Reciprocals of Binary Power Series

Joshua N. Cooper
Institute of Theoretical Computer Science
Zürich, Switzerland

Dennis Eichhorn
California State University, East Bay

Kevin O’Bryant
City University of New York, College of Staten Island

Research supported by NSF-DMS grants 0202460 and 0303272.
A Few Identities

\[
\left(\sum_{n \geq 0} p(n) q^n \right) \left(\sum_{n = -\infty}^{\infty} q^{n(3n-1)/2} \right) \equiv 1 \pmod{2}
\]
A Few Identities

\[
\left(\sum_{n \geq 0} p(n) q^n \right) \left(\sum_{n = -\infty}^{\infty} q^{n(3n-1)/2} \right) \equiv 1 \pmod{2}
\]

\[
\left(1 + \sum_{n \geq 0} q^{2n} \right) \left(\sum_{n \geq 0} q^{2n-1} \right) \equiv 1 \pmod{2}
\]
Let
\[
\left(1 + \sum_{n \geq 0} q^{2n}\right) \left(\sum_{n \geq 0} q^{2n-1}\right) = \sum_{k \geq 0} R(k) q^k.
\]
A Proof

Let

\[
\left(1 + \sum_{n \geq 0} q^{2^n} \right) \left(\sum_{n \geq 0} q^{2^n-1} \right) = \sum_{k \geq 0} R(k)q^k.
\]

If \(R(k) > 0 \), then

\[k = 2^n + 2^m - 1, \]

and if \(n \neq m \)

\[k = (2^n) + (2^m - 1) = (2^m) + (2^n - 1), \]

so \(R(k) = 2 \).
Let
\[
\left(1 + \sum_{n \geq 0} q^{2^n}\right) \left(\sum_{n \geq 0} q^{2^n-1}\right) = \sum_{k \geq 0} R(k)q^k.
\]

If \(R(k) > 0 \), then
\[
k = 2^n + 2^m - 1,
\]
and if \(n \neq m \)
\[
k = (2^n) + (2^m - 1) = (2^m) + (2^n - 1),
\]
so \(R(k) = 2 \).

If \(n = m \), then
\[
k = (2^n) + (2^m - 1) = (0) + (2^{n+1} - 1),
\]
and so \(R(k) = 2 \).
A Few Identities

\[
\left(\sum_{n \geq 0} p(n)q^n \right) \left(\sum_{n = -\infty}^{\infty} q^{3(3n-1)/2} \right) \equiv 1 \pmod{2}
\]

\[
\left(1 + \sum_{n \geq 0} q^{2n} \right) \left(\sum_{n \geq 0} q^{2n-1} \right) \equiv 1 \pmod{2}
\]

\[
(1 + q)(1 + q + q^2 + q^3 + \cdots) \equiv 1 \pmod{2}
\]
A Few Identities

\[
\left(\sum_{n \geq 0} p(n)q^n \right) \left(\sum_{n=-\infty}^{\infty} q^{3(3n-1)/2} \right) \equiv 1 \pmod{2}
\]

\[
\left(1 + \sum_{n \geq 0} q^{2n} \right) \left(\sum_{n \geq 0} q^{2n-1} \right) \equiv 1 \pmod{2}
\]

\[
(1 + q)(1 + q + q^2 + q^3 + \cdots) \equiv 1 \pmod{2}
\]

Nonnegative integer sets \(A \) and \(B \) are reciprocals if their generating functions are reciprocals in \(\mathbb{F}_2[[q]] \).

\[
A = \{0, 1\}, \quad B = \{0, 1, 2, 3, \ldots\}
\]

\[
A = \{0, 1, 2, 4, 8, 16, \ldots\}, \quad B = \{0, 1, 3, 7, 15, \ldots\}
\]
Suppose

\[(1 + a_1q + a_2q^2 + \cdots) (1 + b_1q + b_2q^2 + \cdots) = 1.\]
What it means

Suppose

\[(1 + a_1 q + a_2 q^2 + \cdots) \ (1 + b_1 q + b_2 q^2 + \cdots) = 1.\]

