1. Find the derivative, $\frac{d y}{d t}$ of the following function where $k=$ some constant:

$$
y(t)=t \sin (k t)
$$

2. If $f(x, y)=\cos (x) \sin (y)$, find $\frac{\partial f}{\partial y}$.
3. Show that $y(t)=\mathrm{e}^{-a t}$ satifies the equation:

$$
\frac{d^{2} y}{d t^{2}}=a^{2} y
$$

1. Find the derivative, $\frac{d y}{d t}$ of the following function where $k=$ some constant:

$$
y(t)=t \cos (k t)
$$

2. If $f(x, y)=\sin (x) \cos (y)$, find $\frac{\partial f}{\partial y}$.
3. Show that $y(t)=\mathrm{e}^{a t}$ satifies the equation:

$$
\frac{d^{2} y}{d t^{2}}=a^{2} y
$$

1. Find the derivative, $\frac{d y}{d t}$ of the following function where $k=$ some constant:

$$
y(t)=t \mathrm{e}^{k t}
$$

2. If $f(x, y)=\cos (x) \sin (y)$, find $\frac{\partial f}{\partial x}$.
3. Show that $y(t)=\cos (a t)$ satifies the equation:

$$
\frac{d^{2} y}{d t^{2}}=-a^{2} y
$$

