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Abstract

A symmetric subset of the reals is one that remains invariant under some reflection
x 7→ c − x. Given 0 < ε ≤ 1, there exists a real number ∆(ε) with the following
property: if 0 ≤ δ < ∆(ε), then every subset of [0, 1] with measure ε contains a
symmetric subset with measure δ, while if δ > ∆(ε), then there exists a subset of [0, 1]
with measure ε that does not contain a symmetric subset with measure δ. In this
paper we establish upper and lower bounds for ∆(ε) of the same order of magnitude:
for example, we prove that ∆(ε) = 2ε−1 for 11

16 ≤ ε ≤ 1 and that 0.59ε2 < ∆(ε) < 0.8ε2

for 0 < ε ≤ 11
16 .

This continuous problem is intimately connected with a corresponding discrete
problem. A set S of integers is called a B∗[g] set if for any given m there are at
most g ordered pairs (s1, s2) ∈ S × S with s1 + s2 = m; in the case g = 2, these are
better known as Sidon sets. We also establish upper and lower bounds of the same
order of magnitude for the maximal possible size of a B∗[g] set contained in {1, . . . , n},
which we denote by R(g, n). For example, we prove that R(g, n) < 1.31

√
gn for all

n ≥ g ≥ 2, while R(g, n) > 0.79
√

gn for sufficiently large integers g and n.
These two problems are so interconnected that both continuous and discrete tools

can be applied to each problem with surprising effectiveness. The harmonic analysis
methods and inequalities among various Lp norms we use to derive lower bounds for
∆(ε) also provide uniform upper bounds for R(g, n), while the techniques from com-
binatorial and probabilistic number theory that we employ to obtain constructions of
large B∗[g] sets yield strong upper bounds for ∆(ε).
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1 Introduction

A set C ⊆ R is symmetric if there exists a number c (the center of C) such that c + x ∈ C
if and only if c − x ∈ C. Given a set A ⊆ [0, 1) of positive measure, is there necessarily a
symmetric subset C ⊆ A of positive measure? The answer turns out to be “yes”, and the
main topic of this paper is to determine how large, in terms of the Lebesgue measure of A,
one may take the symmetric set C. In other words, for each ε > 0 we are interested in

∆(ε) := sup

{
δ :

every measurable subset of [0, 1) with measure ε
contains a symmetric subset with measure δ

}
. (1)

It is not immediately obvious that ∆(ε) > 0.
We have dubbed this sort of question “continuous Ramsey theory”, and we direct the

reader to Section 2 for problems with a similar flavor; some of these have appeared in the
literature and some are given here for the first time.

We determine a lower bound for ∆(ε) using tools and ideas from harmonic analysis,
nonstandard analysis, and the theory of wavelets. We also construct sets without large
symmetric subsets using results from the theory of finite fields and probabilistic number
theory. These two lines of attack complement each other, and our bounds yield new results
in additive number theory as well.

Consider first the analogous discrete problem: given a set A ⊆ {1, 2, . . . , n}, how large is
the largest symmetric subset of A? There are ∼ 1

2
|A|2 pairs of distinct elements of A (where

|A| denotes the cardinality of A), and each pair (a, b) has a center a+b
2

which is among the
∼ 2n values {3

2
, 2, 5

2
, 3, . . . , 2n−1

2
}. By the pigeonhole principle, there is some c that is the

center of at least ∼ 1
2
|A|2/(2n) pairs of elements of A. The union of those pairs is a symmetric

set, i.e., there is a symmetric set C ⊆ A with

|C|
n

&
2

n

1
2
|A|2

2n
=

1

2

(
|A|
n

)2

.

In other words, the density of C is roughly at least one-half the square of the density of A.
A Sidon set is a set A of integers with the property that distinct pairs of elements have

distinct sums: if a, b, c, d ∈ A and a + b = c + d, then {a, b} = {c, d}. This is equivalent to
asserting that A has no symmetric subsets with more than 2 elements. It is known [Sin38]
that there is a Sidon set A contained in {1, 2, . . . , n} with |A| ∼

√
n. Thus, if C ⊆ A is a

symmetric set, then
|C|
n
≤ 2

n
∼ 2

(
|A|
n

)2

.

In other words, the density of C is roughly at most twice the square of the density of A.
For the discrete version of the problem, at least, we see that one can guarantee a

“quadratically large” symmetric subset, and that one cannot do better in general.

1.1 Continuous Results

Let λ denote Lebesgue measure on R. We are led by analogy with the discrete problem to
guess that every subset A ⊆ [0, 1) has a symmetric subset with measure 1

2
λ(A)2, and that
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there are subsets A ⊆ [0, 1) that do not have symmetric subsets with measure larger than
2λ(A)2. That is, we are led to guess that 1

2
ε2 ≤ ∆(ε) ≤ 2ε2.

We find the following equivalent definition of ∆(ε) easier to work with than the definition
given in Eq. (1): if we define

D(A) := sup{λ(C) : C ⊆ A, C is symmetric}, (2)

then
∆(ε) := inf{D(A) : A ⊆ [0, 1), λ(A) = ε}. (3)

Write A(x) for the indicator function of a set A, and define the sumset A + A :=
{a1 + a2 : ai ∈ A}. We notice first that the maximal symmetric subset of A with center c is
A∩(2c−A), where 2c−A = {2c−a : a ∈ A}; this intersection has measure

∫
A(x)A(2c−x) dx,

which can be written as the value of the convolution A∗A(2c). This means that D(A) simply
equals the supremum norm ‖A ∗A‖∞. Since supp(A ∗A), the support of the function A ∗A,
equals A+ A (up to a set of measure zero) and is thus contained in [0, 2), we see that

‖A ∗ A‖∞ ≥ ‖A ∗ A‖1

λ(supp(A ∗ A))
=

λ(A)2

λ(A+ A)
≥ 1

2
λ(A)2,

and hence ∆(ε) ≥ 1
2
ε2 (as we had guessed from the analogy with the discrete case). This

lower bound, which we shall call the trivial lower bound on ∆(ε), is not so far from the best
we can derive! In fact, the bulk of this paper is devoted to improving the constant in this
lower bound from 1

2
to 0.591389. Moreover, we are able to establish a complementary upper

bound for ∆(ε) in a manner that we shall discuss in the next section.
In addition to a heavy reliance on Fourier analysis, we make use of wavelets, albeit only

in a rather naive manner. Although much of our argument (and indeed the initial problem
of bounding ∆(ε)) was initially motivated by nonstandard analysis, we do not make direct
use of it here.

Figure 1 shows the precise upper and lower bounds we obtain for ∆(ε)/ε2 as functions
of ε, and Theorem 1.1 gives the highlights:

Theorem 1.1. We have:

i. ∆(ε) = 2ε− 1 for 11
16
≤ ε ≤ 1, and ∆(ε) ≥ 2ε− 1 for 1

2
≤ ε ≤ 11

16
;

ii. ∆(ε) ≥ 0.591389ε2 for all 0 < ε ≤ 1;

iii. ∆(ε) ≥ 0.5546ε2 + 0.088079ε3 for all 0 < ε ≤ 1;

iv. ∆(ε) ≤ 96
121
ε2 < 0.7934ε2 for 0 < ε ≤ 11

16
;

v. ∆(ε) ≤ πε2

(1+
√

1−ε)2
= π

4
ε2 +O(ε3) for all 0 < ε ≤ 1.

Note that π
4
< 0.7854. The upper bound in part (v) of the theorem is superior to the one

in part (iv) in the range 0 < ε < 11
96

(8
√

6π − 11π)
.
= 0.0201. The five parts of the theorem

are proved separately in Proposition 7.1, Proposition 4.12, Proposition 4.16, Corollary 7.4,
and Proposition 7.5, respectively.
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Figure 1: Upper and Lower Bounds for ∆(ε)/ε2

Thus we have established that ε2 is the correct order of magnitude for the function ∆,
and we have improved upon both the constants 1

2
and 2 which appeared in our heuristic. In

the following subsection, we discuss how we might improve the corresponding constants for
the discrete problem as well.

1.2 Connecting the Continuous to the Discrete

It turns out that the upper bounds given in Theorem 1.1(iv)–(v) are derived from number-
theoretic considerations. A set S of integers is called a B2[g] set if for any given m there are
at most 2g ordered pairs (s1, s2) ∈ S×S with s1 + s2 = m (equivalently, if the coefficients of(∑

n∈S z
n
)2

are bounded by 2g). Sidon used B2[1] sets, which are the Sidon sets mentioned
earlier, as a tool in his study of Fourier series. It is perhaps fitting that we now use Fourier
analysis as a tool in our study of B2[g] sets.

Many constructions of B2[g] sets have appeared in recent years. Our constructions of sets
of reals without large symmetric subsets are based on known constructions of B2[g] sets. This
geometric aspect ofB2[g] sets has led us to generalize and optimize these constructions further
and to give improved upper bounds on the density of B2[g] sets contained in {1, 2, . . . , n}.

Given a B2[g] set S ⊆ {1, 2, . . . , n} and any integer m, the union of all pairs (s1, s2) ∈
S×S with s1 +s2 = m is the largest symmetric subset of S with center m

2
, and all symmetric

subsets of S arise in this way. From the definition of a B2[g] set, we see that S contains no
symmetric subset with more than 2g integers. In light of this, it is not surprising (though
it certainly requires proof—see Proposition 5.1) that the largest symmetric subset of the set
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of real numbers

A(S) :=
⋃
s∈S

[s− 1

n
,
s

n

)
⊆ [0, 1) (4)

has measure at most 2g
n

. In other words, ∆
( |S|

n

)
≤ D(A(S)) ≤ 2g

n
.

For technical reasons, it is more convenient for us to speak of B∗[g] sets rather than B2[g]
sets. A set S of integers is called a B∗[g] set if for any given m there are at most g ordered
pairs (s1, s2) ∈ S × S with s1 + s2 = m. Note that the definitions of B2[g] sets and B∗[2g]
sets coincide, but we shall also consider B∗[g] sets with g odd. We introduce the function

R(g, n) := max{|S| : S ⊆ {1, 2, . . . , n}, S is a B∗[g] set}. (5)

Since there are |S|2 sums of pairs from S, while there are fewer than 2n possible sums
each of which can be realized at most g times, we immediately deduce the upper bound
R(g, n) ≤

√
2gn, which we shall call the trivial upper bound for R(g, n).

The construction of A(S) indicated above thus gives the bound ∆
(

R(g,n)
n

)
≤ g

n
, and we

can use this inequality to give an upper bound on R(g, n). The trivial lower bound on ∆(ε)

gives 1
2

(R(g,n)
n

)2 ≤ ∆
(R(g,n)

n

)
≤ g

n
, whence R(g, n) ≤

√
2gn. Thus, the trivial lower bound on

∆(ε) implies the trivial upper bound on R(g, n), and any improvement we can make on the
trivial lower bound for ∆(ε) will immediately provide stronger upper bounds for R(g, n). In
the same way, we shall use lower bounds on R(g, n) to derive upper bounds on ∆(ε). All
this is made rigorous in Sections 5 and 7.

In fact much more than ∆
(

R(g,n)
n

)
≤ g

n
is true. Proposition 5.3 below states that

∆(ε) = inf{ g
n
: n ≥ g ≥ 1, R(g, n) ≥ nε}.

Thus a sufficient understanding of the dependence of R(g, n) on g and n would completely
solve our continuous problem. Unfortunately, this understanding is still somewhat lacking.

1.3 Discrete Results

The true size of Sidon sets is essentially known. Erdős and Turán [ET41] exploited the fact
that the pairwise differences s1 − s2 from a Sidon set are distinct to establish the improved
upper bound R(2, n) .

√
n. (By the notation f(n) . g(n), we mean that lim supn→∞

f(n)
g(n)

≤
1.) Ruzsa [Ruz93] has observed that the Erdős/Turán argument can be modified to give also
R(3, n) .

√
n. A construction of Singer [Sin38] (see Proposition 6.1(iii) below) yields the

complementary lower bounds R(3, n) ≥ R(2, n) &
√
n.

Present knowledge of R(g, n) for g > 3 is much less impressive. Constructions of large
B∗[g] sets have so far yielded only moderate lower bounds on R(g, n). The trivial upper
bound on R(g, n) has been improved for general g, but only quite recently. In this paper,
we present the strongest upper bound to date on R(g, n) for all g ≥ 21 as well as for all odd
g ≥ 5, and we also improve or match the best known lower bounds on R(g, n).

The seminal paper of Cilleruelo, Ruzsa, and Trujillo [CRT] gave the first upper bound
for R(g, n) that was nontrivial for infinitely many g, namely R(2g, n) . 1.3181

√
2gn, and

Green [Gre01] improved this to R(2g, n) . 1.3038
√

2gn. Green also proved

R(2g, n) .
√

7
4
(2g − 1)n, (6)
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which is stronger than our results for even integers g ≤ 20. (In both these papers, the results
were stated in terms of the function F2(g, n), a notational difference only as F2(g, n) =
R(2g, n) for all g and n.)

It seems likely that limn→∞
R(g,n)√

gn
exists for every g, but this has been proved only for

g = 2 and g = 3. We define

ρ(g) := lim inf
n→∞

R(g, n)
√
gn

,

ρ(g) := lim sup
n→∞

R(g, n)
√
gn

,

ρ(g) := lim
n→∞

R(g, n)
√
gn

.

Thus ρ(2) = 1√
2
, ρ(3) = 1√

3
, and ρ(g) is not known to be well-defined for g ≥ 4. Green’s

result [Gre01] is equivalent to ρ(g) ≤
√

7
4

√
1− 1

g
.

The following theorem gives the bounds on R(g, n) that we prove in this work. Note
that for even g ≤ 20, Green’s bound (6) is superior.

Theorem 1.2. R(g, n) ≤ 1.30036
√
gn for all g and R(g, n) ≤ 1.31925

√
(g − 1)n+ 1

3
if g is

odd. Further, we have the following upper bounds for ρ(g)2:

ρ(g)2 ≤


1.74043− 1.00483

g
, g ≤ 8 and even;

1.58337− 0.026335
g

+
√

0.011572− 0.083397
g

+ 0.00069356
g2 , g ≥ 10 and even;

1.74043− 4.75492
g

, g ≤ 23 and odd;

1.58337− 0.071949
g

+
√

0.011572− 0.22784
g

+ 0.0051768
g2 , g ≥ 25 and odd.

We comment that our result is an improvement in two aspects: we improve the numerical
constants in the bound on ρ(g) and we replace “.” with “≤” in the bounds on R(g, n). These
minor improvements aside, we believe that our geometrical approach is easier to follow and
promises future improvements. Accordingly, throughout this paper we discuss the quality
of the results, what could possibly be improved and what is best possible. In addition, to
the best of our knowledge, Theorem 1.2 gives the first general upper bound for R(2g− 1, n)
that improves upon the trivial inequality R(2g− 1, n) ≤ R(2g, n). Theorem 1.2 is proved in
Corollary 5.2 and Proposition 5.4.

We turn now to lower bounds for R(g, n). Constructions of “B∗[2] (mod n)” sets have
been given by Singer [Sin38], Bose [Bos42], and Ruzsa [Ruz93]. These constructions were
extended to B∗[g] sets in [CRT]. In Propositions 6.1 and 6.4 below, we generalize the first
three constructions and further optimize the extension given in [CRT].

Theorem 1.3 presents our improved lower bounds for R(g, n), stated in terms of the
function ρ(g).

8



g
2 6 10 14 18 22 26 30 34 38 42

0.7

0.85

1

1.15

1.3

Figure 2: Lower bounds on ρ(g) and upper bounds on ρ(g)

Theorem 1.3. We have

ρ(4) ≥ 2√
7

> 0.755,

ρ(6) ≥ 2
√

2√
15

> 0.730,

ρ(8) ≥ 2√
7

> 0.755,

ρ(10) ≥ 7
3
√

10
> 0.737,

ρ(12) ≥
√

3√
5

> 0.774,

ρ(14) ≥ 11√
210

> 0.759,

ρ(16) ≥ 17
4
√

30
> 0.775,

ρ(18) ≥ 4
3
√

3
> 0.769,

ρ(20) ≥ 2
√

5√
33

> 0.778,

ρ(22) ≥ 18
5
√

22
> 0.767,

and for any g ≥ 12,

ρ(2g) ≥ g + 2 bg/3c+ bg/6c√
6g2 − 2g bg/3c+ 2g

.

In particular, for any δ > 0 we have R(g, n) > ( 11
8
√

3
− δ)

√
gn if both g and n

g
are sufficiently

large in terms of δ.

We note that 11
8
√

3
> 0.7938. The lower bound for ρ(4) reproduces a result of Habsieger

and Plagne [HP], while the lower bounds for ρ(6) and ρ(10) reproduce results of [CRT];
for other even g, our lower bounds are new. These lower bounds on ρ, together with the
strongest known upper bounds on ρ including those derived from Theorem 1.2, are plotted
for 2 ≤ g ≤ 42 in Figure 2.

To the authors’ knowledge, nothing more is known about lower bounds for
R(2g + 1, n) for general n and g than the obvious inequality R(2g, n) ≤ R(2g + 1, n). In
particular, √

2g

2g + 1

R(2g, n)√
2gn

≤ R(2g + 1, n)√
(2g + 1)n

,

9



which implies that

ρ(2g + 1) ≥
√

2g

2g + 1
ρ(2g).

It seems likely that this inequality is actually an equality (i.e., when g is fixed, the quotient
R(2g + 1, n)/R(2g, n) should tend to 1 as n tends to infinity), but this is known only for
g = 1 [Ruz93].

Theorem 1.3 contains our best results for fixed g, but we can obtain a better constant
in the lower bound if we allow g to grow slowly with n:

Theorem 1.4. For any δ > 0, we have R(g, n) >
(

2√
π
− δ
)√

gn if both g
log n

and n
g

are
sufficiently large in terms of δ.

We note that 2/
√
π > 1.128. Theorems 1.3 and 1.4 are both important for obtaining

the upper bounds on ∆(ε) given in Theorem 1.1. Theorem 1.3 is proved in Section 6.6
through explicit constructions, while Theorem 1.4 is proved in Section 6.5 by a probabilistic
argument.

As mentioned above, in Section 2 we describe several other problems in continuous
Ramsey theory, along with their discrete analogues. In Section 3 we list some easy-to-derive
properties of the function ∆(ε), while in Section 4 we describe how we establish our strongest
lower bounds for ∆(ε). Section 4 is the most involved part of this paper, employing many
techniques from harmonic analysis, most notably Fourier series. The connection between
the continuous and discrete problems measured by ∆(ε) and R(g, n), respectively, is given
in Section 5, and our upper bounds for R(g, n) are derived therein. In that section, we also
establish in Theorem 5.7 that large B∗[g] sets must have many pairwise sums that repeat
at least αg times for suitable α, and in Theorem 5.9 we show a stronger upper bound for
B∗[g] sets that are uniformly distributed in {1, . . . , n} (which we conjecture is typical for
the largest possible B∗[g] sets). Section 6 is devoted to lower bounds for R(g, n), which rely
upon improved constructions of B∗[g] sets and their “mod n” counterparts. In Section 7 we
apply the results of Section 6 to bound ∆(ε) from above. Finally, in Section 8 we collect
together several open questions and problems relating to our methods.
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2 Some Problems in Continuous Ramsey Theory

A “coloring Ramsey theorem” has the form:

Given a sufficiently large set of mathematical objects colored with a finite number
of colors, there is a highly structured monochromatic subset.

The prototypical example is Ramsey’s Theorem itself: However one colors the edges of
the complete graph Kn with r colors, there is a monochromatic complete subgraph on t
vertices, provided that n is sufficiently large in terms of r and t. Another example is van der
Waerden’s Theorem: However one colors the integers {1, 2, . . . , n} with r colors, there is a
monochromatic arithmetic progression with t terms, provided that n is sufficiently large in
terms of r and t.

In many cases, the coloring aspect of a Ramsey-type theorem is a ruse and one may
prove a stronger statement with the form:

Given a sufficiently large set R of mathematical objects, any large subset of R
contains a highly structured subset.

Such a result is called a “density Ramsey theorem.” For example, van der Waerden’s
Theorem is a special case of the density Ramsey theorem of Szemerédi: Every subset of
{1, 2, . . . , n} with cardinality at least nδ contains a t-term arithmetic progression, provided
that n is sufficiently large in terms of δ and t.