The coefficient of \(q^n\) is

\[b_n + b_{n-1} a_1 + b_{n-2} a_2 + \cdots + b_2 a_{n-2} + b_1 a_{n-1} + a_n = 0.\]
What it means

Suppose

\[(1 + a_1 q + a_2 q^2 + \cdots) (1 + b_1 q + b_2 q^2 + \cdots) = 1.\]

The coefficient of \(q^n\) is

\[b_n + b_{n-1}a_1 + b_{n-2}a_2 + \cdots + b_2 a_{n-2} + b_1 a_{n-1} + a_n = 0.\]

Remark: For every set \(A\) there is a \(B\) such that...
What it means

Suppose
\[(1 + a_1q + a_2q^2 + \cdots) (1 + b_1q + b_2q^2 + \cdots) = 1.\]

The coefficient of q^n is
\[b_n + b_{n-1}a_1 + b_{n-2}a_2 + \cdots + b_2a_{n-2} + b_1a_{n-1} + a_n = 0.\]

Remark: For every set A there is a B such that...

Remark: $\mathcal{F} \in \mathbb{F}_2[[q]]$ is invertible if and only if...
If \(\max A = d \), then

\[
b_n = b_{n-1}a_1 + b_{n-2}a_2 + \cdots + b_{n-d}a_d.
\]

The sequence \((b)\) is a linear recurrence sequence with boundary \(b_0 = 1\), \(b_{-1} = 0\), \(b_{-2} = 0\), \ldots
If \(\max A = d \), then

\[
b_n = b_{n-1}a_1 + b_{n-2}a_2 + \cdots + b_{n-d}a_d.
\]

The sequence \((b)\) is a linear recurrence sequence with boundary \(b_0 = 1\), \(b_{-1} = 0\), \(b_{-2} = 0\), \(\ldots\)

- \((b)\) is periodic.

- \((b)\) may have more 0 than 1 (when \(d\) is small)

- If \(q\) generates the multiplicative group of \(\mathbb{F}_2[q]/(A)\), then every binary word of length \(d\) appears in \((b)\) except 0000 \(\cdots\) 000. This is called a reduced de Bruijn cycle.

- Period length = \(2^d - 1\), with \(2^{d-1}\) ones. Density slightly larger than \(1/2\).
The points \((n, \delta(\bar{P}_n))\), where the coeffs of \(P_n\) are the binary expansion of \(n\).
• What are the possible densities of reciprocals of finite sets?
• Is the bias toward $< 1/2$ a law of small numbers?
If $\mathcal{P}(q)$ is a polynomial, then there is another polynomial \mathcal{P}^* and a positive integer D such that $\mathcal{P}\mathcal{P}^* = 1 + q^D$. We call the minimal such D the order of \mathcal{P}.
If $\mathcal{P}(q)$ is a polynomial, then there is another polynomial \mathcal{P}^* and a positive integer D such that $\mathcal{P}\mathcal{P}^* = 1 + q^D$. We call the minimal such D the order of \mathcal{P}.

Theorem: If \mathcal{P} has degree d and order $2^d - 1$, then

$$\delta(\bar{\mathcal{P}}) = \frac{2^{d-1}}{2^d - 1}.$$
If $\mathcal{P}(q)$ is a polynomial, then there is another polynomial \mathcal{P}^* and a positive integer D such that $\mathcal{P}\mathcal{P}^* = 1 + q^D$. We call the minimal such D the order of \mathcal{P}.

