NAME:

1. Writing the forcing function, $f(t)$, shown in the graph above in terms of Heaveside step functions, $H(t)$.

Then write down the Laplace transform $\mathcal{L}[f(t)](s)$, of this function.
2. Find the function $f(t)$ that satisfies:

$$
f(t)=\mathcal{L}^{-1}\left[\frac{s e^{-9 s}}{s^{2}+8 s+52}\right](t)
$$

3. Use Laplace Transform techniques to solve the following IVP:

$$
y^{\prime \prime}+4 y^{\prime}+20 y=1 ; \quad y(0)=0, y^{\prime}(0)=0
$$

Extra Credit: Use your answer to write down the solution to:

$$
y^{\prime \prime}+4 y^{\prime}+20 y=f(t) ; \quad y(0)=0, y^{\prime}(0)=0
$$

where $f(t)$ is the forcing function shown in problem \#1.

NAME:

1. Writing the forcing function, $f(t)$, shown in the graph above in terms of Heaveside step functions, $H(t)$.

Then write down the Laplace transform $\mathcal{L}[f(t)](s)$, of this function.
2. Find the function $f(t)$ that satisfies:

$$
f(t)=\mathcal{L}^{-1}\left[\frac{s e^{-3 s}}{s^{2}+2 s+401}\right](t)
$$

3. Use Laplace Transform techniques to solve the following IVP:

$$
y^{\prime \prime}+6 y^{\prime}+73 y=1 ; \quad y(0)=0, y^{\prime}(0)=0
$$

Extra Credit: Use your answer to write down the solution to:

$$
y^{\prime \prime}+6 y^{\prime}+73 y=f(t) ; \quad y(0)=0, y^{\prime}(0)=0
$$

where $f(t)$ is the forcing function shown in problem \#1.

NAME:

1. Writing the forcing function, $f(t)$, shown in the graph above in terms of Heaveside step functions, $H(t)$.

Then write down the Laplace transform $\mathcal{L}[f(t)](s)$, of this function.
2. Find the function $f(t)$ that satisfies:

$$
f(t)=\mathcal{L}^{-1}\left[\frac{s e^{-\pi s}}{s^{2}+8 s+97}\right](t)
$$

3. Use Laplace Transform techniques to solve the following IVP:

$$
y^{\prime \prime}+10 y^{\prime}+125 y=1 ; \quad y(0)=0, y^{\prime}(0)=0
$$

Extra Credit: Use your answer to write down the solution to:

$$
y^{\prime \prime}+10 y^{\prime}+125 y=f(t) ; \quad y(0)=0, y^{\prime}(0)=0
$$

where $f(t)$ is the forcing function shown in problem $\# 1$.