Ramsey theory is the study of such theorems on different types of structures. By “contin-
uous Ramsey theory” we refer to Ramsey-type problems on continuous measure spaces. In
particular, this thesis is concerned with a density-Ramsey problem on the structure [0, 1) ⊆ R
with Lebesgue measure. The type of substructure we focus on are symmetric subsets.

There is frequently a connection between problems concerning [0, 1) with Lebesgue mea-
sure and problems concerning {1, 2, . . . , n} with a uniform probability measure. We attempt
to make this connection more explicit in our descriptions of problems in the remainder of
this section.

2.1 The Correlation Problem

Erdős asked for upper and lower bounds on Mn(1
2
), where

Mn(α) := inf
|S|=bαnc

T={1,2,...,n}\S

sup
c∈Z

|(S + c) ∩ T |
n

.

In essence, Erdős asked for a formalization of the observation: a large subset of {1, 2, . . . , n}
can always be translated so as to have a large intersection with its complement.

S. Świerczkowski [Świ58] showed that limn→∞Mn(α) = M(α), where

M(α) := inf
λ(S)=α

T=[0,1)\S

sup
c∈R

λ((S + c) ∩ T ).

11



Working in the continuous setting, Świerczkowski showed that

M(α) >
2−

√
4− 10α(1− α)

5
,

which improved on the asymptotic bounds then known for Mn(α).
It is known (see [Guy94, problem C17]) that 0.178 < M(1

2
) < 0.2, but the precise value

remains unknown.

2.2 The Convolution Problem

Banakh, Verbitsky, and Vorobets [BVV00] considered the coloring version of the problem
considered in the present paper: given a measurable finite coloring of [0, 1), how large a
monochromatic symmetric set is guaranteed? They claim that if 2 colors are used, then
there is necessarily a monochromatic symmetric subset with measure 1

4+
√

6
≈ 0.155, and if

r > 2 colors are used then there is a monochromatic subset with measure 1/2
r2 . Unfortunately,

the proofs of several crucial lemmas of this interesting paper appear only in earlier Russian-
language articles, and we have been unable to verify their proofs. If r colors are used, then
there is a monochromatic set with measure at least 1

r
. In Section 4.6, we show that any subset

of [0, 1) with measure at least 1
r

contains a symmetric subset with measure 0.591389
r2 , and in

Section 4.8, we show further that any subset with measure at least 1
2

has a symmetric subset
with measure 0.1496. This paper is concerned with the density version of their coloring
problem.

We call this the convolution problem because, if f is the indicator function of E ⊆ R,
then f ∗ f(c) :=

∫
R f(x)f(c − x) dx is the measure of the maximal symmetric subset of E

with center c/2. Therefore the Banakh–Verbitsky–Vorobets problem is equivalent to finding
the infimum of the possible values of

max{‖f ∗ f‖∞, ‖(1− f) ∗ (1− f)‖∞}

as f ranges over all indicator functions of measurable subsets of [0, 1). We exploit this
connection to Fourier analysis to give lower bounds for the function ∆(ε) defined in Eq. (3).

We note that the discrete versions of these problems are closely related to the continuous
versions. Specifically, define MS(n, r) to be the maximum of integers M such that for any
coloring of {1, 2, . . . , n} with r colors, there is a monochromatic symmetric subset with
cardinality M . Also, define MS([0, 1], r) to the supremum of real µ such that for any
measurable coloring of [0, 1] with r colors, there is a monochromatic subset with measure
µ. It is shown in [BVV00] that MS([0, 1], r) = limn→∞MS(n, r)/n. Proposition 5.3 below
gives the analogous connection between ∆(ε) and the function R(g, n) defined in Eq. (5).

2.3 The Linear Equation Problem

Following Chung, Erdős, and Graham [CEG], for any matrix A, we say that S ⊆ {1, 2, . . . , n}
is A-hitting if for every vector x̄ = (x1, x2, . . . , xs) with xi ∈ {1, 2, . . . , n} and x̄A = 0̄, either
there is some xi ∈ S or x1 = x2 = · · · = xs (this second condition is included to avoid certain

12



trivialities). Set δn to be the minimum density of an A-hitting set, i.e.,

δn := min
{
|S|
n

: S ⊆ {1, 2, . . . , n}, S is A-hitting
}
.

If, for example, A = (1,−2, 1), then δn is the minimum density of a subset of {1, 2, . . . , n}
that intersects every 3-term arithmetic progression in {1, 2, . . . , n}.

We also say that S ⊆ [0, 1] is A-hitting if for every vector x̄ = (x1, x2, . . . , xs) with
xi ∈ [0, 1] and x̄A = 0̄, either x1 = x2 = · · · = xs or there is some xi ∈ S. Set δ to be the
infimum of the measures of A-hitting sets, i.e.,

δ := inf {λ(S) : S ⊆ [0, 1], S is A-hitting} .

Given our experience with the above correlation and convolution problems, one might
guess that lim infn δn = δ. In [CEG], the values of both δ and lim infn δn are derived for
several matrices A, and indeed equality seems to be the typical case. Surprisingly, however,
there are non-trivial examples where this is not the case. For

A =

 2 3
−1 0
0 −1

 ,

for example, it is shown in [CEG] that δ = 1
5

whereas 0.199 < lim infn δn < 0.1997.
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3 Easy Bounds for ∆(ε)

We now turn our attention to the investigation of the function ∆(ε) defined in Eq. (3). In
this section we establish several simple lemmas describing basic properties of ∆.

Lemma 3.1. ∆(ε) ≥ 2ε− 1 for all 0 ≤ ε ≤ 1.

Proof. For A ⊆ [0, 1), the centrally symmetric set A ∩ (1− A) has measure equal to

λ(A) + λ(1− A)− λ(A ∪ (1− A)) = 2λ(A)− λ(A ∪ (1− A)) ≥ 2λ(A)− 1.

Therefore D(A) ≥ 2λ(A)− 1 from the definition (2) of the function D. Taking the infimum
over all subsets A of [0, 1) with measure ε, this becomes ∆(ε) ≥ 2ε− 1 as claimed.

While this bound may seem obvious, it is in many situations the state of the art. As we
show in Proposition 7.1 below, ∆(ε) actually equals 2ε−1 for 11

16
≤ ε ≤ 1; and ∆(ε) ≥ 2ε−1

is the best lower bound of which we are aware in the range 0.61522 ≤ ε < 11
16

.
= 0.6875.

One is tempted to try to sharpen the bound ∆(ε) ≥ 2ε−1 by considering the symmetric
subsets with center 1/3, 1/2, or 2/3, for example, instead of merely 1/2. Unfortunately, it
can be shown that given any ε ≥ 1

2
and any finite set {c1, c2, . . . , cn}, one can construct a

sequence Sk of sets, each with measure ε, that satisfies

lim
k→∞

(
max
1≤i≤n

{λ (Sk ∩ (2ci − Sk))}
)

= 2ε− 1.

Thus, no improvement is possible with this sort of argument.

Lemma 3.2 (Trivial Lower Bound). ∆(ε) ≥ 1
2
ε2 for all 0 ≤ ε ≤ 1.

Proof. We repeat the argument given briefly in Section 1.1. Given a subset A of [0, 1) of
measure ε, let A(x) denote the indicator function of A, so that the integral of A(x) over any
interval containing [0, 1) equals ε. If we define f(c) :=

∫∞
−∞A(x)A(2c − x) dx, then f(c) is

the measure of the largest symmetric subset of A with center c, and we seek to maximize
f(c). But f is clearly supported on [0, 1), and so

D(A) = max
c
f(c) ≥

∫ 1

0

f(c) dc =

∫ ∞

−∞

∫ 1

0

A(x)A(2c− x) dc dx

=

∫ ∞

−∞
A(x)

(
1

2

∫ 2−x

−x

A(w) dw

)
dx = 1

2
ε2.

Since A was an arbitrary subset of [0, 1) of measure ε, we have shown that ∆(ε) ≥ 1
2
ε2.

Lemma 3.3. ∆(ε) ≤ ∆(x)
x
ε for all 0 ≤ ε ≤ x ≤ 1. In particular, ∆(ε) ≤ ε.

Proof. If tA := {ta : a ∈ A} is a scaled copy of a set A, then clearly D(tA) = tD(A).
Applying this with any set A ⊆ [0, 1) of measure x and with t = ε

x
≤ 1, we see that

ε
x
A is a subset of [0, 1) with measure ε, and so by the definition of ∆ we have ∆(ε) ≤
D( ε

x
A) = ε

x
D(A). Taking the infimum over all sets A ⊆ [0, 1) of measure x, we conclude

that ∆(ε) ≤ ε
x
∆(x). The second assertion of the lemma is obvious, and indeed it follows

from the first assertion in light of the trivial value ∆(1) = 1.
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It is obvious from the definition of ∆ that ∆(ε) is an increasing function;

Lemma 3.3 shows that ∆(ε)
ε

is also an increasing function. Later in this paper (see Proposi-

tion 7.2), we will show that in fact even ∆(ε)
ε2 is an increasing function.

Let
S � T := (S \ T ) ∪ (T \ S)

denote the symmetric difference of S and T . (While this operation is more commonly denoted
with a triangle rather than with a diamond, we would rather avoid any potential confusion
with the function ∆ featured prominently in this paper.)

Lemma 3.4. If S and T are two sets of real numbers, then |D(S)−D(T )| ≤ 2λ(S � T ).

Proof. Let E be any symmetric subset of S, and let c be the center of E, so that E = 2c−E.
Define F = E ∩T ∩ (2c−T ), which is a symmetric subset of T with center 2c. We can write
λ(F ) using the inclusion-exclusion formula

λ(F ) = λ(E) + λ(T ) + λ(2c− T )

− λ(E ∪ T )− λ(E ∪ (2c− T ))− λ(T ∪ (2c− T )) + λ(E ∪ T ∪ (2c− T )).

Rearranging terms, and noting that T ∪ (2c− T ) ⊆ E ∪ T ∪ (2c− T ), we see that

λ(E)− λ(F ) ≤ −λ(T )− λ(2c− T ) + λ(E ∪ T ) + λ(E ∪ (2c− T ))

Because reflecting a set in the point c does not change its measure, this is the same as

λ(E)− λ(F ) ≤ −λ(T )− λ(T ) + λ(E ∪ T ) + λ(E ∪ (2c− T ))

= −λ(T )− λ(T ) + λ(E ∪ T ) + λ((2c− E) ∪ T )

= 2
(
λ(E ∪ T )− λ(T )

)
≤ 2
(
λ(S ∪ T )− λ(T )

)
= 2λ(S \ T ) ≤ 2λ(S � T ),

Therefore, since F is a symmetric subset of T ,

λ(E) ≤ λ(F ) + 2λ(S � T ) ≤ D(T ) + 2λ(S � T ).

Taking the supremum over all symmetric subsets E of S, we conclude that D(S) ≤ D(T ) +
2λ(S � T ). If we now exchange the roles of S and T , we see that the proof is complete.

Lemma 3.5. The function ∆ satisfies the Lipschitz condition |∆(x)−∆(y)| ≤ 2|x− y| for
all x and y in [0, 1]. In particular, ∆ is continuous.

Proof. Without loss of generality assume y < x. In light of the monotonicity ∆(y) ≤ ∆(x), it
suffices to show that ∆(y) ≥ ∆(x)−2(x−y). Let S ⊆ [0, 1) have measure y. Choose any set
R ⊆ [0, 1)\S with measure x−y, and set T = S∪R. Then S �T = R, and so by Lemma 3.4,
D(T ) −D(S) ≤ 2λ(R) = 2(x − y). Therefore D(S) ≥ D(T ) − 2(x − y) ≥ ∆(x) − 2(x − y)
by the definition of ∆. Taking the infimum over all sets S ⊆ [0, 1) of measure y yields
∆(y) ≥ ∆(x)− 2(x− y) as desired.
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4 Lower Bounds for ∆(ε)

Section 4.1 below makes explicit the connection between ∆(ε) and harmonic analysis. Sec-
tion 4.2 gives a simple, but quite good, lower bound on ∆(ε). In Section 4.3, we give a more
general form of the argument of Section 4.2. Using an analytic inequality established in
Section 4.4, we investigate in Section 4.5 the connection between ‖f ∗ f‖∞ and the Fourier
coefficients of f . In Section 4.6, we combine the results of Sections 4.2 and 4.5 to show
∆(ε) ≥ 0.591389ε2. The bound given in Section 4.2 and improved in Section 4.6 depends on
a kernel function with certain properties; in Section 4.7 we discuss how we chose our kernel.
In Section 4.8, we use a different approach to derive a lower bound on ∆(ε) which is superior
for 3

8
< ε < 5

8
.

4.1 Introduction and Notation

There are many ways to define the basic objects of Fourier analysis; we follow [Fol84]. Unless
specifically noted otherwise, all integrals are over the circle group T := R/Z; for example, L1

denotes the class of functions f for which
∫

T |f(x)| dx is finite. For each integer j, we define

f̂(j) :=
∫
f(x)e−2πijx dx, so that for any function f ∈ L1, we have f(x) =

∑∞
j=−∞ f̂(j)e2πijx

almost everywhere. We define the convolution f ∗g(c) =
∫
f(x)g(c−x) dx, and we note that

f̂ ∗ g(j) = f̂(j)ĝ(j) for every integer j; in particular, f̂ ∗ f(j) = f̂(j)2.
We define the usual Lp norms

‖f‖p =
( ∫

|f(x)|p dx
)1/p

and
‖f‖∞ = lim

p→∞
‖f‖p = sup

{
y : λ({x : |f(x)| > y}) > 0

}
.

With these definitions, Hölder’s Inequality is valid: if p and q are conjugate exponents—that
is, 1

p
+ 1

q
= 1—then ‖fg‖1 ≤ ‖f‖p‖g‖q. We also note that ‖f ∗ g‖1 = ‖f‖1‖g‖1; in particular,

‖f ∗ f‖1 = ‖f‖2
1 = f̂(0)2. We shall also employ the `p norms for bi-infinite sequences: if

a = {aj}j∈Z, then ‖a‖p =
(∑

j∈Z |aj|p
)1/p

and ‖a‖∞ = limp→∞ ‖a‖p = supj∈Z |aj|. Although
we use the same notation for the Lp and `p norms, no confusion should arise, as the object
inside the norm symbol will either be a function on T or its sequence of Fourier coefficients,
respectively. With this notation, we recall Parseval’s identity∫

f(x)g(x) dx =
∑

f̂(j)ĝ(−j)

(assuming the integral and sum both converge); in particular, if f = g is real-valued (so that
f̂(−j) is the conjugate of f̂(j) for all j), this becomes ‖f‖2 = ‖f̂‖2. The Hausdorff-Young
inequality, ‖f̂‖q ≤ ‖f‖p whenever p and q are conjugate exponents with 1 ≤ p ≤ 2 ≤ q ≤ ∞,
can be thought of as a generalization of this latter version of Parseval’s identity. We also
require the definition

m‖a‖p =

∑
|j|≥m

|a(j)|p
1/p

(7)

16



for any sequence a = {aj}j∈Z, so that 0‖a‖p = ‖a‖p, for example.

We recall that the Fourier coefficients of any function f ∈ L1 satisfy the estimate f̂(j) =

O
(

1
j

)
; in particular, ‖f̂‖p is finite for all p > 1. Moreover, if f ∈ L1 is continuous, then

f̂(j) = O
(

1
j2

)
. We also note that for any fixed sequence a = {aj}j∈Z, the `p-norm ‖a‖p is

a decreasing function of p. To see this, suppose that 1 ≤ p ≤ q < ∞ and a ∈ `p. Then
|aj| ≤ ‖a‖p for all j ∈ Z, whence |aj|q−p ≤ ‖a‖q−p

p (since q−p ≥ 0) and so |aj|q ≤ ‖a‖q−p
p |aj|p.

Summing both sides over all j ∈ Z yields ‖a‖q
q ≤ ‖a‖q−p

p ‖a‖p
p = ‖a‖q

p, and taking qth roots
gives the desired inequality ‖a‖q ≤ ‖a‖p.

Finally, we define a “pdf”, short for “probability density function”, to be a nonnegative
function in L2 whose L1-norm (which is necessarily finite, since T is a finite measure space)
equals 1. Also, we single out a special type of pdf called an “nif”, short for “normalized
indicator function”, which is a pdf that only takes one nonzero value, that value necessarily
being the reciprocal of the measure of the support of the function. (We exclude the possibility
that an nif takes the value 0 almost everywhere.) Specifically, we define for each E ⊆ T the
nif

fE(x) :=

{
λ(E)−1 x ∈ E,
0 x 6∈ E.

Note that if f is a pdf, then 1 = f̂(0) = f̂(0)2 = ‖f‖2
1 = ‖f ∗ f‖1.

We are now ready to reformulate the function ∆(ε) in terms of this notation.

Lemma 4.1. We have

1
2
ε2 infg ‖g ∗ g‖∞ ≤ 1

2
ε2 inff ‖f ∗ f‖∞ = ∆(ε),

the first infimum being taken over all pdfs g that are supported on [−1
4
, 1

4
], and the second

infimum being taken over all nifs f whose support is a subset of [−1
4
, 1

4
] of measure ε

2
.

Proof. The inequality is trivial, since every nif is a pdf; it remains to prove the equality.
For each measurable A ⊆ [0, 1), define EA := {1

2
(a − 1

2
) : a ∈ A} ⊆ [−1

4
, 1

4
]. The sets A

and EA differ only by translation and scaling, so that λ(A) = 2λ(EA) and D(A) = 2D(EA).
Thus

∆(ε) := inf{D(A) : A ⊆ [0, 1), λ(A) = ε}

= ε2 inf

{
D(A)

λ(A)2
: A ⊆ [0, 1), λ(A) = ε

}
= ε2 inf

{
2D(EA)

(2λ(EA))2
: A ⊆ [0, 1), λ(A) = ε

}
=

1

2
ε2 inf

{
D(E)

λ(E)2
: E ⊆ [−1

4
, 1

4
], λ(E) = ε

2

}
.

For each E ⊆ [−1
4
, 1

4
] with λ(E) = ε

2
, the function fE(x) is an nif supported on a subset of

[−1
4
, 1

4
] with measure ε

2
, and it is clear that every such nif arises from some set E. Thus, it

remains only to show that D(E)
λ(E)2

= ‖fE ∗ fE‖∞, i.e., that D(E) = λ(E)2‖fE ∗ fE‖∞.
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Fix E ⊆ [−1
4
, 1

4
], and let E(x) be the indicator function of E. Note that fE(x) =

λ(E)−1E(x). The maximal symmetric subset of E with center c is E ∩ (2c − E), and this
has measure

∫
E(x)E(2c− x) dx. Thus

D(E) := sup{λ(C) : C ⊆ E, C is symmetric}

= sup
c

(∫
E(x)E(2c− x) dx

)
= sup

c

(∫
λ(E)fE(x)λ(E)fE(2c− x) dx

)
= λ(E)2 sup

c

(∫
fE(x)fE(2c− x) dx

)
= λ(E)2 sup

c
fE ∗ fE(2c)

= λ(E)2 ‖fE ∗ fE‖∞ ,

as desired.

The convolution in Lemma 4.1 may be taken over R or over T, the two settings being
equivalent since f ∗ f is supported on an interval of length 1. In fact, the reason we scale
f to be supported on an interval of length 1/2 is so that we may replace convolution over
R, which is the natural place to study ∆(ε), with convolution over T, which is the natural
place to do harmonic analysis.

4.2 The Basic Argument

We begin the process of improving upon the trivial lower bound for ∆(ε) by stating a simple
version of our method that illustrates the ideas and techniques involved.

Proposition 4.2. Let K be any continuous function on T satisfying K(x) ≥ 1 when x ∈
[−1

4
, 1

4
], and let f be a pdf supported on [−1

4
, 1

4
]. Then

‖f ∗ f‖∞ ≥ ‖f ∗ f‖2
2 ≥ ‖K̂‖−4

4/3.

Proof. We have

1 =

∫
f(x) dx ≤

∫
f(x)K(x) dx =

∑
j

f̂(j)K̂(−j)

by Parseval’s identity. Hölder’s Inequality now gives 1 ≤ ‖f̂‖4‖K̂‖4/3, which we restate as

the inequality ‖K̂‖−4
4/3 ≤ ‖f̂‖4

4.