Theorem: If \mathcal{P} has degree d and order $2^d - 1$, then

$$\delta(\bar{\mathcal{P}}) = \frac{2^{d-1}}{2^d - 1}.$$

Theorem: If \mathcal{P} has order larger than 3, then

$$\min\{\delta(\bar{\mathcal{P}}), \delta(\bar{\mathcal{P}}^*)\} \leq \frac{1}{2}.$$
If $\mathcal{P}(q)$ is a polynomial, then there is another polynomial \mathcal{P}^* and a positive integer D such that $\mathcal{P}\mathcal{P}^* = 1 + q^D$. We call the minimal such D the order of \mathcal{P}.

Theorem: If \mathcal{P} has degree d and order $2^d - 1$, then

$$\delta(\bar{\mathcal{P}}) = \frac{2^{d-1}}{2^d - 1}.$$

Theorem: If \mathcal{P} has order larger than 3, then

$$\min\{\delta(\bar{\mathcal{P}}), \delta(\bar{\mathcal{P}}^*)\} \leq \frac{1}{2}.$$

Proposition: The reciprocal of an eventually periodic set is one too.
Quadratic Sequences

\[\Theta(c_1, c_2) := \left\{ c_1 n + c_2 \frac{n(n-1)}{2} : n \in \mathbb{Z} \right\} \]
\[\Theta(c_1, c_2) := \left\{ c_1 n + c_2 \frac{n(n - 1)}{2} : n \in \mathbb{Z} \right\} \]

WOLOG: \(\gcd(c_1, c_2) = 1, \ 0 \leq 2c_1 \leq c_2 \)
Quadratic Sequences

$$\Theta(c_1, c_2) := \left\{ c_1 n + c_2 \frac{n(n - 1)}{2} : n \in \mathbb{Z} \right\}$$

WOLOG: $\gcd(c_1, c_2) = 1$, $0 \leq 2c_1 \leq c_2$

$$\Theta(0, 1) = \left\{ \binom{n}{2} : n \geq 1 \right\}$$

$$\Theta(1, 2) = \left\{ n^2 : n \geq 0 \right\}$$

$$\Theta(1, 3) = \{ \text{pentagonals} \}$$
The Experimental Density of the Inverse of a Quadratic Sequence

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2090</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5088</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5057</td>
<td>5019</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2114</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>5020</td>
<td>5023</td>
<td>5000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>5002</td>
<td></td>
<td>5045</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>5085</td>
<td>4942</td>
<td></td>
<td>4994</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3854</td>
<td></td>
<td>4062</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>4994</td>
<td>4959</td>
<td>5073</td>
<td>4982</td>
<td>5039</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>5044</td>
<td></td>
<td>5073</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>4985</td>
<td>5002</td>
<td>4973</td>
<td>5071</td>
<td>4963</td>
<td>5090</td>
</tr>
<tr>
<td>14</td>
<td>4391</td>
<td></td>
<td>4445</td>
<td></td>
<td>4109</td>
<td></td>
</tr>
</tbody>
</table>
The Experimental Density of the Inverse of a Quadratic Sequence

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td>2090</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>5004</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>5088</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5057</td>
<td>5019</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>2114</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>5020</td>
<td>5023</td>
<td>5000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>5002</td>
<td></td>
<td>5045</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>5085</td>
<td>4942</td>
<td></td>
<td>4994</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>3854</td>
<td></td>
<td>4062</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>4994</td>
<td>4959</td>
<td>5073</td>
<td>4982</td>
<td>5039</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>5044</td>
<td></td>
<td></td>
<td>5073</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>4985</td>
<td>5002</td>
<td>4973</td>
<td>5071</td>
<td>4963</td>
<td>5090</td>
</tr>
<tr>
<td>14</td>
<td>4391</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4109</td>
</tr>
</tbody>
</table>
The reciprocal of the set $\Theta(c_1, c_2)$, where $0 \leq 2c_1 \leq c_2$ and $\gcd(c_1, c_2) = 1$, has density 0 if $c_2 \equiv 2 \pmod{4}$, and otherwise has density $1/2$.

