Math 330: Exam \#1 Review Sheet

Exam \#1: Friday, February 21, 2020

(1) For each of the following first order equations, construct approximate graphical solutions by plotting the direction field (the slope) and several solution curves.
a. $\frac{d y}{d x}=y\left(y^{2}-9\right)$
b. $\frac{d y}{d x}=-x / y$
c. $\frac{d y}{d x}=y^{3}-y^{2}-2 y$

Think about the last example. Suppose some system is modeled by the equation:

$$
\frac{d y}{d t}=y^{3}-y^{2}-2 y
$$

Someone's life (or job) depends on knowing what the long-time behavior of the solution, $y(t)$ is for several different initial conditions: (a) $y(t=0)=1$, (b) $y(t=0)=2$, (c) $y(t=0)=3$.

Use your graphical solution to the problem to determine:

$$
\lim _{t \rightarrow \infty} y(t)
$$

for each of these initial value problems.
(2) Classify the following ODE's as linear, exact, homogeneous or seperable and find the general solution.
a) $e^{x} y^{2}+2 x\left(e^{y}+1\right)+\left(2 y\left(e^{x}+1\right)+x^{2} e^{y}\right) y^{\prime}=0$
b) $y^{\prime}+\frac{2}{x} y=\frac{\cos x}{x^{2}}$
c) $y^{\prime}=\frac{x-e^{-x}}{y+e^{y}}$
d) $y^{\prime}=\frac{y^{2}+2 x y}{x^{2}}$
(2a) Find an implicit solution to the following initial value problem:

$$
e^{x} y^{2}+2 x\left(e^{y}+1\right)+\left(2 y\left(e^{x}+1\right)+x^{2} e^{y}\right) y^{\prime}=0 ; \quad y(0)=2
$$

(3) Consider the following equation: $y^{\prime \prime}-2 y^{\prime}+y=0$
a) Find the general solution.
b) Find the specific solution when $y(0)=y^{\prime}(0)=1$.
c) Now consider the non-homogeneous equation:

$$
y^{\prime \prime}-2 y^{\prime}+y=e^{-x}
$$

Find the general solution.
(4) Consider the differential equation:

$$
y^{\prime \prime}-5 y^{\prime}+4 y=f(x)
$$

a) Find the solution to the homogeneous problem, $f(x)=0$.
b) Find the general solution when $f(x)=x^{2}+1$.
(5) Verify that $y=x$ is a homogeneous solution to the differential equation:

$$
x^{2} y^{\prime \prime}-x(x+2) y^{\prime}+(x+2) y=2 x^{3} \quad x>0
$$

a) Use reduction of order to show that a second homogeneous solution is $y=x e^{x}$.
b) Find the general solution to the non-homogeneous problem. (Hint: Remember the form of the ODE used to derive the Variation of Parameters formula!)
(6) Consider the differential equation:

$$
y^{\prime \prime}-6 y^{\prime}+9 y=f(x)
$$

a) Find the solution to the homogeneous problem, $f(x)=0$.
b) Find the general solution when $f(x)=e^{2 x}$.
c) Find the general solution when $f(x)=e^{3 x}$
d) Find the general solution when $f(x)=x e^{3 x}$ (???)
(7) Consider the differential equation:

$$
y^{\prime \prime}+4 y=f(x)
$$

a) Find the solution to the homogeneous problem, $f(x)=0$.
b) Find the general solution when $f(x)=\cos x$.
c) Find the general solution when $f(x)=\cos 2 x$.
(8) Consider the forced mechanical system described by

$$
y^{\prime \prime}+\omega_{0}^{2} y=\cos (5 x)
$$

where ω_{0} is the natural frequency of the unforced system.
a) Write down the general solution to the homogeneous problem for any value of ω_{0}.
b) Describe how the long time behavior of the forced system changes as ω_{0} changes.
c) For what value of the natural frequency, ω_{0}, is the forcing function, $f(x)=\cos (5 x)$, in RESONANCE with the homogeneous solution?