Now ‖f̂‖4
4 =

∑
j |f̂(j)|4 =

∑
j |f̂ ∗ f(j)|2 = ‖f ∗ f‖2

2 by another application of Parseval’s

identity. Since (f ∗f)2 ≤ ‖f ∗f‖∞(f ∗f), integration yields ‖f ∗f‖2
2 ≤ ‖f ∗f‖∞‖f ∗f‖1 = ‖f ∗

f‖∞. Combining the last three sentences, we see that ‖K̂‖−4
4/3 ≤ ‖f̂‖4

4 = ‖f ∗ f‖2
2 ≤ ‖f ∗ f‖∞

as claimed.

This reasonably simple theorem already allows us to give a nontrivial lower bound
for ∆(ε).
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K3(x)

x
-0.5 -0.25 0.25 0.5

0.25

0.5

0.75

1

Figure 3: The function K3(x)

The step function

K1(x) :=

{
1 0 ≤ |x| ≤ 1

4

1− 2π4

π4+24ζ( 4
3
)
3(5+24/3−28/3)

1
4
< |x| ≤ 1

2

has ‖K̂1‖−4
4/3 = 1+ π4

8 (24/3−1)
3

ζ( 4
3
)
3 > 1.074 (the elaborate constant used in the definition of K1

was chosen to minimize ‖K̂1‖4/3); a careful reader may complain that K1 is not continuous.
The continuity condition is not essential, however, as we may approximateK1 by a continuous
function L with ‖L‖4/3 arbitrarily close to ‖K1‖4/3. Green [Gre01] used a discretization of
the kernel function

K2(x) :=

{
1 0 ≤ |x| ≤ 1

4

1− α+ α
(
40(2x− 1)4 − 3

2

)
1
4
< |x| ≤ 1

2

with a suitably chosen α to get ‖K̂2‖−4
4/3 >

8
7
> 1.142. We get a slightly larger value of ‖K̂‖−4

4/3

in Corollary 4.3 with a much more complicated kernel. See Section 4.7 for a discussion of
how we came to find our kernel.

Corollary 4.3. If f is a pdf supported on [−1
4
, 1

4
], then

‖f ∗ f‖2
2 ≥ 1.14915.

Consequently, ∆(ε) ≥ 0.574575ε2 for all 0 ≤ ε ≤ 1.

Proof. Set

K3(x) :=

1 0 ≤ |x| ≤ 1
4
,

0.6644 + 0.3356
(

2
π

tan−1
(

1−2x√
4x−1

))1.2015
1
4
≤ |x| ≤ 1

2
.

(8)

K3(x) is pictured in Figure 3.
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We do not know how to rigorously bound ‖K̂3‖4/3, but we can rigorously bound ‖K̂4‖4/3

whereK4 is a piecewise linear function ‘close’ toK3. Specifically, letK4(x) the even piecewise
linear function with corners at

(0, 1),

(
1

4
, 1

)
,

(
1

4
+

t

4× 104
, K3

(1

4
+

t

4× 104

))
(t = 0, 1, . . . , 104).

We calculate (using Proposition 4.14 below) that ‖K̂4‖4/3 < 0.9658413. Therefore, by Propo-
sition 4.2 we have

‖f ∗ f‖2
2 ≥ (0.9658413)−4 > 1.14915.

Using Lemma 4.1, we now have ∆(ε) > 1
2
ε2(1.14915) > 0.574575ε2.

The constants in the definition (8) of K3(x) were numerically optimized to minimize
‖K̂4‖4/3 and otherwise have no special significance. The definition of K3(x) is certainly not
obvious; there are much simpler kernels that do give nontrivial bounds. In Section 4.7 below,
we indicate the experiments that led to our choice.

We note that the function

b(x) :=

{
4/π√

1−16x2 , −1/4 < x < 1/4,

0, otherwise

has
∫
b = 1 and ‖b ∗ b‖2

2 < 1.14939. Although b is not a pdf (it is not in L2), it gives strong
testimony that the bound on ‖f ∗ f‖2

2 given in Corollary 4.3 is not far from best possible.
Note that this corollary, along with Corollary 5.4, gives R(g, n) ≤ 1.31925

√
gn, only

slightly worse than the bound given in [CRT].
This bound on ‖f ∗ f‖2

2 may be nearly correct, but the resulting bound on ‖f ∗ f‖∞ is
not: we prove below that ‖f ∗ f‖∞ ≥ 1.182778, and believe that ‖f ∗ f‖∞ ≥ π/2. We have
tried to improve the argument given in Proposition 4.2 in the following four ways:

1. Instead of considering the sum
∑

j f̂(j)K̂(−j) as a whole, we single out the central
terms (which dominate the sum) and the tails (which contribute essentially nothing),
and deal with the three resulting sums separately. This generalized form of the above
argument is expounded in the next section. The success of this generalization relies
on certain inequalities restricting the possible values of these central coefficients; es-
tablishing these restrictions is the goal of Sections 4.4 and 4.5. The final lower bound
derived from these methods is given in Section 4.6.

2. We can try to find more advantageous kernel functions K(x) for which we can compute
‖K̂‖4/3 in an accurate way. A detailed discussion of our search for the best kernel
functions is in Section 4.7.

3. The application of Parseval’s identity can be replaced with the Hausdorff-Young in-
equality, which leads to the conclusion ‖f ∗ f‖∞ ≥ ‖K̂‖−q

p , where p ≤ 4
3

and q ≥ 4
are conjugate exponents. Numerically, the values (p, q) = (4

3
, 4) appear to be optimal.

However, Beckner’s sharpening [Bec75] of the Hausdorff-Young inequality leads to the
stronger conclusion ‖f ∗ f‖∞ ≥ C(q)‖K̂‖−q

p where C(q) = q
2
(1 − 2

q
)q/2−1 = q

2e
+ O(1).

We have not experimented to see whether a larger lower bound can be obtained from
this stronger inequality by taking q > 4.
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4. Notice that we used the inequality ‖g‖2
2 ≤ ‖g‖∞‖g‖1 with the function g = f ∗ f . This

inequality is sharp exactly when the function g takes only one nonzero value (i.e., when
g is a nif), but the convolution f ∗f never seems to behave that way. Perhaps for these
autoconvolutions, an analogous inequality with a stronger constant than 1 could be
established. Unfortunately, we have not been able to realize any success with this idea,
although we believe Conjecture 4.4 below. If true, Conjecture 4.4 implies the bound
∆(ε) ≥ 0.651ε2.

Conjecture 4.4. If f is a pdf supported on [−1
4
, 1

4
], then

‖f ∗ f‖∞
‖f ∗ f‖2

2

≥ π/2

log 4
,

with equality only if either f(x) or f(−x) equals
√

2
4x+1

on the interval |x| ≤ 1
4
.

We remark that Proposition 4.2 can be extended from a twofold convolution in one
dimension to an h-fold convolution in d dimensions.

Proposition 4.5. Let K be any continuous function on Td satisfying K(x̄) ≥ 1 when x̄ ∈
[− 1

2h
, 1

2h
]d, and let f be a pdf supported on [− 1

2h
, 1

2h
]d. Then

‖f ∗h‖∞ ≥ ‖f ∗h‖2
2 ≥ ‖K̂‖−2h

2h/(2h−1).

Every subset of [0, 1]d with measure ε contains a symmetric subset with measure (0.574575)dε2.

Proof. The proof proceeds as above, with the conjugate exponents ( 2h
2h−1

, 2h) in place of

(4
3
, 4), and the kernel function K(x1, x2, . . . , xd) = K(x1)K(x2) · · ·K(xd) in place of the

kernel function K(x) defined in the proof of Corollary 4.3. The second assertion of the
proposition follows on taking h = 2.

4.3 The Main Bound

We now present a more subtle version of Proposition 4.2. Recall that the notation n‖a‖p

was defined in Eq. (7). We also use <z to denote the real part of the complex number z.

Proposition 4.6. Let 1 ≤ m < m′ ≤ ∞. Suppose that f is a pdf supported on [−1
4
, 1

4
]

and that K is even, continuous, satisfies K(x) = 1 for −1
4
≤ x < 1

4
, and m′‖K̂‖p > 0. Set

M := 1− K̂(0)− 2
∑m−1

j=1 K̂(j)<f̂(j). Then

‖f ∗ f‖2
2 ≥

∑
|j|≤m′

|f̂(j)|4 ≥ 1 +

(
M

m‖K̂‖4/3

)4

+ 2
m−1∑
j=1

|<f̂(j)|4 − o(1) (9)

as m′ →∞.

Proof. The first inequality follows from Parseval’s formula

‖f ∗ f‖2
2 =

∑
j

|f̂ ∗ f(j)|2 =
∑

j

|f̂(j)|4 ≥
∑
|j|≤m′

|f̂(j)|4.
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As in the proof of Proposition 4.2, we have

1 =

∫
f(x)K(x) dx =

∑
j

f̂(j)K̂(−j) =
∑
|j|<m

f̂(j)K̂(−j) +
∑
|j|≥m

f̂(j)K̂(−j).

Since K is even, K̂(−j) = K̂(j) is real, and since f is real valued, f̂(−j) = f̂(j). We have

1 = K̂(0) + 2
m−1∑
j=1

K̂(j)<f̂(j) +
∑
|j|≥m

f̂(j)K̂(j),

which we can also write as M =
∑

|j|≥m f̂(j)K̂(j). Set η :=
∑

|j|>m′ |K̂(j)|, and note that

η = o(1) as m′ → ∞ since K is continuous. Taking absolute values and applying Hölder’s
inequality, we have

|M | ≤
∑
|j|≥m

|f̂(j)K̂(j)|

≤
∑

m′≥|j|≥m

|f̂(j)K̂(j)|+
∑
|j|>m′

|K̂(j)|

≤

 ∑
m′≥|j|≥m

|f̂(j)|4
1/4 ∑

m′≥|j|≥m

|K̂(j)|4/3

3/4

+ η

≤

 ∑
m′≥|j|≥m

|f̂(j)|4
1/4

m‖K̂‖4/3 + o(1),

which we recast in the form∑
m′≥|j|≥m

|f̂(j)|4 ≥
(
|M | − o(1)

m‖K̂‖4/3

)4

=

(
M

m‖K̂‖4/3

)4

− o(1).

We add
∑

|j|<m |f̂(j)|4 to both sides and observe that f̂(0) = 1 and |f̂(j)| ≥ |<f̂(j)| to finish
the proof of the second inequality.

Corollary 4.7. If f is a pdf supported on [−1
4
, 1

4
], then∑

|j|≤m′

|f̂(j)|4 ≥ 1.14915− o(1)

as m′ →∞

Proof. The kernel function used in the proof of Corollary 4.3 has K̂4(0)
.
= 0.870250799 and

1‖K̂4‖4/3
.
= 0.208784534. Now apply Proposition 4.6 with m = 1.

Corollary 4.8. Let f be a pdf supported on [−1
4
, 1

4
], and set x1 := <f̂(1). Then as m′ →∞

‖f ∗ f‖2
2 ≥

∑
|j|≤m′

|f̂(j)|4 ≥ 1 + 2x4
1 +

(
0.368067372− 0.541553784x1

0.239175395

)4

− o(1).
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Proof. Set

K5(x) =

{
1 |x| ≤ 1

4
,

1− (1− (4(1
2
− x))1.61707)0.546335 1

4
< |x| ≤ 1

2
.

Denote by K6(x) the even piecewise linear function with corners at

(0, 1),

(
1

4
, 1

)
,

(
1

4
+

t

4× 104
, K5(

1

4
+

t

4× 104
)

)
(where t = 0, 1, . . . , 104).

We find (using Proposition 4.14) that K̂6(0)
.
= 0.631932628, K̂6(1)

.
= 0.270776892, and

2‖K̂6‖4/3
.
= 0.239175395. Apply Proposition 4.6 with m = 2 to finish the proof.

With m′ = ∞ and xj = <f̂(j), the bound of Proposition 4.6 becomes

1 +

(
1− K̂(0)− 2

∑m−1
j=1 K̂(j)xj

m‖K̂‖4/3

)4

+ 2
m−1∑
j=1

x4
j .

This is a quartic polynomial in the xj, and consequently it is not difficult to minimize, giving
an absolute lower bound on ‖f ∗ f‖2

2. This minimum occurs at

xj =
(K̂(j))1/3

(
1− K̂(0)− 2

∑j−1
i=1 K̂(i)xi

)
j‖K̂‖4/3

4/3

,

where (K̂(j))1/3 is the real cube root of K̂(j). Consequently,

inf
xj∈R

{
1 +

(
1− K̂(0)− 2

∑m−1
j=1 K̂(j)xj

m‖K̂‖4/3

)4

+ 2
m−1∑
j=1

x4
j

}
= 1 +

(
1− K̂(0)

1‖K̂‖4/3

)4

,

which is nothing more than the bound that Proposition 4.6 gives with m = 1. Moreover,

1 +

(
1− K̂(0)

1‖K̂‖4/3

)4

= sup
0≤α≤1

‖(α+ (1− α)K)∧‖−4
4/3,

(the details of this calculation are given in Section 4.7.1) so that Proposition 4.6 by itself
does not give a different bound on ‖f ∗ f‖2

2 than Proposition 4.2. However, we shall obtain
additional information on f̂(j) in terms of ‖f ∗ f‖∞ in subsection 4.5 below, and this infor-
mation can be combined with Proposition 4.6 to provide a stronger lower bound on ‖f ∗f‖∞
than that given by Proposition 4.2.

4.4 Some Useful Inequalities

Hardy, Littlewood, and Pólya [HLP88] call a function u(x) symmetric decreasing if u(x) =
u(−x) and u(x) ≥ u(y) for all 0 ≤ x ≤ y, and they call

f sdr(x) := inf {y : λ ({t : f(t) ≥ y}) ≤ 2|x|}
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the symmetric decreasing rearrangement of f . For example, if f is the indicator function
of a set with measure µ, then f sdr is simply the indicator function of the interval (−µ

2
, µ

2
).

Another example is any function f defined on an interval [−a, a] and is periodic with period
2a
n

, where n is a positive integer, and that is symmetric decreasing on the subinterval [− a
n
, a

n
];

then f sdr(x) = f(x
n
) for all x ∈ [−a, a]. In particular, on the interval [−1

4
, 1

4
], we have

cossdr(2πjx) = cos(2πx) for any nonzero integer j. We shall need the following result.

Lemma 4.9. ∫
f(x)u(x) dx ≤

∫
f sdr(x)usdr(x) dx.

Proof. This is Theorem 378 of [HLP88].

We say that f̄ is more focused than f (and f is less focused than f̄) if for all z ∈ [0, 1
2
]

and all r ∈ T we have ∫ r+z

r−z

f ≤
∫ z

−z

f̄ .

For example, f sdr is more focused than f . In fact, we introduce this terminology because it
refines the notion of symmetric decreasing rearrangement in a way that is useful for us. To
give another example, if f is a nonnegative function, set f̄ to be ‖f‖∞ times the indicator
function of the interval [− 1

2‖f‖∞ ,
1

2‖f‖∞ ]; then f̄ is more focused than f .

Lemma 4.10. Let u(x) be a symmetric decreasing function, and let h, h̄ be pdfs with h̄ more
focused than h. Then for all r ∈ T,∫

h(x− r)u(x) dx ≤
∫
h̄(x)u(x) dx.

Proof. Without loss of generality we may assume that r = 0, since if h̄(x) is more focused
than h(x), then it is also more focused than h(x−r). Also, without loss of generality we may
assume that h, h̄ are continuous and strictly positive on T, since any nonnegative function
in L1 can be L1-approximated by such.

Define H(z) =
∫ z

−z
h(t) dt and H̄(z) =

∫ z

−z
h̄(t) dt, so that H(1

2
) = H̄(1

2
) = 1, and

note that the more-focused hypothesis implies that H(z) ≤ H̄(z) for all z ∈ [0, 1
2
]. Now h is

continuous and strictly positive, which implies that H is differentiable and strictly increasing
on [0, 1

2
] since H ′(z) = h(z) + h(−z). Therefore H−1 exists as a function from [0, 1] to [0, 1

2
].

Similar comments hold for H̄−1.
Since H ≤ H̄, we see that H̄−1(s) ≤ H−1(s) for all s ∈ [0, 1]. Then, since H−1(s) and

H−1(s) are positive and u is decreasing for positive arguments, we conclude that u(H−1(s)) ≤
u(H̄−1(s)), and so ∫ 1

0

u(H−1(s)) ds ≤
∫ 1

0

u(H̄−1(s)) ds. (10)

On the other hand, making the change of variables s = H(t), we see that∫ 1

0

u(H−1(s)) ds =

∫ H−1(1)

0

u(t)H ′(t) dt =

∫ 1/2

0

u(t)(h(t) + h(−t)) dt =

∫
T
u(t)h(t) dt
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since u is symmetric. Similarly
∫ 1

0
u(H̄−1(s)) ds =

∫
T u(t)h̄(t) dt, and so inequality (10)

becomes
∫
u(t)h(t) dt ≤

∫
u(t)h̄(t) dt as desired.

4.5 Fourier Coefficients of Density Functions

To use Proposition 4.6 to bound ∆(ε), we need to develop a better understanding of the
central Fourier coefficients f̂(j) for small j. In particular, we wish to apply Proposition 4.6
with m = 2, i.e., we need to develop the connections between ‖f ∗ f‖∞ and the real part of
the Fourier coefficient f̂(1).

We turn now to bounding |f̂(j)| in terms of ‖f ∗ f‖∞. The guiding principle is that if
f ∗ f is very concentrated then ‖f ∗ f‖∞ will be large, and if f ∗ f is not very concentrated
then |f̂(j)| will be small. Green [Gre01, Lemma 26] proves the following lemma in a discrete
setting, but since we need a continuous version we include a complete proof.

Lemma 4.11. Let f be a pdf supported on [−1
4
, 1

4
]. For j 6= 0,

|f̂(j)|2 ≤ ‖f ∗ f‖∞
π

sin

(
π

‖f ∗ f‖∞

)
.

Proof. Let f1 : T → R be defined by f1(x) := f(x − x0), with x0 chosen so that f̂1(j) is
real and positive (clearly f̂1(j) = |f̂(j)| and ‖f ∗ f‖∞ = ‖f1 ∗ f1‖∞). Set h(x) to be the
symmetric decreasing rearrangement of f1 ∗ f1, and h(x) := ‖f ∗ f‖∞I(x), where I(x) is the
indicator function of [− 1

2‖f∗f‖∞ ,
1

2‖f∗f‖∞ ]. We have

|f̂(j)|2 = f̂1(j)
2 = f̂1 ∗ f1(j) =

∫
f1 ∗ f1(x) cos(2πjx) dx ≤

∫
h(x) cos(2πx) dx

by Lemma 4.9. We now apply Lemma 4.10 to find

|f̂(j)|2 ≤
∫
h(x) cos(2πx) dx

=

∫ 1/(2‖f∗f‖∞)

−1/(2‖f∗f‖∞)

‖f ∗ f‖∞ cos(2πx) dx =
‖f ∗ f‖∞

π
sin

(
π

‖f ∗ f‖∞

)
.

4.6 The Full Bound

With the technical result of Section 4.5 in hand, we can finally establish the lower bound on
∆(ε) given in Theorem 1.1(ii).

Proposition 4.12. ∆(ε) ≥ 0.591389ε2 for all 0 ≤ ε ≤ 1.

Proof. Let f be a pdf supported on [−1
4
, 1

4
], and assume that

‖f ∗ f‖∞ < 1.182778. (11)
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Set x1 = <f̂(1) and x2 = <f̂(2). Since f is supported on [−1
4
, 1

4
], we see that x1 > 0. By

Lemma 4.11,
0 < x1 < 0.4191447. (12)

Corollary 4.8 with m′ = ∞, gives

‖f ∗ f‖∞ ≥ ‖f ∗ f‖2 ≥ 1 + 2x4
1 +

(
0.368067372− 0.541553784x1

0.239175395

)4

. (13)

Routine calculus shows that there are no simultaneous solutions to Inequalities (11), (12), and
(13). Therefore ‖f ∗f‖∞ ≥ 1.182778, whence Lemma 4.1 implies that ∆(ε) ≥ 0.591389ε2.