More precisely, if $c_2 \equiv 2 \pmod{4}$, then

$$
\lim_{n \to \infty} \frac{|\Theta(c_1, c_2) \cap [0, n]|}{n / \log n} = C,
$$

for some positive constant C depending only on c_2. If $c_2 \not\equiv 2 \pmod{4}$, then

$$
\limsup_{n \to \infty} \left| \frac{|\Theta(c_1, c_2) \cap [0, n]| - n/2}{\sqrt{n \log \log(n)/2}} \right| = 1.
$$
Two Modest Conjectures

How many numbers less than N can be written in the form

$$x_0^2 + 2x_1^2 + 4x_2^2 + 8x_3^2 + 16x_4^2 + \cdots,$$

with nonnegative x_i, in an odd number of ways?
How many numbers less than N can be written in the form

$$x_0^2 + 2x_1^2 + 4x_2^2 + 8x_3^2 + 16x_4^2 + \cdots,$$

with nonnegative x_i, in an odd number of ways?

Conjecture: $\sim \frac{2N}{\log N}$.

We know except for $n \equiv 3 \pmod{4}$.
Two Modest Conjectures

How many numbers less than N can be written in the form

$$x_0^2 + 2x_1^2 + 4x_2^2 + 8x_3^2 + 16x_4^2 + \cdots,$$

with nonnegative x_i, in an odd number of ways?

Conjecture: $\sim \frac{2N}{\log N}$.

We know except for $n \equiv 3 \pmod{4}$.

Conjecture: \#\{ $n \leq N : p(n)$ is odd\} $\sim \frac{N}{2}$.
How many numbers less than N can be written in the form

$$x_0^2 + 2x_1^2 + 4x_2^2 + 8x_3^2 + 16x_4^2 + \cdots,$$

with nonnegative x_i, in an odd number of ways?

Conjecture: $\sim \frac{2N}{\log N}$.

We know except for $n \equiv 3 \pmod{4}$.

Conjecture: $\# \{ n \leq N : p(n) \text{ is odd} \} \sim \frac{N}{2}$.

Current bests:

$$\# \geq \left(\frac{\pi^2 \sqrt{3}}{2} - o(1) \right) \frac{\sqrt{N}}{\log N} \quad \text{(D. Eichhorn)}$$

$$\lim_{N \to \infty} \frac{N - \#}{\sqrt{N}} = \infty \quad \text{(Serre)}$$
Let f_1, f_2, \ldots be independent binary random variables, with

$$\mathbb{P}[f_n = 0] \mathbb{P}[f_n = 1]$$

bounded away from 0.

Define $\bar{f}_1, \bar{f}_2, \ldots$ by

$$(1 + f_1 q + f_2 q^2 + f_3 q^3 + \cdots)(1 + \bar{f}_1 q + \bar{f}_2 q^2 + \bar{f}_3 q^3 + \cdots) = 1.$$

Then the number of $\bar{f}_1, \bar{f}_2, \ldots, \bar{f}_N$ that are 1 is $\sim N/2$ with probability 1.
\[\bar{f}_n = \sum_{\bar{x}} f_{x_1} f_{x_2} \cdots f_{x_{\ell}} \]

where the summation extends over all tuples \(\bar{x} = (x_1, \ldots, x_{\ell}) \) with \(n = \sum_{i=1}^{\ell} x_i \) and each \(x_i > 0 \) (\(\ell \) is allowed to vary).
\[\bar{f}_n = \sum_{\bar{x}} f_{x_1} f_{x_2} \cdots f_{x_\ell} \]

where the summation extends over all tuples \(\bar{x} = (x_1, \ldots, x_\ell) \) with \(n = \sum_{i=1}^{\ell} x_i \) and each \(x_i > 0 \) (\(\ell \) is allowed to vary).

