof of our theorem now follows from Sect. 27 of
Geman and Horowitz [1980].

Proof of Theorem 5. Let B = [a, a + h~\ x [b, b + h]. We can assume a<b, and h so
small that a -f h 4- ε/2 rg b. In this situation we can make a more detailed analysis of

where we are using the notation of the proofs of Theorem 2 and Lemma 2. Note that
in our case (B a square) all sf < ί^ . Let π1 , π2 be permutations of { 1 , . . . , /c], and define

A(π2) = { ( t ί 9 . . . 9 tk)\ ίπz(1) < ίπz(2) < < ίπ2(k)},

respectively. Then in z)(π j) x /I(π2) we have

Ul =

w711^, 1 ̂ i^
;= i

uπ2θ-), k + 1 ̂  i ̂  2fc - 1

so that

X

Γ 2k-1 "I

ί l e x p l ~ Σ ff2\Rι\/2^dudT

J e x p - |« ' | 2 |Λ f | /2
Δ(π2))\Rdk
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:

Γ 2k- 1
RL exp| ~«?»'"' '

*,2 Σ J

I/2

dT

Δ ( π 2 ) i = 1

But since tn2(l}-snι(k) ^ ε/2, the last line is then

ί Y l K i Γ

\Rj\-^dt1...dtk

,<,,<J<::/<,.,s.flft^:τ
and by the lemma in Kono [1977] this is

dt,__^
4/4-

(k-l)l

Our theorem now follows as in Kono [1977]. (Although this work seems to
require d/2 < 1, with our estimate it can easily be modified.)

Proof of Theorem 6. Let us first use an argument of Tran [1976], to show that, a.s.,

α(0,#2

+(ε))>0. (4.5)

Let Sn = {(s,t)\n- 1 ̂ s,t^n, s-f|^}. Note that α(0,SJ are independent
identically distributed random variables, since Brownian motion has independent
increments. Furthermore

£(α(0,51))-(2π)-1 J J j e-(1/2^2^-^dsdtdu> 0. (4.6)
Rd Si

Hence if An = {α(0, Sn) > 0}, we have

P(An) = δ>0 (4.7)

for some δ > 0, and all n = 1, 2, . . . The Borel-Cantelli lemma then shows

P(An infinitely often) = 1 . (4.8)

which implies (4.5).
We now follow Adler [1978], easily modified to cover d j = l . His Lemma 5

together with (4.5) and our Theorem 4 show that, a.s., for every ε > 0

)| Ws=Wt}^2- d/2. (4.9)
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On the other hand, the Brownian path is Holder continuous of any order < £, so
that Adler's Lemma 7, together with our Theorem 2, shows that, a.s., for any ε > 0

dim{(s, t)eR2

+(s)\ Ws=Wt}^2- d/2. (4.10)

These prove Theorem 6.
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