This gist of the proof of Proposition 4.12 is that if ‖f ∗ f‖∞ is small, then <f̂(1) is
small by Lemma 4.11, and so ‖f ∗ f‖2

2 is not very small by Corollary 4.8, whence ‖f ∗ f‖∞
is not small. If ‖f ∗ f‖∞ ≤ 1.182778, then we get a contradiction. We can actually prove a
meaningful result about ‖f ∗ f‖2

2 under the condition that ‖f ∗ f‖∞ is not much larger than
1.182778. The following result will be useful in Section 5.

Lemma 4.13. Let f be a pdf supported on [−1
4
, 1

4
]. If 1.182778 ≤ ‖f ∗f‖∞ ≤ 1.229837, then

‖f ∗ f‖2
2 ≥

∑
|j|≤m′

|f̂(j)|4 ≥ 21.922911− 33.711941‖f ∗ f‖∞ + 13.676987‖f ∗ f‖2
∞ − o(1)

as m′ →∞.

Proof. The first inequality has already been shown in Proposition 4.6. Set

B(x1) := 1 + 2x4
1 +

(
0.368067372− 0.541553784x1

0.239175395

)4

,

so that by Corollary 4.8, ∑
|j|≥m′

|f̂(j)|4 ≥ B(<f̂(1))− o(1).

By hypothesis ‖f ∗ f‖∞ ≤ 1.229837, so that by Lemma 4.11,

<f̂(1) ≤

√
‖f ∗ f‖∞

π
sin

(
π

‖f ∗ f‖∞

)
< 0.466.

But B(x1) is a decreasing function for x1 ∈ [0, 0.47], so that

B(<f̂(1)) ≥ B

(√
‖f∗f‖∞

π
sin
(

π
‖f∗f‖∞

))
> 21.922911− 33.711941‖f ∗ f‖∞ + 13.676987‖f ∗ f‖2

∞

after a straightforward computation.
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4.7 The Kernel Problem

Let K be the class of functions K ∈ L2 satisfying K(x) ≥ 1 on [−1
4
, 1

4
]. Proposition 4.2

suggests the problem of computing

inf
K∈K

‖K̂‖p = inf
K∈K

(
∞∑

j=−∞

|K̂(j)|p
)1/p

.

In Proposition 4.2 the case p = 4
3

arose, but using the Hausdorff-Young inequality in place
of Parseval’s identity we are led to consider 1 < p ≤ 4

3
. Also, we assumed in Proposition 4.2

that K was continuous, but this assumption can be removed by taking the pointwise limit
of continuous functions.

As similar problems occur in [CRT] and in [Gre01], we feel it is worthwhile to detail the
thoughts and experiments that led to the kernel functions chosen in Corollaries 4.3 and 4.8.

4.7.1 Ad hoc Observations

Our first observation is that if G ∈ K, then so is K(x) := 1
2
(G(x) + G(−x)), and since

|K̂(j)| = |<Ĝ(j)| ≤ |Ĝ(j)| we know that ‖K̂‖p ≤ ‖Ĝ‖p. Thus, we may restrict our attention
to the even functions in K.

We also observe that |K̂(j)| decays more rapidly if many derivatives of K are continuous.
This suggests that we should restrict our attention to continuousK, perhaps even to infinitely
differentiable K. However, computations suggest that the best functions K are continuous
but not differentiable at x = 1

4
(see in particular Section 4.7.4 and Figure 4).

In the argument of Proposition 4.2 we used the inequality
∫
f ≤

∫
fK, which is an

equality if we take K to be equal to 1 on [−1
4
, 1

4
], instead of merely at least 1. In light of

this, we should not be surprised if the optimal functions in K are exactly 1 on [−1
4
, 1

4
]. This

is supported by our computations.
Finally, we note that if Ki ∈ K, and αi > 0 with

∑
i αi = 1, then

∑
i αiKi(x) ∈ K also.

This is particularly useful with K1(x) := 1. Specifically, given any K2 ∈ K with known
‖K̂2‖p (we stipulate ‖K2‖1 = K̂(0) =≤ 1 to avoid technicalities), we may easily compute the

α ∈ [0, 1] for which ‖K̂‖p is minimized, where K(x) := αK1(x) + (1− α)K2(x). We have

‖K̂‖p
p = (α+ (1− α)K̂2(0))

p + (1− α)p
1‖K̂‖p

p = (1− (1− α)M)p + (1− α)pN, (14)

where we have set M := 1− K̂2(0) and N := 1‖K̂‖p
p. Taking the derivative with respect to

α, we obtain

p(1− α)p−1

(
M
( 1

1− α
−M

)p−1

−N

)
,

the only root of which is α = 1 − Mq/p

Mq+Nq/p (where 1
p

+ 1
q

= 1). It is straightforward (albeit

tedious) to check by substituting α into the second derivative of the expression (14) that this
value of α yields a local maximum for ‖K̂‖p

p. The maximum value attained is then calculated

to equal N
(
M q +N q/p

)1−p
, which is easily computed from the known function K2.

27



Notice that when p = 4
3

(so q = 4), applying Proposition 4.2 with our optimal function
K yields

‖f ∗ f‖2
2 ≥ ‖K̂‖−4

4/3 =
(
N
(
M4 +N3

)−1/3
)−3

=
M4 +N3

N3
= 1 +

(1− K̂2(0))
4

1‖K̂‖4
4/3

,

whereupon we recover the conclusion of Proposition 4.6 with m = 1.

4.7.2 Trigonometric Polynomials

We wish to identify families of functions that are at least 1 on [−1
4
, 1

4
] and whose Fourier co-

efficients have small `p norm. Natural candidates are functions which have many Fourier
coefficients equal to 0. In this section we consider trigonometric polynomials K(x) =∑m

j=−m K̂(j)e2πijx of degree m.
Montgomery [Mon94, Chapter 1] defines the Selberg polynomials S+

m(α, β, x) and shows
that S+

m(α, β, x) ≥ χ[α,β](x) for all x, provided that α ≤ β ≤ α+1; moreover, these functions
are (in some senses) optimal L1 majorants for χ[α,β](x) among all trigonometric polynomials
of bounded degree. These provide a natural family for investigation.

We are concerned with [α, β] = [−1
4
, 1

4
]. We have for instance

S+
2 (−1

4
, 1

4
, x) =

5

6
+
( 4

9
√

3
+

2

3π

)
cos(2πx)− 2

9
cos(4πx),

which satisfies S+
2 (−1

4
, 1

4
, x)− 1

18
≥ 1 when x ∈ [−1

4
, 1

4
], and

inf
0≤α≤1

‖(α+ (1− α)(S+
2 (−1

4
, 1

4
, x)− 1

18
)∧‖4/3 > 0.990.

However, L(x) := 2 cos(2πx)− cos(4πx) ∈ K, and

inf
0≤α≤1

‖(α+ (1− α)(L(x))∧‖4/3 < 0.989.

Thus, even among trigonometric polynomials of degree 2, the Selberg polynomials are not
optimal. In general, we have been unable to identify the degree-m trigonometric polynomial
K(x) that is in K and for which

∑m
j=−m |K̂(j)|4/3 is minimized.

4.7.3 Wavelets

We can give an exact, finite expression for the p-norm of the Fourier coefficients of some
large classes of functions. Sums of Haar wavelets give the simplest theoretical instance and
the largest class of functions.

Define

ψ(x) :=


1 0 ≤ x < 1

2
,

−1 1
2
≤ x < 1,

0 otherwise.

28



and ψm,n(x) := 2−m/2ψ(2mx−n). It is well-known that the Haar Wavelets {ψm,n : m,n ∈ Z}
form an orthonormal basis of the subspace of L2(R) consisting of functions that have integral
0. By the comments in Section 4.7.1,

inf
K∈K

‖K̂‖4/3 = inf
K∈K∫
K=0

(
1 +

1

1‖K̂‖4
4/3

)−1/4

,

so that the
∫
K = 0 restriction is not a substantial restriction.

It follows that every even function K ∈ K with
∫
K = 0 and x ∈ [−1

4
, 1

4
) ⇒ K(x) = 1

can be written in the form

K(x) =
√

2 (ψ1,0(x) + ψ1,0(−x)) +
∞∑

n=1

αn

(
ψ2+blog2 nc,n(x) + ψ2+blog2 nc,n(−x)

)
.

Since this expression is linear, we can give the Fourier coefficients of K in terms of the easily
computable Fourier coefficients of the ψm,n and in terms of the parameters αn. Truncating
the infinite sum at N , we obtain a reasonably large family of possible functions K for which
‖K̂‖p can be computed quickly enough to numerically optimize α1, . . . , αN . Graphs of the
optimal K(x) for p = 4

3
and various values of N are displayed in Figure 4. Note that if

these wavelet-based functions are converging to some limit function in K, that limit function
certainly does not seem to be differentiable at ±1

4
.

While the exact form of this expression for ‖K̂‖p is not difficult to compute, we suppress
the details as they are very similar to the expressions computed in the next section.

4.7.4 Piecewise-Linear Functions

More useful computationally is the class of continuous piecewise-linear even functions whose
vertices all have abscissae with a given denominator. Let ζ(s, a) :=

∑∞
k=0(k + a)−s denote

the Hurwitz zeta function. If v is a vector, define Λp(v) to be the vector whose coordinates
are the pth powers of the absolute values of the corresponding coordinates of v.

Proposition 4.14. Let T be a positive integer, n a nonnegative integer, and p ≥ 1 a real
number. For each integer 0 ≤ t ≤ T , define xt := 1

4
+ t

4T
, and let yt be an arbitrary real

number, except that y0 = 1. Let K(x) be the even function on T that is linear on [0, 1
4
] and

each of the intervals [xt−1, xt] (1 ≤ t ≤ T ), satisfying K(0) = 1 and K(xt) = yt (0 ≤ t ≤ T ).
Then

n‖K̂‖p = (2Λp(dA) · z)1/p,

where d is the T -dimensional vector d = (y1 − y0, y2 − y1, . . . , yT − yT−1), A is the T × 4T
matrix whose (t, k)-th component is

Atk = cos(2π(n+ k − 1)xt)− cos(2π(n+ k − 1)xt−1),

and z is the 4T -dimensional vector

z = (8Tπ2)−p
(
ζ(2p, j

4T
), ζ(2p, j+1

4T
), . . . , ζ(2p, j+4T−1

4T
)
)
.
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Figure 4: Optimal kernels generated by Haar wavelets
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Proof. Note that

K̂(−j) = K̂(j) =

∫ 1/2

−1/2

K(u) cos(2πju) du

= 2

∫ 1/4

0

cos(2πju) du+ 2
T∑

t=1

∫ xt

xt−1

(mtu+ bt) cos(2πju) du,

where mt and bt are the slope and y-intercept of the line going through (xt−1, yt−1) and

(xt, yt). If we define C(j) := π2j2

2T
K̂(j), then integrating by parts we have

C(j) =

(
π2j2

T

(
1

2πj
sin (2πju)

∣∣∣∣1/4

0

)
+
π2j2

T

T∑
t=1

(
mtu+ bt

2πj
sin(2πju)

∣∣∣∣xt

xt−1

))

+

(
π2j2

T

T∑
t=1

mt

(2πj)2
cos(2πju)

∣∣∣∣xt

xt−1

)
. (15)

The first term of this expression is

πj

2T

(
sin
(
π j

2

)
+

T∑
t=1

(
(mtxt + bt) sin(2πjxt)− (mtxt−1 + bt) sin(2πjxt−1)

))

=
πj

2T

(
sin
(
π j

2

)
+

T∑
t=1

(mtxt + bt) sin(2πjxt)−
T−1∑
t=0

(mt+1xt + bt+1) sin(2πjxt)

)
.

Sincemt+1xt+bt+1 = yt = mtxt+bt and x0 = 1
4
, xT = 1

2
, this entire expression is a telescoping

sum whose value is zero. Eq. (15) thus becomes

C(j) =
π2j2

T

T∑
t=1

mt

(2πj)2
cos(2πju)

∣∣∣∣xt

xt−1

=
T∑

t=1

(yt − yt−1) (cos(2πjxt)− cos(2πjxt−1)) (16)

using mt = yt−yt−1

xt−xt−1
= 4T (yt−yt−1). Each xt is rational and can be written with denominator

4T , so we see that the sequence of normalized Fourier coefficients C(j) is periodic with period
4T .

We proceed to compute n‖K̂‖p with n positive and p ≥ 1.(
n‖K̂‖p

)p

=
∑
|j|≥n

|K̂(j)|p = 2
∞∑

j=n

|K̂(j)|p = 2
∞∑

j=n

∣∣∣∣C(j)
2T

π2j2

∣∣∣∣p
= 2

(
2T

π2

)p ∞∑
j=n

|C(j)|p

j2p
.
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Because of the periodicity of C(j), we may write this as

(
n‖K̂‖p

)p

= 2

(
2T

π2

)p
(

n+4T−1∑
j=n

|C(j)|p
∞∑

r=0

(4Tr + j)−2p

)

= 2

(
2T

(4T )2π2

)p
(

n+4T−1∑
j=n

|C(j)|pζ
(
2p, j

4T

))
, (17)

which concludes the proof.

Proposition 4.14 is useful in two ways. The first is that only d depends on the chosen
values yt. That is, the vector z and the matrix A may be precomputed (assuming T is
reasonably small), enabling us to compute n‖K̂‖p quickly enough as a function of d to
numerically optimize the yt. The second use is through Eq. (17). For a given K, we set
yt = K(xt), whereupon C(j) is computed for each j using the formula in Eq. (16). Thus we
can use Eq. (17) to compute n‖K̂1‖p with arbitrary accuracy, where K1 is almost equal to

K. We have found that with T = 10000 one can generally compute n‖K̂1‖p quickly.
In performing these numerical optimizations, we have found that “good” kernels K(x) ∈

K have a very negative slope at x = 1
4

+
(e.g., see Figure 4). Viewing graphs of these

numerically optimized kernels suggests that functions of the form

Kd1,d2(x) =

{
1 |x| ≤ 1

4
,

1− (1− (4(1
2
− x))d1)d2 1

4
< |x| ≤ 1

2
,

which have slope −∞ at x = 1
4

+
, may be very good. (Note that the graph of K2,1/2(x)

between 1
4

and 3
4

is the lower half of an ellipse.) More good candidates are functions of the
form

Ke1,e2,e3(x) =

{
1 |x| ≤ 1

4
,(

2
π

tan−1
(

(1−2x)e1

(4x−1)e2

))e3
1
4
< |x| ≤ 1

2
,

where e1, e2, and e3 are positive. We have used a function of the form Kd1,d2 in the proof of
Corollary 4.8 and a function of the form Ke1,e2,e3 in the proof of Corollary 4.3.

4.8 A Lower Bound for ∆(1
2)

We begin with a fundamental relationship between <f̂(1) and <f̂(2).

Lemma 4.15. Let f be a pdf supported on [−1
4
, 1

4
]. Then

2
(
<f̂(1)

)2 − 1 ≤ <f̂(2) ≤ 2(<f̂(1))− 1.

Proof. Since L2(x) := 2 cos(2πx)− cos(4πx) is at least 1 for −1
4
≤ x ≤ 1

4
, we have

1 ≤
∫
f(x)L(x) dx =

2∑
j=−2

f̂(j)L̂(−j) = 2(<f̂(1))−<f̂(2).
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Rearranging, we arrive at <f̂(2) ≤ 2(<f̂(1))− 1.

We give two proofs of the inequality 2
(
<f̂(1)

)2− 1 ≤ <(f̂(2)), each with its own advan-
tages.

First proof: Since f(x) and cos(2πx) are both nonnegative on [−1
4
, 1

4
], the Cauchy-

Schwartz inequality gives

2(<f̂(1))2 − 1 = 2

(∫ 1/4

−1/4

f(x) cos(2πx) dx

)2

−
∫ 1/4

−1/4

f(x) dx

≤ 2

(∫ 1/4

−1/4

f(x) dx

)(∫ 1/4

−1/4

f(x) (cos(2πx))2 dx

)
−
∫ 1/4

−1/4

f(x) dx

= 2

∫ 1/4

−1/4

f(x) (cos(2πx))2 dx−
∫ 1/4

−1/4

f(x) dx

=

∫ 1/4

−1/4

f(x)
(
2 cos2(2πx)− 1

)
dx

=

∫ 1/4

−1/4

f(x) cos(4πx) dx = <f̂(2).

Second proof: Set Lb(x) = b cos(2πx) − cos(4πx) (with b ≥ 0) and observe that for
−1

4
≤ x ≤ 1

4
, we have Lb(x) ≤ 1 + b2

8
. Thus

1 + b2

8
≥
∫
f(x)Lb(x) dx =

2∑
j=−2

f̂(j)L̂b(−j) = b<f̂(1)−<f̂(2).

Rearranging, we arrive at <f̂(2) ≥ b(<f̂(1)) − 1 − b2

8
. Setting b = 4<f̂(1), we find that

<f̂(2) ≥ 2(<f̂(1))2 − 1.

The first proof may be adapted to also give 4(<f̂(1))3−3<f̂(1) ≤ <f̂(3). The proof does
not immediately extend to higher coefficients. The second proof can be strengthened with
the additional hypothesis that f be an nif. We take advantage of this in Proposition 4.16.

From the inequality <f̂(2) ≤ 2<f̂(1) − 1 (Lemma 4.15) one easily computes that
max{|f̂(1)|, |f̂(2)|} ≥ 1

3
, and with Lemma 4.11 this gives

1

9
≤ ‖f ∗ f‖∞

π
sin

(
π

‖f ∗ f‖∞

)
.

This yields ‖f ∗ f‖∞ ≥ 1.11, a non-trivial bound. If one assumes that f is an nif supported
on a subset of [−1

4
, 1

4
] with large measure, then one can do much better than Lemma 4.15.

The following proposition establishes the lower bound on ∆(ε) given in Theorem 1.1(iii).

Proposition 4.16. Let f be an nif supported on a subset of [−1
4
, 1

4
] with measure ε/2. Then

‖f ∗ f‖∞ ≥ 1.1092 + 0.176158 ε

and consequently
∆(ε) ≥ 0.5546ε2 + 0.088079ε3.
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Proof. For ε ≥ 5
8
, this proposition is weaker than Lemma 3.1, and for ε ≤ 3

8
it is weaker

than Proposition 4.12, so we restrict our attention to 3
8
< ε < 5

8
.

Let b > −1 be a parameter and set Lb(x) := cos(4πx) − b cos(2πx). If we define F :=
max{<f̂(1),−<f̂(2)}, then∫

f(x)Lb(x) dx = <f̂(2)− b<f̂(1) ≥ −(b+ 1)F

on the one hand, and∫
f(x)Lb(x) dx ≤

∫
f sdr(x)Lb

sdr(x) dx =

∫ ε/4

−ε/4

2
ε
Lb

sdr(x) dx

on the other, where Lb
sdr(x) is the symmetric decreasing rearrangement of Kb(x) on the

interval [−1
4
, 1

4
]. Thus

F ≥ −1

b+ 1

2

ε

∫ ε/4

−ε/4

Lb
sdr(x) dx.

The right-hand side may be computed explicitly as a function of ε and b and then the value
of b chosen in terms of ε to maximize the resulting expression. One finds that for ε < 5

8
, the

optimal choice of b lies in the interval 2 < b < 4, and the resulting lower bound for F is

F ≥
3 cos(πε

4
) + sin(πε

4
)−

√
3 + 4 cos(πε

2
) + 2 cos(πε)− sin(πε

2
)

πε cos(πε
4

) + πε sin(πε
4

)
.