\[\bar{f}_n = f_n + f_{n-2i} \bar{f}_i + f_{n-4i} \bar{f}_2 + \cdots f_{n/2} \bar{f}_{n/4} + \text{mess} \]

and \text{mess} depends only on \(f_1, f_2, \ldots, f_{n/2-1} \).
Thus,

$$H[f_n|f_1, \ldots, f_{n/2-1}] \geq H[\sum_{i \in A} f_i|A]$$

where $A = \{n - 2i: 0 \leq i < n/4, \bar{f}_i = 1\}$. Since

- $|A| \to \infty$ (requires easy proof),
- this uncertainty goes to 1/2 (requires proof),
- and so $P[f_n = 0] \to 1/2$ (obvious),
- and consequently $\#\{n \leq N: \bar{f}_n = 0\} \sim N/2$ (obscure Borel-Cantelli Lemma)
Thus,

\[H[f_n|f_1, \ldots, f_{n/2-1}] \geq H[\sum_{i \in A} f_i | A] \]

where \(A = \{n - 2i: 0 \leq i < n/4, \bar{f}_i = 1\} \). Since

- \(|A| \to \infty \) (requires easy proof),
- this uncertainty goes to 1/2 (requires proof),
- and so \(\mathbb{P}[f_n = 0] \to 1/2 \) (obvious),
- and consequently \(\#\{n \leq N: \bar{f}_n = 0\} \sim N/2 \) (obscure Borel-Cantelli Lemma)
Thus,

\[H[f_n|f_1, \ldots, f_{n/2-1}] \geq H[\sum_{i \in A} f_i|A] \]

where \(A = \{n - 2i: 0 \leq i < n/4, \bar{f}_i = 1\} \). Since

- \(|A| \to \infty\) (requires easy proof),
- this uncertainty goes to 1/2 (requires proof),
- and so \(\mathbb{P}[f_n = 0] \to 1/2 \) (obvious),
- and consequently \(\#\{n \leq N: \bar{f}_n = 0\} \sim N/2 \) (obscure Borel-Cantelli Lemma)
Thus,

\[H[f_n|f_1, \ldots, f_{n/2-1}] \geq H[\sum_{i \in A} f_i | A] \]

where \(A = \{n - 2i: 0 \leq i < n/4, \bar{f}_i = 1\} \). Since

- \(|A| \to \infty\) (requires easy proof),
- this uncertainty goes to 1/2 (requires proof),
- and so \(P[f_n = 0] \to 1/2\) (obvious),
- and consequently \(\#\{n \leq N: \bar{f}_n = 0\} \sim N/2\) (obscure Borel-Cantelli Lemma)
Thus,

\[H[f_n|f_1, \ldots, f_{n/2-1}] \geq H[\sum_{i \in A} f_i | A] \]

where \(A = \{n - 2i : 0 \leq i < n/4, \bar{f}_i = 1\} \). Since

- \(|A| \rightarrow \infty\) (requires easy proof),
- this uncertainty goes to 1/2 (requires proof),
- and so \(\mathbb{P}[f_n = 0] \rightarrow 1/2 \) (obvious),
- and consequently \(\# \{n \leq N : \bar{f}_n = 0\} \sim N/2 \) (obscure Borel-Cantelli Lemma)
Plans for future development:

- Take some interesting set of integers, call it A. Find \bar{A}.
- Probabilistic argument is not most general possible.
- arXiv:math.NT/0506496
Conclusion

Plans for future development:

- Take some interesting set of integers, call it A. Find \bar{A}.
- Probabilistic argument is not most general possible.
- arXiv:math.NT/0506496
Conclusion

Plans for future development:

- Take some interesting set of integers, call it A. Find \bar{A}.
- Probabilistic argument is not most general possible.
- arXiv:math.NT/0506496
Plans for future development:

- Take some interesting set of integers, call it A. Find \bar{A}.
- Probabilistic argument is not most general possible.
- arXiv:math.NT/0506496
Plans for future development:

- Take some interesting set of integers, call it A. Find \bar{A}.
- Probabilistic argument is not most general possible.
- arXiv:math.NT/0506496

The End