From Lemma 4.11 we know that F 2 ≤ ‖f∗f‖∞
π

sin
(

π
‖f∗f‖∞

)
. We compare these bounds on F

to conclude the proof. Specifically,

F 2 ≤ ‖f ∗ f‖∞
π

sin

(
π

‖f ∗ f‖∞

)
≤ 3

5π
+

(
6 + 5

√
3π
) (
‖f ∗ f‖∞ − 6

5

)
12π

, (18)

where the expression on the right-hand side of this equation is from the Taylor expansion of
x
π

sin(π
x
) at x0 = 6

5
, and

F 2 ≥

(
3 cos(πε

4
) + sin(πε

4
)−

√
3 + 4 cos(πε

2
) + 2 cos(πε)− sin(πε

2
)

πε cos(πε
4

) + πε sin(πε
4

)

)2

≥
−8
(
−3−

√
2 +

√
3 +

√
6
)

π2

+

(
96
(
−3−

√
2 +

√
3 +

√
6
)
− 4

(
9
√

2− 10
√

3 +
√

6
)
π
) (
ε− 1

2

)
3π2

, (19)

where the expression on the right-hand side is from the Taylor expansion of the middle
expression at ε0 = 1

2
. Comparing Eqs. (18) and (19) gives a lower bound on ‖f ∗ f‖∞, say

‖f ∗ f‖∞ ≥ c1 + c2ε with certain constants c1, c2. It is easily checked that c1 > 1.1092 and
c2 > 0.176158, concluding the proof of the first asserted inequality. The second inequality
then follows from Lemma 4.1.
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5 Upper Bounds for R(g, n) Arising from ∆(ε)

5.1 Inequalities Relating ∆(ε) and R(g, n)

A symmetric set consists of pairs (x, y) all with a fixed midpoint c = x+y
2

. If there are few
pairs in E × E with a given sum 2c, then there will be no large symmetric subset of E
with center c. We take advantage of the constructions of large integer sets whose pairwise
sums repeat at most g times to construct large real subsets of [0, 1) with no large symmetric
subsets. Recall the definition (5) of the function R(g, n).

Proposition 5.1. For any integers n ≥ g ≥ 1, we have ∆(R(g,n)
n

) ≤ g
n
.

Proof. Let S ⊆ {1, 2, . . . , n} be a B∗[g] set with |S| = R(g, n). Let

A(S) :=
⋃
s∈S

[s− 1

n
,
s

n

)
as in Eq. (4); it suffices to show that the largest symmetric subset of A(S) has measure
at most g

n
. Notice that the set A(S) is a finite union of intervals, and so the function

λ
(
A(S)∩(2c−A(S))

)
, which gives the measure of the largest symmetric subset of A(S) with

center c, is piecewise linear. (Figure 5.1 contains a typical example of the set A(S) portrayed
in dark gray below the c-axis, together with the function λ

(
A(S)∩(2c−A(S))

)
shown as the

upper boundary of the light gray region above the c-axis, for S = {1, 2, 3, 5, 8, 13}.) Without
loss of generality, therefore, we may restrict our attention to those symmetric subsets of A(S)
whose center c is the midpoint of endpoints of any two intervals

(
s−1
n
, s

n

)
. In other words,

we may assume that 2nc ∈ Z.

λ(A(S) ∩ (2c− A(S)))

c

1
13

2
13

3
13

1 2 3 5 8 13

Figure 5: A(S), and the function λ(A(S) ∩ (2c− A(S))), with S = {1, 2, 3, 5, 8, 13}

Suppose u and v are elements of A(S) such that u+v
2

= c. Write u = s1

n
− 1

2n
+ x and

v = s2

n
− 1

2n
+ y for integers s1, s2 ∈ S and real numbers x, y satisfying |x|, |y| < 1

2n
. (We

may ignore the possibility that nu or nv is an integer, since this is a measure-zero event for
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any fixed c.) Then 2nc = n(u + v) = s1 + s2 − 1 + n(x + y), and since 2nc, s1, and s2 are
all integers, we see that n(x + y) is also an integer. But |n(x + y)| < 1, so x + y = 0 and
s1 + s2 = 2nc+ 1.

Since S is a B∗[g] set, there are at most g solutions (s1, s2) to the equation s1 + s2 =
2nc+1. If it happens that s1 = s2, the interval

(
s1−1

n
, s1

n

)
(a set of measure 1

n
) is contributed

to the symmetric subset with center c. Otherwise, the set
(

s1−1
n
, s1

n

)
∪
(

s2−1
n
, s2

n

)
(a set of

measure 2
n
) is contributed to the symmetric subset with center c, but this counts for the two

solutions (s1, s2) and (s2, s1). In total, then, the largest symmetric subset having center c
has measure at most g

n
. This establishes the theorem.

Using Proposition 5.1, we can translate lower bounds on ∆(ε) into upper bounds on
R(g, n), as in Corollary 5.2.

Corollary 5.2. If δ ≤ inf0<ε<1 ∆(ε)/ε2, then R(g, n) ≤ δ−1/2√gn for all n ≥ g ≥ 1.

We remark that we may take δ = 0.591389 by Proposition 4.6, and so this corollary
implies that R(g, n) ≤ 1.30036

√
gn, which is one of the assertions of Theorem 1.2.

Proof. Combining the hypothesized lower bound ∆(ε) ≥ δε2 with Proposition 5.1, we find
that

δ

(
R(g, n)

n

)2

≤ ∆

(
R(g, n)

n

)
≤ g

n

which is equivalent to R(g, n) ≤ δ−1/2√gn.

We have been unable to prove or disprove that

lim
g→∞

lim
n→∞

R(g, n)
√
gn

=

(
inf

0<ε<1

∆(ε)

ε2

)−1/2

,

i.e., that Corollary 5.2 is best possible as g →∞. At any rate, for small g it is possible to do
better by taking advantage of the shape of the set A(S) used in the proof of Proposition 5.1.
This is the subject of Section 5.2.

Proposition 5.1 provides a one-sided inequality linking ∆(ε) and R(g, n). It will also
be useful for us to prove a theoretical result showing that the problems of determining
the asymptotics of the two functions are, in a weak sense, equivalent. In particular, the
following proposition implies that the trivial lower bound ∆(ε) ≥ 1

2
ε2 and the trivial upper

bound R(g, n) ≤
√

2gn are actually equivalent. Further, any nontrivial lower bound on ∆(ε)
gives a nontrivial upper bound on R(g, n), and vice versa.

Proposition 5.3. ∆(ε) = inf{ g
n
: n ≥ g ≥ 1, R(g,n)

n
≥ ε} for all 0 ≤ ε ≤ 1.

Proof. That ∆(ε) is bounded above by the right-hand side follows immediately from Propo-
sition 5.1 and the fact that ∆ is an increasing function. For the complementary inequality,
let S ⊆ [0, 1) with λ(S) = ε. There exists a finite union T of open intervals such that
λ(S � T ) < η, and it is easily seen that T can be chosen to meet the following criteria:
T ⊆ [0, 1), the endpoints of the finitely many intervals comprising T are rational, and
λ(T ) > ε. Choosing a common denominator n for the endpoints of the intervals comprising
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T , we may write T =
⋃

m∈M

[
m−1

n
, m

n

)
(up to a finite set of points) for some set of integers

M ⊆ {1, . . . , n}; most likely we have greatly increased the number of intervals comprising
T by writing it in this manner, and M contains many consecutive integers. Let g be the
maximal number of solutions (m1,m2) ∈ M ×M to m1 +m2 = k as k varies over all inte-
gers, so that M is a B∗[g] set and thus |M | ≤ R(g, n) by the definition of R. It follows that
ε < λ(T ) = |M |/n ≤ R(g, n)/n. Now T is exactly the set A(M) as defined in Eq. (4); hence
D(T ) = g

n
as we saw in the proof of Proposition 5.1. Therefore by Lemma 3.4,

D(S) ≥ D(T )− 2η = g
n
− 2η ≥ inf{ g

n
: n ≥ g ≥ 1, R(g,n)

n
≥ ε} − 2η.

Taking the infimum over appropriate sets S and noting that η > 0 was arbitrary, we derive
the desired inequality ∆(ε) ≥ inf{ g

n
: n ≥ g ≥ 1, R(g,n)

n
≥ ε}.

5.2 Upper Bounds on R(g, n) and ρ(g)

The bulk of Theorem 1.2 follows immediately from Proposition 5.4, which is proved in this
section.

Let S ⊆ {1, 2, . . . , n} be a B∗[g] set. We call the function

f(x) :=

{ 2n
|S| ,

s−1
2n
− 1

4
≤ x < s

2n
− 1

4
for some s ∈ S,

0, otherwise

the nif corresponding to S. We think of S, and consequently f , as depending on n (many
readers may prefer that we write Sn and fn, but this is neither customary nor sufficiently
brief). For example, when we write “Let S ⊆ {1, 2, . . . , n} be a B∗[g] set with |S| > 0.7

√
gn”,

we mean “For each n ∈ Z+, let S = Sn ⊆ {1, 2, . . . , n} be a B∗[g] set with |S| = |Sn| >
0.7
√
gn.”

Note that f is piecewise constant, so that f ∗ f is piecewise linear. Furthermore, the
corners of f ∗ f are only at the points 1

4n
Z, and if we define

r(t) := #
{
(x, y) ∈ S2 : x+ y = t

}
, (20)

then f ∗ f( k
4n

) = 2nr(k+n+1)
|S|2 . In particular, S is a B∗[g] set if and only if ‖f ∗ f‖∞ ≤ 2gn

|S|2 .

Proposition 5.4. Let φ := 1.14915 be the constant appearing in Corollary 4.7, and let
θ0 := 21.922911, θ1 := −33.711941, and θ2 := 13.676987 be the constants appearing in
Lemma 4.13. Then:

i. R(g, n) ≤
√

2/φ
√

(g − 1)n+ 1
3

for n ≥ g ≥ 2 and g odd;

ii. ρ(g) ≤
√

2/φ
(
1− 1

g
√

3

)1/2

for g ≥ 2, and if moreover ρ(g) ≥ 1.275237 then

ρ(g) ≤ 2
√

3θ2g(
3(1− θ1)g −

√
3−

√(
3(1− θ1)g −

√
3
)2 − 36θ0θ2g2

)1/2
;
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iii. If g ≥ 2 is odd, then ρ(g) ≤
√

2/φ
(
1− 1+1/

√
3

g

)1/2

, and if moreover ρ(g) ≥ 1.275237,

then

ρ(g) ≤ 2
√

3θ2g(
3 (1− θ1) g −

√
3− 3−

√(
3 (1− θ1) g −

√
3− 3

)2 − 36θ0θ2g2

)1/2
.

We begin with a simple lemma.

Lemma 5.5. If h, p, q are nonnegative functions with h = p+ q and ‖h‖∞ ≥ ‖p‖∞ + ‖q‖∞,
then

‖h‖∞ ≥ ‖h‖2
2 − ‖p‖2

2

‖h‖1 + ‖p‖1

+ ‖p‖∞.

Proof. We have

‖h‖2
2 = ‖p+ q‖2

2

= ‖p‖2
2 + ‖(2p+ q)q‖1

≤ ‖p‖2
2 + ‖2p+ q‖1‖q‖∞

= ‖p‖2
2 + (‖h‖1 + ‖p‖1)‖q‖∞

≤ ‖p‖2
2 + (‖h‖1 + ‖p‖1)(‖h‖∞ − ‖p‖∞).

We will use this lemma with h = f ∗ f (f a pdf), and p chosen so that ‖p‖1 → 0,
‖p‖2 → 0, ‖p‖∞ 6→ 0. In this case, we have the inequality

‖f ∗ f‖∞ & ‖f ∗ f‖2
2 + ‖p‖∞

which is stronger than Hölder’s Inequality: ‖f ∗ f‖∞ ≥ ‖f ∗ f‖2
2.

Proof of Proposition 5.4(i). The idea of the proof is that even though f ∗ f might take
values near 2gn

|S|2 , it does so only on a set of small measure, and away from that small set

it is bounded by 2(g−1)n
|S|2 . If the pair (s1, s2) contributes to r(k), then so does (s2, s1), and

therefore r(k) is odd if and only if k ∈ {2s : s ∈ S}. There are only |S| such integers k,

and no two are consecutive. Consequently, if f ∗ f( k
4n

) = 2gn
|S|2 , then f ∗ f(k−1

4n
) ≤ 2(g−1)n

|S|2 and

f ∗ f(k+1
4n

) ≤ 2(g−1)n
|S|2 .

We put this idea into effect by writing f ∗ f(x) = p(x) + q(x), where p represents the
small contribution to r(k) of pairs (s, s) and q is the remaining majority of f ∗ f . More
precisely, let p(x) :=

∑
s∈S T (x− s−1

n
− 1

2
), where T (x) is the “tent function”

T (x) :=

{
2n
|S|2 (1− 2n|x|), if |x| ≤ 1

2n
,

0, otherwise,

and let q(x) := f ∗ f(x)− p(x). (See Figure 6 for an illustration of a typical example, again
using the B∗[3] set S = {1, 2, 3, 5, 8, 13}.) Because of our judicious choice of the peaks of p,
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f ∗ f(x)

x

13
18

13
9

13
6

−1
2

0 1
2

p(x)

x

13
18

13
9

13
6

−1
2

0 1
2

q(x)

x

13
18

13
9

13
6

−1
2

0 1
2

Figure 6: The decomposition f ∗ f(x) = p(x) + q(x), where f is the nif corresponding to
S = {1, 2, 3, 5, 8, 13}

both p and q are nonnegative and ‖f ∗ f‖∞ ≥ ‖q‖∞ + ‖p‖∞. We compute directly from the

definition of p that ‖p‖1 = |S|‖T‖1 = 1
2|S| , ‖p‖

2
2 = |S|‖T‖2

2 = 2n/3
|S|3 , and ‖p‖∞ = ‖T‖∞ = 2n

|S|2 .
Lemma 5.5 with h = f ∗ f gives

‖f ∗ f‖∞ ≥ ‖f ∗ f‖2
2 − ‖p‖2

2

1 + ‖p‖1

+ ‖p‖∞. (21)

Using the inequality ‖f ∗ f‖2
2 ≥ φ from Corollary 4.7, the inequality ‖f ∗ f‖∞ ≤ 2gn

|S|2 ,

and the above computations of ‖p‖1, ‖p‖2, and ‖p‖∞, we can deduce from Eq. (21) that

|S|2 ≤ 2(g − 1)n

φ
+

(g − 1)n+ 2n/3

φ|S|
≤ 2(g − 1)n

φ
+

gn

φ|S|
,

from which it follows that |S| ≤
√

2(g−1)n
φ

+ 1
3
.

Lemma 5.6. If f is the nif corresponding to S ⊆ {1, 2, . . . , n}, and m′ → ∞ with m′ =

o
(

n
|S|

)
, then ∑

|j|>m′

|f̂(j)|4 ≥ 2√
3

n

|S|2
− o(1).
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Proof. Note that for j 6= 0,

jf̂(j) = j

∫
f(x)e−2πijx dx

=
∑
s∈S

‖f‖∞ j

∫ s
2n
− 1

4

s−1
2n

− 1
4

e−2πijx dx

=
∑
s∈S

‖f‖∞
j

−2πij

(
e−2πij( s

2n
− 1

4
) − e−2πij( s−1

2n
− 1

4
)
)

=
−‖f‖∞

2πi

∑
s∈S

(
e−2πij( s

2n
− 1

4
) − e−2πij( s−1

2n
− 1

4
)
)
.

In particular, if we set c(j) := j |f̂(j)|, then c(j) = c(j + 2n) (provided neither j nor
j + 2n is zero) and c(j) = c(−j). Exploiting this periodicity is the heart of this lemma.

We define

J :={m′ + 1,m′ + 2, . . . , n} ∪ {2n−m′, 2n−m′ + 1, . . . , 2n− 1}
J ′ :=[m′ + 1,m′ + 2n] \ J,

and for j ∈ J we set

j′ =


2n− j, m′ + 1 ≤ j < n;
2n, j = n;
4n− j, 2n−m′ ≤ j < 2n.

Observe that c(j) = c(j′) and J ′ = {j′ : j ∈ J}. Also, for almost all j ∈ J we have j′ = 2n−j,
since m′ = o(n).

For all p > 1, ∑
|j|>m′

|f̂(j)|p = 2
∞∑

j=m′+1

|f̂(j)|p

= 2
∞∑

j=m′+1

(
c(j)

j

)p

= 2
m′+2n∑

j=m′+1

∞∑
k=0

(
c(j)

j + 2n · k

)p

= 2
m′+2n∑

j=m′+1

(
c(j)

2n

)p

ζ(p, j
2n

)

= 2
∑
j∈J

(
c(j)

2n

)p (
ζ(p, j

2n
) + ζ(p, j′

2n
)
)
, (22)

where ζ(s, a) :=
∑∞

k=0(k + a)−s is the Hurwitz zeta function.

We shall use Cauchy’s inequality in the form
∑
a2

j ≥
(
∑

ajbj)
2∑

b2j
, with

aj =

(
c(j)

2n

)2 (
ζ(4, j

2n
) + ζ(4, j′

2n
)
)1/2
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and

bj =
ζ(2, j

2n
) + ζ(2, j′

2n
)(

ζ(4, j
2n

) + ζ(4, j′

2n
)
)1/2

.

For notational convenience set

Z(m′, n) :=
1

2n

∑
j∈J

b2j =
1

2n

∑
j∈J

(
ζ(2, j

2n
) + ζ(2, j′

2n
)
)2

ζ(4, j
2n

) + ζ(4, j′

2n
)

,

and note that since m′ = o(n),

lim
n→∞

Z(m′, n) = lim
n→∞

1

2n

n∑
j=o(n)

(
ζ(2, j

2n
) + ζ(2, 2n−j

2n
)
)2

ζ(4, j
2n

) + ζ(4, 2n−j
2n

)

=

∫ 1/2

0

(ζ(2, a) + ζ(2, 1− a))2

ζ(4, a) + ζ(4, 1− a)
da =

∫ 1/2

0

3

2 + cos(2πa)
da =

√
3

2
. (23)

Therefore from Eq. (22) with q = 4 and Cauchy’s inequality,∑
|j|>m′

|f̂(j)|4 = 2
∑
j∈J

(
c(j)

2n

)4(
ζ(4,

j

2n
) + ζ(4,

j′

2n
)

)

≥ 2

(∑
j∈J

(
c(j)
2n

)2 (
ζ(2, j

2n
) + ζ(2, j′

2n
)
))2

∑
j∈J

(
ζ(2, j

2n
) + ζ(2, j′

2n
)
)2(

ζ(4, j
2n

) + ζ(4, j′

2n
)
)−1

= 2

(
1
2

∑
|j|>m′ |f̂(j)|2

)2

2nZ(m′, n)

=

(
‖f‖2

2 −
∑

|j|≤m′ |f̂(j)|2
)2

4nZ(m′, n)
, (24)

the last equality following from Parseval’s formula. Trivially, |f̂(j)| ≤ f̂(0) = 1, and since
f is the nif corresponding to S, we have ‖f‖2

2 = ‖f‖2
∞λ(supp(f)) = ‖f‖∞ = 2n

|S| . Since

m′ = o(n/|S|), Eq. (24) becomes

∑
|j|>m′

|f̂(j)|4 ≥ 1

4n

(
2n
|S| − 2m′ − 1

)2

Z(m′, n)
=

2√
3

n

|S|2
− o(1).

Proof of Proposition 5.4(ii). Let S ⊆ {1, 2, . . . , n} be a B∗[g] set with |S| = R(g, n) and let
f be the corresponding nif. We shall use the inequality

‖f ∗ f‖∞ ≥ ‖f ∗ f‖2
2 =

∑
j

|f̂(j)|4 =
∑
|j|≤m′

|f̂(j)|4 +
∑
|j|>m′

|f̂(j)|4.
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We use Proposition 4.7 and Proposition 4.6 to bound the sum over small |j|, and we use
Lemma 5.6 to bound the sum over large |j|.

We are now prepared to prove Proposition 5.4(ii). We have

2

ρ2(g)
= lim inf

n→∞

2gn

|S|2
≥ lim inf

n→∞
‖f ∗ f‖∞ ≥ lim inf

n→∞
‖f ∗ f‖2

2

= lim inf
n→∞

∑
j

|f̂(j)|4 = lim inf
n→∞

( ∑
|j|≤m′

|f̂(j)|4 +
∑
|j|>m′

|f̂(j)|4
)
.

We see from Corollary 4.7 and Lemma 5.6 that

2

ρ2(g)
≥ lim inf

n→∞

(
φ− o(1) +

2√
3

n

|S|2
− o(1)

)
= φ+

2√
3

1

ρ2(g)g

Solving this inequality for ρ(g) yields

ρ(g) ≤
√

2

φ

(
1− 1

g
√

3

)1/2

.

If ρ(g) ≥ 1.275237, then ‖f ∗ f‖∞ ≤ 1.229837 for infinitely many n, and we can use
Lemma 4.13 instead of Corollary 4.7. Setting

F := lim inf
n→∞

‖f ∗ f‖∞ ≤ lim inf
n→∞

2gn

|S|2
,

we have

F ≥
(

lim inf
n→∞

∑
|j|≤m′

|f̂(j)|4 +
∑
|j|>m′

|f̂(j)|4
)

≥ lim inf
n→∞

(
θ0 + θ1‖f ∗ f‖∞ + θ2‖f ∗ f‖2

∞ − o(1) +
2√
3

n

|S|2
− o(1)

)
≥ θ0 + θ1F + θ2F

2 +
F

g
√

3
,

whence

ρ(g) ≤
√

2

F
≤ 2

√
3θ2g(

3(1− θ1)g −
√

3−
√(

3(1− θ1)g −
√

3
)2 − 36θ0θ2g2

)1/2
.

Proof of Proposition 5.4(iii). We combine the ideas of parts (i) and (ii). As in the proof of
Proposition 5.4(ii), we let S ⊆ {1, 2, . . . , n} be a B∗[g] set with |S| = R(g, n) and f be the
corresponding nif.

If g is odd, then (defining p and q as in the proof of Proposition 5.4(i)) Eq. (21) is valid,
and ‖p‖1 → 0, ‖p‖2 → 0, and ‖p‖∞ = 2n

|S|2 →
2

ρ2(g) g
.
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We find

2

ρ2(g)
= lim

n→∞

2gn

|S|2

= lim
n→∞

‖f ∗ f‖∞

≥ lim
n→∞

‖f ∗ f‖2
2 − ‖p‖2

2

1 + ‖p‖1

+ ‖p‖∞

= lim
n→∞

(∑
|j|≤m′ |f̂(j)|4 +

∑
|j|>m′ |f̂(j)|4

)
− ‖p‖2

2

1 + ‖p‖1

+ ‖p‖∞

= lim
n→∞

(
φ− o(1) + 2√

3
n
|S|2 − o(1)

)
− ‖p‖2

2

1 + ‖p‖1

+ ‖p‖∞

= φ+
2√
3

1

ρ2(g)g
+

2

ρ2(g)g

= φ+ 2
1 + 1/

√
3

ρ2(g)g
.

Solving this inequality for ρ2(g) yields

ρ(g) ≤
√

2

φ

(
1− 1 + 1/

√
3

g

)1/2

.

If ρ(g) ≥ 1.275237, then ‖f ∗ f‖∞ ≤ 1.229837 for infinitely many n, and we can use
Lemma 4.13. We have:

‖p‖1 =
1

2|S|
→ 0

‖p‖2
2 =

2n/3

|S|3
→ 0

‖p‖∞ =
2n

|S|2
=

1

g
‖f ∗ f‖∞∑

|j|≤m′

|f̂(j)|4 ≥ θ0 + θ1‖f ∗ f‖∞ + θ2‖f ∗ f‖2
∞ − o(1)

∑
|j|>m′

|f̂(j)|4 =
2√
3

n

|S|2
− o(1) ≥ ‖f ∗ f‖∞

g
√

3
− o(1).

Thus, again writing F = lim infn→∞ ‖f ∗ f‖∞, we now know

F := lim inf
n→∞

‖f ∗ f‖∞

≥ lim inf
n→∞

(∑
|j|≤m′ |f̂(j)|4 +

∑
|j|>m′ |f̂(j)|4

)
− ‖p‖2

2

1 + ‖p‖1

+ ‖p‖∞

≥ θ0 + θ1F + θ2F
2 +

F

g
√

3
+
F

g
.
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Isolating F , we obtain

F ≥
θ1 + 1+

√
3

g
√

3
− 1 +

√(
θ1 + 1+

√
3

g
√

3
− 1
)2

− 4θ0θ2

−2θ2

,

and so

ρ(g) ≤
√

2

F
≤ 2

√
3θ2g(

3 (1− θ1) g −
√

3− 3−
√(

3 (1− θ1) g −
√

3− 3
)2 − 36θ0θ2g2

)1/2
,

which concludes the proof.

5.3 Ubiquity of Repeated Sums in B∗[g] Sets

The method of proof of Proposition 5.4(i) can be adapted to yield more information about
the number of representations of integers as sums of pairs of elements from B∗[g] sets. The
following theorem gives a quantitative statement of the fact that, if S is a dense enough
B∗[g] set, then there is a substantial number of integers t such that r(t) is large, where r(t)
is defined in Eq. (20).

Theorem 5.7. Let S ⊆ {1, . . . , n} be a B∗[g] set, and let 0 < L < g be a real number. The
number of integers t such that r(t) > L is at least

φ|S|4 − 2Ln|S|2

n(g − L)(g + 2L)
,

where φ := 1.14915 is the constant appearing in Corollary 4.7.

We give an illustration of this theorem after the proof.

Proof. Let f be the nif corresponding to S. We note again that ‖f ∗ f‖1 = ‖f‖2
1 = 1 and

‖f ∗ f‖2
2 ≥ φ by Corollary 4.7.

Now let Q be the number of integers t between 1 and 2n such that r(t) > L. Our aim
is to show that Q is large if |S| is large enough and L is small enough. Define the functions
p(x) and q(x) by

q(x) = min

{
f ∗ f(x),

2Ln

|S|2

}
, p(x) = f ∗ f(x)− q(x).

We have

φ ≤ ‖f ∗ f‖2
2 = ‖p+ q‖2

2 = ‖p‖2
2 + ‖(2p+ q)q‖1

≤ ‖p‖2
2 + ‖2p+ q‖1‖q‖∞

= ‖p‖2
2 + (1 + ‖p‖1)‖q‖∞, (25)
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where the latter inequality is by Hölder. By its definition, we have ‖q‖∞ ≤ 2Ln
|S|2 . To bound

‖p‖1 and ‖p‖2, we look more closely at the function p.
Suppose r(t+1), r(t+2), . . . , r(t+K) are all greater than L, but that r(t) and r(t+K+1)

are at most L. Then the graph of f ∗ f between t−n−1
4n

and t+K−n
4n

lies under the trapezoid

with vertices
(

t−n−1
4n

, 2Ln
|S|2
)
,
(

t−n
4n
, 2gn
|S|2
)
,
(

t+K−n−1
4n

, 2gn
|S|2
)
, and

(
t+K−n

4n
, 2Ln
|S|2
)
. The area of this

trapezoid, which bounds the contribution to ‖p‖1 from x in the interval
[

t−n−1
4n

, t+K−n
4n

]
,

equals K(g−L)
2|S|2 . Since the numbers K from all such intervals sum to Q, we have established

the bound ‖p‖1 ≤ Q(g−L)
2|S|2 .

Similarly, the graph of (f ∗ f)2 between t−n−1
4n

and t+K−n
4n

lies under the trapezoid with

vertices
(

t−n−1
4n

, 4L2n2

|S|4
)
,
(

t−n
4n
, 4g2n2

|S|4
)
,
(

t+K−n−1
4n

, 4g2n2

|S|4
)
, and

(
t+K−n

4n
, 4L2n2

|S|4
)

(since the graph of

f ∗f is piecewise convex). The area of this trapezoid, which bounds the contribution to ‖p‖2
2

from x in the interval
[

t−n−1
4n

, t+K−n
4n

]
, equals Kn(g2−L2)

|S|4 . Since the numbers K from all such

intervals sum to Q, we have established the bound ‖p‖2
2 ≤

Qn(g2−L2)
|S|4 .

Inserting these bounds into Eq. (25), we conclude that

φ ≤ Qn(g2 − L2)

|S|4
+

(
1 +

Q(g − L)

2|S|2

)
2Ln

|S|2

or equivalently

Q ≥ φ|S|4 − 2Ln|S|2

n(g − L)(g + 2L)
(26)

as desired.

We remark that, using the techniques from the proof of Proposition 5.4(ii), the constant
1.14915 in the statement of Theorem 5.7 can be replaced with 1.182778 (provided one is
concerned only with the case n→∞).

To give an illustration of this theorem, define γ = |S|/√gn, α = L/g, and κ = Q/2n.
Then the inequality (26) becomes

κ ≥ γ2(0.574575γ2 − α)

(1− α)(1 + 2α)
. (27)

For example, take γ = 0.7 and α = 0.25, so that the right-hand side of this inequality is
greater than 0.0137382 > 1

73
. Theorem 1.3 tells us that for every g ≥ 2 except g = 3 and

possibly g = 5 and g = 7, there exists a B∗[g] set S contained in {1, . . . , n} with at least
0.7
√
gn elements, at least when n is large. For every such set S, the inequality (27) asserts

that at least 2n
73

of the integers t between 1 and 2n have at least g
4

representations t = s1 + s2

with s1, s2 ∈ S.
To give a basis for comparison for Theorem 5.7, we note that the simple argument

|S|2 =
∑

t

r(t) =
∑

t : r(t)≤L

r(t) +
∑

t : r(t)>L

r(t) ≤ (2n−Q)L+Qg

gives Q ≥ |S|2−2nL
g−L

, which translates in the above notation into

κ ≥ γ2 − 2α

2− 2α
. (28)
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Figure 7: Comparing the bounds of Eq. (28) and Eq. (27)

In Figure 7, Region IV corresponds to the pairs (γ, α) for which neither Eq. (27) nor Eq. (28)
gives a nontrivial bound on κ (the trivial bound is κ ≥ 0). In Region I, which contains our
example point (0.7, 0.25), Eq. (27) gives a nontrivial bound while Eq. (28) does not. Eq. (28)
gives a nontrivial bound in Regions II and III, but in Region II the bound in Eq. (27) is
better. That is, the simple bound in Eq. (28) is better than Eq. (27) only in Region III.

5.4 The Uniform Distribution Hypothesis

We say that a sequence (Sn)∞n=1 of sets of positive integers becomes uniformly distributed if
the discrepancy of Sn goes to 0 as n→∞. That is, (Sn)∞n=1 becomes uniformly distributed
if

lim sup
n→∞

sup
0≤α<β≤1

∣∣∣∣ |Sn ∩ [αMn, βMn]|
|Sn|

− (β − α)

∣∣∣∣ = 0,

where Mn denotes the largest element of Sn.
It has long been known [Erd44, Cho44] that R(2, n) ∼

√
n. In 1991, Erdős and

Freud [EF91] proved that if Sn ⊆ {1, . . . , n} is a sequence of B∗[2] sets with |Sn| ∼
√
n,

then (Sn) becomes uniformly distributed. We are led to make the following conjecture.

Conjecture 5.8. Let g ≥ 2 be an integer. Suppose that Sn ⊆ {1, . . . , n} is a sequence of
B∗[g] sets with |Sn| ∼ R(g, n). Then (Sn) becomes uniformly distributed.

Independent of the conjecture, we are able to prove a strong result on the cardinality of
uniformly distributed B∗[g] sets.

Theorem 5.9. Let g ≥ 2 be an integer. Let Sn ⊆ {1, . . . , n} be a sequence of B∗[g] sets that
becomes uniformly distributed as n→∞. Then |Sn| . 1.15988

√
gn.
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Proof. Let fn be the nif corresponding to Sn. Since the Sn become uniformly distributed, the
functions fn converge in measure to the function that is identically 2 on [−1

4
, 1

4
]. Therefore

f̂n(1) →
∫ 1/4

−1/4

2e−2πix dx =
2

π
.

Now, apply Lemma 4.11 to find lim infn ‖fn∗fn‖∞ ≥ 1.486634. Since ‖fn∗fn‖∞ = g
2n

(
2n
|Sn|

)2
,

we have shown |Sn| . 1.15988
√
gn.

In light of Theorem 5.9, we see that Conjecture 5.8 implies that ρ(g) ≤ 1.15988, improv-
ing Theorem 1.2 for all sufficiently large values of g.
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6 Constructions of B∗[g] Sets and Lower Bounds for

R(g, n)

We begin by considering a modular version of B∗[g] sets. A set S is a B∗[g] (mod n) set
if for any given m there are at most g ordered pairs (s1, s2) ∈ S × S with s1 + s2 ≡ m

(mod n) (equivalently, if the coefficients of the least-degree representative of
(∑

n∈S z
n
)2

(mod zn−1) are bounded by g). For example, the set {0, 1, 2, 4} is a B∗[3] (mod 7) set, and
{0, 1, 3, 7} is a B∗[2] (mod 12) set. Note that 7 + 7 ≡ 1 + 1 (mod 12), so that {0, 1, 3, 7}
is not a “modular Sidon set” as defined by some authors, e.g., [GS80] or [Guy94, Problem
C10]. It is, however, the natural companion to the study of B∗[g] sets, as evidenced by the
clean forms of Propositions 6.4 and 6.9 below.

Just as we defined R(g, n) to be the largest possible cardinality of a B∗[g] set contained
in [0, n), we define C(g, n) to be the largest possible cardinality of a B∗[g] (mod n) set.
The mnemonic is “R” for the Real problem and “C” for the Circular problem. After ex-
hibiting some basic bounds for this new function C(g, n) in the next section, we construct
some explicit families of large B∗[g] (mod n) sets in Section 6.2, which are used in turn to
construct large B∗[g] sets themselves in Section 6.4. We also demonstrate the existence of
large B∗[g] (mod n) sets via a probabilistic construction in Section 6.3, and we give a similar
probabilistic construction of large B∗[g] sets in Section 6.5. These constructions will yield
lower bounds on the size of B∗[g] sets, which we collect in Section 6.6.

6.1 Upper Bounds on C(g, n)

Since B∗[g] (mod n) sets have not been rigorously developed in the literature, we begin this
section by giving some simple upper bounds on C(g, n).

We can obtain

C(g, n) ≤

{√
gn g even,√
1− 1

g

√
gn+ 1 g odd,

from the pigeonhole principle as follows. There are |S|2 pairs of elements from S, and there
are just n possible values for the sum of two elements, and a possible value is realized at
most g times. Thus |S| ≤ √

gn. The only way a sum can occur an odd number of times is
if it is twice an element of S, so for odd g, |S|2 ≤ (g − 1)n+ |S|.

For g = 2 we can be more precise:
(

C(2,n)
2

)
≤
⌊

n
2

⌋
. To establish this, let S ⊆ [0, n) be a

witness and note that there are
(|S|

2

)
pairs of distinct elements from S, and each such pair

s1, s2 leads to a pair of differences {s1 − s2, s2 − s1} ∈ {{i, n− i} : 1 ≤ i < n}. If each of
(s1, s2) and (s3, s4) is a pair of incongruent elements and if s1 − s2 ≡ s3 − s4 (mod n), then
s1 + s4 ≡ s4 + s1 ≡ s2 + s3 ≡ s3 + s2 (mod n). The fact that S is a B∗[2] (mod n) set forces
{s1, s4} ≡ {s2, s3} (mod n), and since s1 6≡ s2 (mod n) by assumption we conclude that
s1 ≡ s3 (mod n) and s2 ≡ s4 (mod n). Therefore distinct pairs of incongruent elements lead
to distinct sets of differences, of which there are at most bn/2c, establishing

(
C(2,n)

2

)
≤
⌊

n
2

⌋
.

This bound is actually achieved for n = p2 + p+ 1 when p is prime (see Proposition 6.1(iii)
below) and implies that C(2, n) <

√
n+ 1.
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6.2 Explicit Constructions of B∗[g] (mod n) Sets

We turn now to the problem of constructing large B∗[g] (mod n) sets. The literature contains
several examples of families of B∗[2] (mod n) sets which we can generalize to families of
B∗[g] (mod n) sets. The following proposition collects several lower bounds for C(g, x)
corresponding to various constructions given in the proofs thereafter.

Proposition 6.1. Let p be a prime power, and let 1 ≤ k < p.

i. If p is a prime, then C(2k2, p2 − p) ≥ k(p− 1);

ii. C(2k2, p2 − 1) ≥ kp;

iii. C(2k2, p2 + p+ 1) ≥ kp+ 1.

The k = 1 cases of Proposition 6.1(i), (ii), and (iii) are due to Ruzsa [Ruz93], Bose [Bos42],
and Singer [Sin38], respectively. Part (i) uses the existence of a primitive root modulo a prime
p and the Chinese Remainder Theorem (the fact that the orders of the additive and multi-
plicative groups modulo p are relatively prime is important, which is why the construction
does not generalize to all finite fields). Part (ii) uses the existence of the finite fields GF(pt)
with cyclic multiplicative groups and their vector space structures. The third part also uses
a fact (Lemma 6.3) connecting the multiplicative group of a finite field to its vector space
structure.

All three constructions make use of the following lemma. Although the lemma is a special
case of unique factorization, we give here a simple, elementary proof of the special case that
we require.

Lemma 6.2. In any field, there are at most 2 ordered pairs (a, b) of solutions to the poly-
nomial equation x2 − c1x+ c2 = (x− a)(x− b).

Proof. Suppose that there are three solutions (am, bm), 1 ≤ m ≤ 3. Obviously we have
a1 + b1 = c1 = a2 + b2 and a1b1 = c2 = a2b2. This leads to 0 = a1(a1 + b1 − a2 − b2) =
a2

1 + a1b1 − a1a2 − a1b2 = a2
1 + a2b2 − a1a2 − a1b2 = (a1 − a2)(a1 − b2), whence a1 ∈ {a2, b2}.

If a1 = a2, then b1 = b2 and the three solutions are not distinct. Otherwise a1 = b2, and
likewise a1 = b3, whence b2 = b3, again a contradiction.

Proof of Proposition 6.1(i). Let g be a primitive root modulo p. Using the Chinese Remainder
Theorem, define at,i for 1 ≤ t < p and 1 ≤ i ≤ k by the pair of congruences

at,i ≡ t (mod p− 1) and at,i ≡ igt (mod p). (29)

Set Si := {at,i : 1 ≤ t < p}; clearly |Si| = p − 1. we shall show that
⋃k

i=1 Si witnesses
C(2k2, p(p− 1)) ≥ k(p− 1).

Suppose am1,i = am2,j, with m1,m2 ∈ [1, p). We have m1 ≡ am1,i = am2,j ≡ m2 (mod p−
1), so m1 = m2. Reducing the equation am1,i = am2,j modulo p, we find igm1 ≡ jgm2 = jgm1

(mod p), so i = j. Thus Si and Sj are distinct for distinct i, j, and
∣∣∣⋃k

i=1 Si

∣∣∣ = k(p− 1).

First assume that, given any i, j ∈ [1, k] and any n ∈ [1, p(p− 1)], there are at most two
pairs (r, v) ∈ Si × Sj with r + v ≡ n (mod p(p− 1)). Since there are k2 such choices of i, j,

49



and each such choice leads to at most two pairs with a given sum, this shows that each n
arises as the sum of at most 2k2 pairs, concluding the proof.

Now suppose if possible that there are three pairs (arm,i, avm,j) ∈ Si × Sj satisfying
arm,i + avm,j ≡ n (mod p(p − 1)). Then obviously arm,i + avm,j ≡ n (mod p). Also, since
arm,i + avm,j ≡ n (mod p− 1), we have arm,i · avm,j = igrmjgvm = ijgrm+vm ≡ ijgn (mod p).
Thus the pairs (arm,i, avm,j) are solutions to x2 − nx+ ijgn (mod p). Applying Lemma 6.2,
we find that two of the pairs (arm,i, avm,j) are equal, say ar1,i ≡ ar2,i (mod p). By Eq. (29),
igr1 ≡ ar1,i ≡ ar2,i ≡ igr2 (mod p). Since g has order p−1, this tells us that ar1,i ≡ r1 ≡ r2 ≡
ar2,i (mod p−1). Since ar1,i ≡ ar2,i (mod p), ar1,i ≡ ar2,i (mod p−1), and at,i ∈ [1, p(p−1))
(by definition), we see that ar1,i = ar2,i, whence the three pairs are not distinct.

Proof of Proposition 6.1(ii). Let θ generate the multiplicative group of the finite field GF(p2),
and observe that {1, θ} is a basis of GF(p2) as a vector space over GF(p). For i ∈ GF(p),
define

Si := {s′ ∈ [1, p2 − 1] : θs′ = iθ + s, s ∈ GF(p)}.
Bose [Bos42] showed that each Si is a Sidon set. we shall show that S =

⋃k
i=1 Si witnesses

C(2k2, p2 − 1) ≥ kp.
First, note that for each s ∈ GF(p), there is an integer s′ ∈ [1, p2 − 1] with θs′ = iθ + s,

so that |Si| = p. Since 1, θ is a basis for GF(p2) over GF(p), we know that iθ + s1 = jθ + s2

implies that i = j and s1 = s2. In particular, if i 6= j, then Si∩Sj = ∅. Thus |
⋃k

i=1 Si| = kp.
It is sufficient to show that for each n and any i, j (for which there are k2 choices) there

are at most 2 pairs (r′m, v
′
m) in Si×Sj with r′m +v′m ≡ n (mod p2−1). Define c1, c2 ∈ GF(p)

by (ij)−1θn − θ2 = c1θ + c2. Since r′m + v′m ≡ n (mod p2 − 1), we have

c1θ + c2 = (ij)−1θn − θ2 = (ij)−1θr′m+v′m − θ2 = (ij)−1θr′mθv′m − θ2 =

(ij)−1(iθ + rm)(jθ + vm)− θ2 = (i−1rm + j−1vm)θ + i−1rmj
−1vm.

This means that (a, b) = (i−1rm, j
−1vm) is a solution to x2 − c1x + c2 = (x− a)(x− b). By

Lemma 6.2, there are at most two such pairs.

To extend Singer’s [Sin38] construction, we shall need the following lemma.

Lemma 6.3. Let p be a prime power, and let θ ∈ GF(p3) generate the multiplicative group.
Then θa and θb are linearly dependent over GF(p) iff a ≡ b (mod p2 + p+ 1).

Proof. The multiplicative group of GF(p) is a subgroup of the multiplicative group of GF(p3),

i.e., GF(p) = {θk : k ≡ 0 (mod p3−1
p−1

)}. Since two elements of GF(p3) are linearly dependent

over GF(p) exactly if their ratio is in GF(p), we see that θa and θb are linearly dependent

exactly if a− b ≡ 0 (mod p3−1
p−1

).

Proof of Proposition 6.1(iii). Let θ ∈ GF(p3) generate the multiplicative group. Since θ is
algebraic with degree 3 over GF(p), the elements 1, θ, θ2 are a basis for GF(p3) over GF(p).
Define

Ti := {0} ∪ {s′ ∈ [1, p3 − 1] : θs′ = iθ + s, s ∈ GF(p)}

for 1 ≤ i ≤ k, and define Si to be the set of congruence classes modulo q := p3−1
p−1

= p2 +p+1
which intersect Ti.
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Since each nonzero s′ ∈ Ti corresponds to a unique s ∈ GF(p), and for each s ∈ GF(p)
there is an s′ ∈ [1, p3 − 1] with θs′ = iθ + s, we see that |Ti| = |GF(p) | + 1 = p + 1, and so
by virtue of Lemma 6.3, |Si| = p + 1. Also, each s′ 6= 0 occurs in at most one of the Ti, so
that |

⋃k
i=1 Si| = kp+ 1.

We wish to show that, given any n, there are at most two pairs (r′, v′) ∈ Th × Tj with

r′+v′ ≡ n mod q. Since there are k2 choices of h, j, this will establish that
⋃k

i=1 Si witnesses
C(2k2, p2 + p+ 1) ≥ kp+ 1. Define L0 = 1, and for each x′ ∈ Ti set Lx′ = θx′ = iθ + x.

Suppose that n is fixed, and (r′m, v
′
m) ∈ Th × Tj (1 ≤ m ≤ 3) are distinct pairs

with r′m + v′m ≡ n mod q for 1 ≤ m ≤ 3. It follows from Lemma 6.3 that each pair of
Lr′1

Lv′1
, Lr′2

Lv′2
, Lr′3

Lv′3
are linearly dependent, i.e., they are multiples of each other. If r′1 = 0,

then Lr′1
Lv′1

is linear. This means that Lr′2
Lv′2

is also linear, and so one of r′2, v
′
2 is zero and

the other is equal to v′1 ∈ Tj. If r′2 = 0, then (r′1, v
′
1) = (r′2, v

′
2), contradicting distinctness,

and if v′2 = 0, then v′1 ≡ r′2 (mod q), which is only possible if v′1 = r′2 = 0, whence again
(r′1, v

′
1) = (r′2, v

′
2).

Thus each Lr′mLv′m is a quadratic in θ. The coefficient of θ2 in each θn = Lr′mLv′m =
(hθ+rm)(jθ+vm) = hjθ2+(rmj+vmh)θ+rmvm is hj. Since the Lr′mLv′m are multiples of each
other with the same lead coefficients, they must in fact be equal. Set c1, c2 by (hj)−1θn−θ2 =
c1θ+c2, and observe that (a, b) = (h−1rm, j

−1vm) is a solution to x2−c1x+c2 = (x−a)(x−b);
hence, by Lemma 6.2, there are only two such pairs.

We now show how to combine two B∗[g] (mod n) sets to construct another.

Proposition 6.4. Let gcd(x, y) = 1, and let S be a B∗[g] (mod x) set and M be a B∗[h]
(mod y) set. Then the set M +yS := {m+ys : m ∈M, s ∈ S} is a B∗[gh] (mod xy) set. In
particular, C(gh, xy) ≥ C(g, x)C(h, y) for any positive integers g, h, x, y with gcd(x, y) = 1.

Proof. Consider mi, ni ∈M and si, ti ∈ S with

(m1 + ys1) + (n1 + yt1) ≡ · · · ≡ (mgh+1 + ysgh+1) + (ngh+1 + ytgh+1) (mod xy). (30)

We need to show that mi = mj, si = sj, ni = nj, and ti = tj, for some i, j. Reducing these
Eq. (30) modulo y, we see that m1 + n1 ≡ m2 + n2 ≡ · · · ≡ mgh+1 + ngh+1 (mod y). Since
M is a B∗[h] (mod y) set, we can reorder the mi, ni, si, ti so that m1 = m2 = · · · = mg+1

and n1 = n2 = · · · = ng+1. Reducing Eq. (30) modulo x we arrive at

ys1 + yt1 ≡ ys2 + yt2 ≡ · · · ≡ ysg+1 + ytg+1 (mod x)

whence, since gcd(x, y) = 1,

s1 + t1 ≡ s2 + t2 ≡ · · · ≡ sg+1 + tg+1 (mod x).

The si and ti are from a B∗[g] (mod x) set, so that for some i, j, si = sj and ti = tj.

We have computed C(g, n) for small g and n by exhaustive search. The results are
summarized in Table 1. The entry for (k, g) = (10, 5) is 28; this means that C(5, 28) ≥ 10
(a witness is {0, 1, 2, 4, 5, 8, 12, 15, 23, 24}), while there is no n < 28 for which C(5, n) ≥ 10.

It is straightforward to verify that C(5, 28) ≥ 10: one simply verifies that the witness
has 10 elements and is indeed a B∗[5] (mod 28) set. It is not straightforward, however, to
verify that C(5, n) < 10 for n < 28. We have made these verifications for each entry given
in the table by a long computer search using Mathematica.
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g

k

2 3 4 5 6 7 8 9 10 11
3 6
4 12 7
5 21 11 8
6 31 19 11 9
7 48 29 14 13 10
8 57 43 22 17 12 11
9 73 57 28 19 16 13 12
10 91 36 28 19 17 14 13
11 35 22 21 18 15 14
12 30 23 21 19 16 15
13 31 24 22 19 17
14 28 25 20

Table 1: min{n : C(g, n) ≥ k}

6.3 Probabilistic Constructions of B∗[g] (mod n) Sets

The algebraic methods of the previous section provide effective and completely explicit con-
structions of large B∗[g] (mod n) sets. However, we can establish the existence of even
larger B∗[g] (mod n) sets using a probabilistic construction. We rely upon the following two
lemmas, which are quantitative statements of the Law of Large Numbers for sums of many
independent random variables.

Lemma 6.5. Let p1, . . . , pn be real numbers in the range [0, 1], and set p = (p1 + · · ·+pn)/n.
Define mutually independent random variables X1, . . . , Xn such that Xi takes the value 1−pi

with probability pi and the value −pi with probability 1− pi (so that the expectation of each
Xi is zero), and define X = X1 + · · ·+Xn. Then for any positive number a,

Pr[X > a] < exp
(−a2

2pn
+

a3

2p2n2

)
and Pr[X < −a] < exp

(−a2

2pn

)
.

Proof. These assertions are Theorems A.11 and A.13 of [AS00].

Lemma 6.6. Let p1, . . . , pn be real numbers in the range [0, 1], and set E = p1 + · · · + pn.
Define mutually independent random variables Y1, . . . , Yn such that Yi takes the value 1 with
probability pi and the value 0 with probability 1 − pi, and define Y = Y1 + · · · + Yn (so that
the expectation of Y equals E). Then Pr[Y > E + a] < exp

(−a2

3E

)
for any real number

0 < a < E/3, and Pr[Y < E − a] < exp
(−a2

2E

)
for any positive real number a.

Proof. This follows immediately from Lemma 6.5 upon defining Xi = Yi − pi for each i and
noting that E = pn and that a3

2E2 <
a2

6E
under the assumption 0 < a < E/3.

We now give the probabilistic construction of large B∗[g] (mod n) sets.

Proposition 6.7. For every 0 < ε ≤ 1, there is a sequence of ordered pairs (nj, gj) of

positive integers such that
C(gj ,nj)

nj
& ε and

gj

nj
. ε2.
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Proof. Let n be an odd integer. We define a random subset S of {1, . . . , n} as follows: for
every 1 ≤ i ≤ n, let Yi be 1 with probability ε and 0 with probability 1 − ε with the Yi

mutually independent, and let S := {i : Yi = 1}. We see that |S| =
∑n

i=1 Yi has expectation
E = εn. Setting a =

√
εn log 4, Lemma 6.6 gives

Pr
[
|S| < εn−

√
εn log 4

]
<

1

2
.

Now for any integer k, define the random variable

Rk := #{1 ≤ c, d ≤ n : c+ d ≡ k (mod n), Yc = Yd = 1}

=
∑

c+d≡k (mod n)

YcYd,

so that Rk is the number of representations of k (mod n) as the sum of two elements of S.
Observe that Rk is the sum of n − 1 random variables taking the value 1 with probability
ε2 and the value 0 otherwise, plus one random variable (corresponding to c ≡ d ≡ 2−1k
(mod n)) taking the value 1 with probability ε and the value 0 otherwise. Therefore the
expectation of Rk is E = (n − 1)ε2 + ε. Setting a =

√
3((n− 1)ε2 + ε) log 2n, and noting

that a < E/3 when n is sufficiently large in terms of ε, Lemma 6.6 gives

Pr
[
Rk > (n− 1)ε2 + ε−

√
3((n− 1)ε2 + ε) log 2n

]
<

1

2n

for each 1 ≤ k ≤ n. Therefore, there exists a B∗[g] (mod n) set S ⊆ {1, . . . , n}, with
g ≤ (n − 1)ε2 + ε −

√
3((n− 1)ε2 + ε) log 2n . ε2n, such that |S| ≥ εn −

√
εn log 4 & εn.

This establishes the proposition.

Define ∆T(ε) to be the supremum of those real numbers δ such that every subset of T
with measure ε has a subset with measure δ that is fixed by a reflection t 7→ c − t. The
function ∆T(ε) stands in relation to C(g, n) as ∆(ε) stands to R(g, n). However, it turns out
that ∆T is much easier to understand:

Corollary 6.8. Every subset of T with measure ε contains a symmetric subset with measure
ε2, and this is best possible for every ε. In particular, ∆T(ε) = ε2 for all 0 ≤ ε ≤ 1.

Proof. In the proof of the trivial lower bound for ∆(ε) (Lemma 3.2), we saw that every
subset of [0, 1] with measure ε contains a symmetric subset with measure at least 1

2
ε2. The

proof is easily modified to show that every subset of T with measure ε contains a symmetric
subset with measure ε2. This shows that ∆T(ε) ≥ ε2 for all ε. On the other hand, the

proof of Proposition 5.1 is also easily modified to show that ∆T
(C(g,n)

n

)
≤ g

n
, as is the proof

of Lemma 3.5 to show that ∆T is continuous. Then, by virtue of Proposition 6.7 and the
monotonicity of ∆T, we have ∆T(ε) ≤ ε2.

6.4 Explicit Constructions of B∗[g] Sets

If S ⊆ [0, 100) is a B∗[g] (mod 200) set, then the modular sums are the same as the real
sums, and so S is a B∗[g] set as well. This observation is the fundamental idea behind using
the method of Proposition 6.4 to construct B∗[g] sets.
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Proposition 6.9. Let g, h, x, y be positive integers. Then

R(gh, xy) ≥ R(gh, xy + 1−
⌈

y
C(h,y)

⌉
) ≥ R(g, x)C(h, y).

Proof. Let M ⊆ [1,m] ⊆ [1, y] witness the value of C(h, y), and let S ⊆ [0, s) witness the
value of R(g, s). Take x > 2s, and relatively prime to y, and note that S is a B∗[g] (mod x)
set. By Proposition 6.4, the set M + yS is a B∗[gh] (mod xy) set. But by taking x to be
sufficiently large, we see that M + yS is actually a B∗[gh] set.

We now compute the smallest and largest element of M + yS. Clearly the smallest
element is 1, and the largest is m+ y(s− 1). Since M is a B∗[h] (mod y) set, we may shift
it modulo y so as to minimize m. M has C(h, y) elements, so there must be two consecutive
elements whose difference (mod y) is at least

⌈
y

C(h,y)

⌉
, i.e., we may take m ≤ y+1−

⌈
y

C(h,y)

⌉
.

Thus M + yS ⊆ [1, y + 1 −
⌈

y
C(h,y)

⌉
+ y(s − 1)] = [1, ys + 1 −

⌈
y

C(h,y)

⌉
], and |M + yS| =

R(g, s)C(h, y).

The reader might feel that the part of the argument concerning the largest gap in M is
more trouble than it is worth. We include this for two reasons. First, Erdős [Guy94, Problem
C9] offered $500 for an answer to the question, “Is R(2, n) =

√
n + O (1)?” This question

would be answered in the negative if one could show, for example, that the B∗[2] (mod p2−1)
sets constructed by Bose (the k = 1 case of Proposition 6.1(ii)) contain a gap which is not
O (p), as seems likely from the experiments of Zhang [Zha94] and Lindström [Lin98]. Second,
there is some literature (e.g., [ESS95] and [Ruz96]) concerning the possible size of the largest
gap in a maximal Sidon set contained in {1, . . . , n}. In short, we include this argument
because there is some reason to believe that this is a significant source of the error term in
at least one case, and because there is some reason to believe that improvement is possible.

Our plan is to employ the inequality of Proposition 6.9 when y is large, h = 2, and x ≈ 8
3
g.

In other words, we need nontrivial lower bounds for C(2, n) for n → ∞ and for R(g, n) for
values of n that are not much larger than g. The first need is filled by Proposition 6.1, while
the second need is filled by the following lemma.

Lemma 6.10. For all g ≥ 1 we have R(g, 3g − bg/3c+ 1) ≥ g + 2 bg/3c+ bg/6c.

Proof. One can verify that a witness is[
0,
⌊g
3

⌋)
∪
{
g −

⌊g
3

⌋
+ 2
[
0,
⌊g
6

⌋)}
∪
[
g, g +

⌊g
3

⌋)
∪
(
2g −

⌊g
3

⌋
, 3g −

⌊g
3

⌋ ]
.

We remark that this family of examples was motivated by the finite sequence S =
{1, 0, 1

2
, 1, 0, 1, 1, 1}, which has the property that its autocorrelations are small relative to

the sum of its entries. In other words, the ratio of the `∞-norm of S ∗ S to the `1-norm
of S itself is small. If we could find a finite sequence of rational numbers for which the
corresponding ratio were smaller, we could convert it directly into a family of examples that
would improve the lower bound for ρ(2g) in Theorem 1.3 for large g (see the proof of the
theorem in Section 6.6).

In addition to these parametric results, we have established by direct (exhaustive) compu-
tation the exact value of R(g, n) for small values of g and n. Table 2 records, for given values
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g

k

2 3 4 5 6 7 8 9 10 11
3 4
4 7 5
5 12 8 6
6 18 13 8 7
7 26 19 11 9 8
8 35 25 14 12 10 9
9 45 35 18 15 12 11 10
10 56 46 22 19 14 13 12 11
11 73 58 27 24 17 15 14 13 12
12 ≤ 92 ≤ 72 31 29 20 18 16 15 14 13
13 ≤ 143 ≤ 101 37 34 24 21 18 17 16 15
14 ≤ 128 44 40 28 26 21 19 18 17
15 ≤ 52 ≤ 47 32 29 24 22 20 19
16 36 34 27 24 22 21
17 ≤ 42 ≤ 38 30 28 24 23
18 34 32 27 25
19 ≤ 38 ≤ 36 30 28
20 33 31
21 ≤ 37 35
21 ≤ 38

Table 2: min{n : R(g, n) ≥ k}

of g and k, the smallest possible value of maxS among all B∗[g] sets S consisting of exactly k
positive integers; in other words, the entry corresponding to k and g is min{n : R(g, n) ≥ k}.
For example, the (k, g) = (8, 2) entry records the fact that there exists an 8-element Sidon
set of integers from [1, 35] but no 8-element Sidon set of integers from [1, 34].

To show that R(2, 35) ≥ 8, for instance, it is only necessary to observe that the witness
{1, 3, 13, 20, 26, 31, 34, 35} has 8 elements and is a B∗[2] set. To show that R(2, 35) ≤ 8,
however, seems to require an extensive search.

6.5 Probabilistic Constructions of B∗[g] Sets

We can use the probabilistic methods employed in Section 6.3 to construct large B∗[g] sets in
Z. The proof is more complicated because it is to our advantage to endow different integers
with different probabilities of belonging to our random set. Although all of the constants
in the proof could be made explicit, we are content with inequalities having error terms
involving big-O notation.

Proposition 6.11. Let γ ≥ π be a real number and n ≥ γ be an integer. There exists a
B∗[g] set S ⊆ {1, . . . , n}, where g = γ +O(

√
γ log n), with |S| ≥ 2

√
γn
π

+O(γ + (γn)1/4).

Proof. Define mutually independent random variables Yk, taking only the values 0 and 1, by
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g x R(g, x) Witness R(g, x)/
√

2gx
2 7 4 {1, 2, 5, 7} 2√

7
≈ 0.756

3 5 4 {1, 2, 3, 5} 2
√

2√
15
≈ 0.730

4 31 12 {1, 2, 4, 10, 11, 12, 14, 19, 25, 26, 30, 31} 2√
7
≈ 0.756

5 9 7 {1, 2, 3, 4, 5, 7, 9} 7
3
√

10
≈ 0.738

6 20 12 {1, 2, 3, 4, 5, 6, 9, 10, 13, 15, 19, 20}
√

3√
5
≈ 0.775

7 15 11 {1, 2, 3, 7, 8, 9, 10, 11, 12, 13, 15} 11√
210

≈ 0.759
8 30 17 {1, 2, 5, 7, 8, 9, 11, 12, 13, 14, 16, 18, 26, 27, 28, 29, 30} 17

4
√

30
≈ 0.776

9 24 16 {1, 2, 3, 4, 5, 6, 7, 8, 9, 13, 14, 15, 17, 22, 23, 24} 4
3
√

3
≈ 0.770

10 33 20 {1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 20, 21, 22, 23, 30, 31, 32, 33} 2
√

5√
33
≈ 0.778

11 25 18 {1, 2, 3, 4, 5, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 25} 18
5
√

22
≈ 0.768

Table 3: Important values of R(g, x) and witnesses

Pr{Yk = 1} = pk :=


1, 1 ≤ k < γ

π
,√

γ
πk
, γ

π
≤ k ≤ n,

0, k > n.

(31)

(Notice that pk ≤
√

γ
πk

for all k ≥ 1.) These random variables define a random subset
S = {k : Yk = 1} of the integers from 1 to n. We shall show that, with positive probability,
S is a large B∗[g] set with g not much bigger than γ.

The expected size of S is

E0 :=
∑

1≤j≤n

pj =
∑

1≤j<γ/π

1 +
∑

γ/π≤j≤n

√
γ

πj

=
γ

π
+

∫ n

γ/π

√
γ

πt
dt+O(1) = 2

√
γn

π
− γ

π
+O(1). (32)

If we set a0 :=
√

2E0 log 3, then Lemma 6.6 tells us that

Pr[|S| < E0 − a0] < exp
(−a2

0

2E0

)
=

1

3
.

Now for any integer k ∈ [γ, 2n], let

Rk :=
∑

1≤j≤n

YjYk−j = 2
∑

1≤j<k/2

YjYk−j + Yk/2,

the number of representations of k as k = s1 + s2 with s1, s2 ∈ S. (Here we adopt the
convention that Yk/2 = pk/2 = 0 if k is odd). Notice that in this latter sum, Yk/2 and
the YjYk−j are mutually independent random variables taking only values 0 and 1, with
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Pr[YjYk−j = 1] = pjpk−j. Thus the expectation of Rk is

Ek := 2
∑

1≤j<k/2

pjpk−j + pk/2 ≤ 2
∑

1≤j<k/2

√
γ

πj

√
γ

π(k − j)
+

√
γ

πk/2

≤ 2γ

π

∫ k/2

0

√
1

t(k − t)
dt+

√
2γ

πk
= γ +

√
2γ

πk
< γ + 1 (33)

using the inequalities pk ≤
√

γ
πk

and k ≥ γ.

If we set a =
√

3(γ + 1) log 3n, then Lemma 6.6 tells us that

Pr[Rk > γ + 1 + a] < Pr[Rk > Ek + a] < exp
(−a2

3Ek

)
< exp

( −a2

3(γ + 1)

)
=

1

3n

for every k in the range γ ≤ k ≤ 2n. Note that Rk ≤ γ trivially for k in the range 1 ≤ k ≤ γ.
Therefore, with probability at least 1 − 1

3
− (2n − γ) 1

3n
= γ

3n
> 0, the set S has at least

E0 − a0 = 2
√

γn
π

+O(γ + (γn)1/4) elements and satisfies Rk ≤ γ + 1 + a for all 1 ≤ k ≤ 2n.
Setting g := γ + 1 + a = γ + O(

√
γ log n), we conclude that any such set S is a B∗[g] set.

This establishes the proposition.

Schinzel conjectured that among all pdfs supported on [0, 1
2
], the function

f(x) =

{
1√
2x
, x ∈ [0, 1

2
],

0, otherwise

has the property that ‖f ∗ f‖∞ is minimal. We have

f ∗ f(x) =


π
2
, x ∈ [0, 1

2
],

π
2
− 2 tan−1

√
2x− 1, x ∈ [1

2
, 1],

0, otherwise

and so ‖f ∗f‖∞ = π
2
. We have adapted this function in our definition (31) of the probabilities

pk; the constant π
2

appears as the value of the last integral in Eq. (33). If Schinzel’s conjecture
were false, then we could immediately incorporate any better function f into the proof of
Proposition 6.11 and improve the lower bound on |S|. Indeed, Schinzel’s conjecture is one of
the motivations for our Conjecture 5.8, which by the above discussion is logically stronger.

Theorem 1.4. For any δ > 0, we have R(g, n) >
(

2√
π
− δ
)√

gn if both g
log n

and n
g

are
sufficiently large in terms of δ.

Proof. In the proof of Proposition 6.11, we saw that γ ≤ g and g = γ + O(
√
γ log n); this

implies that γ = g +O(
√
g log n) = g

(
1 +O

(√
log n

g

))
. Therefore the size of the constructed

set S was at least

2
√

γn
π

+O(γ + (γn)1/4) = 2

√
gn
π

(
1 +O

(√
log n

g

))
+O(g + (gn)1/4)

= 2
√

gn
π

(
1 +O

(√
log n

g
+
√

g
n

))
.

This establishes the theorem.
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6.6 Lower Bounds on R(g, n)

We are now ready to prove Theorem 1.3, which we restate here for the reader’s convenience.
Recall that ρ(g) = lim infn→∞

R(g,n)√
gn

.

Theorem 1.3. We have

ρ(4) ≥ 2√
7

> 0.755,

ρ(6) ≥ 2
√

2√
15

> 0.730,

ρ(8) ≥ 2√
7

> 0.755,

ρ(10) ≥ 7
3
√

10
> 0.737,

ρ(12) ≥
√

3√
5

> 0.774,

ρ(14) ≥ 11√
210

> 0.759,

ρ(16) ≥ 17
4
√

30
> 0.775,

ρ(18) ≥ 4
3
√

3
> 0.769,

ρ(20) ≥ 2
√

5√
33

> 0.778,

ρ(22) ≥ 18
5
√

22
> 0.767,

and for any g ≥ 12,

ρ(2g) ≥ g + 2 bg/3c+ bg/6c√
6g2 − 2g bg/3c+ 2g

.

In particular, for any δ > 0 we have R(g, n) > ( 11
8
√

3
− δ)

√
gn if both g and n

g
are sufficiently

large in terms of δ.

Proof. For any positive integers x and m ≤
√
n/x, the monotonicity of R in the second

variable gives R(2g, n) ≥ R(2g, x(m2 − 1)) ≥ R(g, x)C(2,m2 − 1) by Proposition 6.9. If we
choose m to be the largest prime not exceeding

√
n/x (so that m &

√
n/x by the Prime

Number Theorem), then Proposition 6.9 gives R(2g, n) ≥ R(g, x) ·m & R(g, x)
√

n
x

for any
fixed positive integer g, and hence

ρ(2g) = lim inf
n→∞

R(2g, n)√
2gn

≥ R(g, x)√
2gx

.

The problem now is to choose x so as to make R(g,x)√
2gx

as large as we can for each g. For
g = 2, 3, . . . , 11, we use Table 2 to choose x = 7, 5, 31, 9, 20, 15, 30, 24, 33, 25, respectively
(see Table 3 for witnesses to the values claimed for R(g, x)). This yields the first group of
assertions in Theorem 1.3. For g ≥ 12, we set x = 3g−bg/3c+1 and appeal to Theorem 6.10,
giving the second assertion of Theorem 1.3.

We remark that the above proof gives the more refined result

R(2g, n) ≥ 11

8
√

3

√
2gn

(
1 +O

(
g−1 +

(n
g

)(α−1)/2 ))
as n

g
and g both go to infinity, where α < 1 is any number such that for sufficiently large

y, there is always a prime between y − yα and y. For instance, we can take α = 0.525
by [BHP01]. This clarification implies the final assertion of the theorem for even g, and the
obvious inequality R(2g + 1, n) ≥ R(2g, n) implies the final assertion for odd g as well.

Habsieger and Plagne [HP] have proven that R(2, x)/
√

4x is maximized at x = 7. For
g > 2, we have chosen x based solely on the computations reported in Table 2. For general
g, it appears that R(g, x)/

√
2gx is actually maximized at a fairly small value of x, suggesting

that this construction suffers from “edge effects” and is not best possible.
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7 Upper Bounds for ∆(ε)

7.1 Upper Bounds Derived from Constructions of B∗[g] Sets

In Section 5 we used the connection between B∗[g] sets and measurable sets with small
symmetric subsets to deduce upper bounds for R(g, n) from lower bounds for ∆(ε). In this
section we exploit this relationship in the opposite direction, converting the lower bounds
on R(g, n) established in Section 6 into upper bounds for ∆(ε). Our first proposition verifies
the statement of Theorem 1.1(i).

Proposition 7.1. ∆(ε) = 2ε− 1 for 11
16
≤ ε ≤ 1, and ∆(ε) ≥ 2ε− 1 for all 0 < ε ≤ 1.

Proof. Recall from Lemma 3.5 that the function ∆ satisfies the Lipschitz condition |∆(x)−
∆(y)| ≤ 2|x − y|. Therefore the inequality ∆(ε) ≥ 2ε − 1 for all 0 < ε ≤ 1 follows easily
from the trivial value ∆(1) = 1. To prove that ∆(ε) = 2ε− 1 for 11

16
≤ ε ≤ 1, then, it suffices

to prove that ∆(ε) ≤ 2ε − 1 in that range; and again by the Lipschitz condition, it suffices
to prove simply that ∆

(
11
16

)
≤ 3

8
.

For any positive integer g, we combine Proposition 5.1 and Lemma 6.10 and the mono-
tonicity of ∆ to see that

g

3g − bg/3c+ 1
≥ ∆

(
R(g, 3g − bg/3c+ 1)

3g − bg/3c+ 1

)
≥ ∆

(
g + 2 bg/3c+ bg/6c

3g − bg/3c+ 1

)
.

Since ∆ is continuous by Lemma 3.5, we may take the limit of both sides as g → ∞ to
obtain ∆

(
11
16

)
≤ 3

8
as desired.

Proposition 7.2. The function ∆(ε)
ε2 is increasing on (0, 1].

Proof. Choose 0 < ε < ε0. By Proposition 6.9, we have

R(g, x)

x

C(h, y)

y
≤ R(gh, xy)

xy
.

With the monotonicity of ∆(ε) and Proposition 5.1, this gives

∆

(
R(g, x)

x

C(h, y)

y

)
≤ ∆

(
R(gh, xy)

xy

)
≤ gh

xy
.

Let gi, xi be such that R(gi,xi)
xi

→ ε0 and gi

xi
→ ∆(ε0), which is possible by Proposition 5.3.

By Proposition 6.7, we may choose sequences of integers hj and yj such that
C(hj ,yj)

yj
& ε

ε0

and
hj

yj
.
(

ε
ε0

)2
as j →∞. This implies

R(gi, xi)

x

C(hj, yj)

yj

& ε and
gi

xi

hj

yj

. ∆(ε0)
( ε
ε0

)2

,

so that, again using the monotonicity and continuity of ∆,

∆(ε0)
ε2

ε2
0

&
gihj

xiyj

≥ ∆

(
R(gi, xi)

xi

C(hj, yj)

yj

)
& ∆(ε)

as j →∞. This shows that ∆(ε)
ε2 ≤ ∆(ε0)

ε2
0

as desired.
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We can immediately deduce two nice consequences of this proposition.

Corollary 7.3. limε→0+
∆(ε)
ε2 exists.

Proof. This follows from the fact that the function ∆(ε)
ε2 is increasing and bounded below by

1
2

on (0, 1] by the trivial lower bound (Lemma 3.2).

Corollary 7.4. ∆(ε) ≤ 96
121
ε2 for 0 ≤ ε ≤ 11

16
.

Proof. This follows from the value ∆
(

11
16

)
= 3

8
calculated in Proposition 7.1 and the fact that

the function ∆(ε)
ε2 is increasing.

The corollary above proves part (iv) of Theorem 1.1, leaving only part (v) yet to be
established. The following proposition finishes the proof of Theorem 1.1.

Proposition 7.5. ∆(ε)
ε2 ≤ π

(1+
√

1−ε)2
for all 0 < ε ≤ 1.

Proof. Define α := 1 −
√

1− ε, so that 2α − α2 = ε. If we set γ = πα2n in the proof of
Proposition 6.11, then the sets constructed are B∗[g] sets with g = πα2n+O(

√
n log n) and

have size at least

E0 − a0 = 2

√
πα2n2

π
− πα2n

π
+O(1 + a0) = (2α− α2)n+O((γn)1/4) = εn+O(

√
n)

from Eq. (32).
Therefore, for these values of g and n,

∆
(R(g, n)

n

)
≥ ∆

(εn+O(
√
n)

n

)
→ ∆(ε)

as n goes to infinity, by the continuity of ∆. On the other hand, we see by Proposition 5.1
that

ε−2∆
(R(g, n)

n

)
≤ ε−2g

n
=
πα2n+O(

√
n log n)

ε2n

=
πα2

(2α− α2)2
+O

(√ log n

ε2n

)
=

π

(2− α)2
+ o(1) → π

(1 +
√

1− ε)2

as n goes to infinity. Combining these two inequalities yields ∆(ε)
ε2 ≤ π

(1+
√

1−ε)2
as desired.

7.2 Upper Bounds Derived from Finite Unions of Intervals

Another way to approach bounding ∆(ε) is to compute precisely ∆k(ε), the supremum
of those real numbers δ such that every subset of [0, 1) with measure ε that is the union
of k intervals has a symmetric subset with measure δ. From the definition it is easy to
see that ∆k(ε) is a decreasing function of k. In fact, it follows directly from the proof of
Proposition 5.3 that ∆(ε) = infk ∆k(ε) = limk→∞ ∆k(ε). We also have the following formula.
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Lemma 7.6. Let E =
⋃k

i=1(αi, βi) ⊆ [0, 1) be the union of k disjoint intervals. The largest
measure of a symmetric subset of E is

D(E) = max
0≤c≤1

{
k∑

i=1

k∑
j=1

max {0,min{c− αi, βj − c} −max{c− βi, αj − c}}

}
.

Proof. This follows immediately from the fact that, for any real numbers 0 ≤ αi < βi ≤ 1 and
c, the measure of the set {x : c−x ∈ (α1, β1), c+x ∈ (α2, β2)} is max

{
0,min{c−α1, β2− c}

− max{c− β1, α2 − c}
}
.

Since the maximum over c is achieved for some c that is the midpoint of endpoints of
the intervals (i.e., c = (αi +βj)/2, c = (αi +αj)/2, or c = (βi +βj)/2), this theorem provides
an effective method for the computation of D(E) for any particular union of k intervals.
Indeed, this formula reduces finding a particular value ∆k(ε) to a finite number of linear
programming problems, though in practice this computation becomes unmanageably large
even for small values of k. In principal, the entire function ∆k could be calculated by solving
these linear programming problems with the constant ε remaining unspecified, branching
finitely many times depending on various simple inequalities for ε.

The case k = 2 is simple enough to deal with directly; we state the result in Proposi-
tion 7.7 but omit the proof. We have shown computationally that the graphs of ∆3(ε) and
∆4(ε) lie on or below the polygonal paths described in Conjecture 7.8 (see Figure 8), but we
have not verified that these upper bounds are in fact sharp.

Proposition 7.7. The graph of the function (ε,∆2(ε)) is the polygonal path connecting
(0, 0), (3/4, 1/2), and (1, 1).

Conjecture 7.8. The graph of the function ∆3(ε) is the polygonal path connecting (0, 0),
(4

7
, 2

7
), ( 7

11
, 4

11
), (5

7
, 3

7
), and (1, 1). The graph of the function ∆4(ε) is the polygonal path

connecting (0, 0), ( 5
12
, 1

6
), ( 9

19
, 4

19
), (1

2
, 2

9
), (2

3
, 10

27
), (17

24
, 5

12
), and (1, 1).

It seems likely that the graph of the function ∆k(ε) always contains the line segment
connecting (0, 0) and (k+1

n
, 2

n
), where n is the least integer for which R(2, n) = k + 1. It is

easy to show that for every k ≥ 2, the graph of the function ∆k(ε) contains the line segment
connecting the points (3

4
, 1

2
) and (1, 1).
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Figure 8: The graph of ∆2(ε) and the conjectured graphs of ∆3(ε) and ∆4(ε)

8 Some Remaining Questions

We group the problems in this section into three categories, although some problems do not
fit clearly into any of the categories and others fit into more than one. (We also refer the
reader to the Conjectures 4.4, 5.8 and 7.8 already propounded.)

8.1 Properties of the Function ∆(ε)

The first open problem on the list must of course be the exact determination of ∆(ε) for all
values 0 ≤ ε ≤ 1. In the course of our investigations, we have come to believe the following
assertion.

Conjecture 8.1. ∆(ε) = max{2ε− 1, π
4
ε2} for all 0 ≤ ε ≤ 1.

Notice that the upper bounds given in Theorem 1.1 are not too far from this conjecture,
the difference between the constants 96

121
= 0.7934 and π

4
= 0.7854 in the middle range

for ε being the only discrepancy. In fact, we believe it might be possible to prove that the
expression in Conjecture 8.1 is indeed an upper bound for ∆(ε) by a more refined application
of the probabilistic method employed in Section 6.5. The key would be to show that the
various events Rk > γ + 1 + a are more or less independent of one another (as it stands we
have to assume the worst—that they are all mutually exclusive—in obtaining our bound for
the probability of obtaining a “bad” set), so that we could omit the log 3n factor from the
chosen value of a.

There are some intermediate qualitative results about the function ∆(ε) that might be
easier to resolve. It seems likely that ∆(ε) is convex, for example, but we have not been able
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to prove this. A first step towards clarifying the nature of ∆(ε) might be to prove that

|∆(x)−∆(y)|
|x− y|

� max{x, y}.

Also, we would not be surprised to see accomplished an exact computation of ∆(1
2
), but we

have been unable to make this computation ourselves.
We do not believe that there is always a set with measure ε whose largest symmetric

subset has measure ∆(ε). In fact, we do not believe that there is a set with measure
ε0 := inf{ε : ∆(ε) = 2ε − 1} whose largest symmetric subset has measure ∆(ε0), but we
do not even know the value of ε0. In Proposition 7.1, we showed that ε0 ≤ 11

16
, but this

was found by rather limited computations and is unlikely to be sharp. The quantity 11
8
√

3
in

Theorem 1.3 is of the form ε0√
4ε0−2

, and similarly the quantity 96
121

in Theorem 1.1(iv) is of

the form 2ε0−1
ε2
0

. Thus any improvement in the bound ε0 ≤ 11
16

would immediately result in

improvements to Theorem 1.3 and Theorem 1.1(iv). We remark that Conjecture 8.1 implies
that ε0 = 2

2+
√

4−π
= 0.6834, which in turn would allow us to replace the constant 11

8
√

3
in

Theorem 1.3 by
√

2
π
.

8.2 Artifacts of our Proof

Let K be the class of functions K ∈ L2(T) satisfying K(x) ≥ 1 on [−1
4
, 1

4
]. How small can

we make ‖K̂‖p for 1 ≤ p ≤ 2? We are especially interested in p = 4
3
, but a solution for any

p may be enlightening.
To give some perspective to this problem, note that a trivial upper bound for infK∈K ‖K̂‖p

can be found by taking K to be identically equal to 1, which yields ‖K̂‖p = 1. One can
find functions that improve upon this trivial choice; for example, the function K defined in
Eq. (8) is an example where ‖K̂‖4/3 = 0.96585. On the other hand, since the `p-norm of
a sequence is a decreasing function of p, Parseval’s identity immediately gives us the lower

bound ‖K̂‖p ≥ ‖K̂‖2 = ‖K‖2 ≥
( ∫ 1/4

−1/4
12 dt

)1/2
= 1√

2
= 0.707107, and of course this is the

exact minimum for p = 2.
We remark that Proposition 4.2 and the function b(x) defined after the proof of Corol-

lary 4.3 provide a stronger lower bound for 1 ≤ p ≤ 4
3
. By direct computation we have

1.14939 > ‖b ∗ b‖2
2, and by Proposition 4.2 we have ‖b ∗ b‖2

2 ≥ ‖K̂‖−4
4/3 for any K ∈ K.

Together these imply that ‖K̂‖p ≥ ‖K̂‖4/3 > 0.96579. In particular, for p = 4
3

we know

the value of infK∈K ‖K̂‖4/3 to within one part in ten thousand. The problem of determining
the actual infimum for 1 < p < 2 seems quite mysterious. We remark that Green [Gre01]
considered the discrete version of a similar optimization problem, namely the minimization
of ‖K̂‖p over all pdfs K supported on [−1

4
, 1

4
].

As mentioned at the end of Section 4.2, we used the inequality ‖g‖2
2 ≤ ‖g‖∞‖g‖1 which

is exact when g takes on one non-zero value, i.e., when g is an nif. We apply this inequality
when g = f ∗f with f supported on an interval of length 1

2
, which usually looks very different

from an nif. In this circumstance, the inequality does not seem to be best possible, although
the corresponding inequality in the exponential sums approach of [CRT] and in the discrete

63



Fourier approach of [Gre01] clearly is best possible. Specifically, we ask for a lower bound
on

sup
f ≥ 0

supp(f)⊆[− 1
4
, 1
4
]

‖f ∗ f‖∞‖f ∗ f‖1

‖f ∗ f‖2
2

that is strictly greater than 1.

8.3 The Analogous Problem for Other Sets

More generally, for any subset E of an abelian group endowed with a measure, we can define
∆E(ε) := inf{D(A) : A ⊆ E, λ(A) = ε}, where D(A) is defined in the same way as in Eq. (2).
For example, ∆[0,1](ε) is the function ∆(ε) we have been considering throughout this paper,
and ∆T(ε) was considered in Section 6.3.

We believe that for each E ⊆ R, there is a positive constant c such that ∆(ε) ≥ ∆E(ε) ≥
cε2 for 0 < ε ≤ 1. The work of Abbott [Abb90] seems relevant. If we are concerned only
with ε → 0, and we normalize by considering only sets E for which λ(E) = 1, then it may
be possible to take an absolute constant. In other words, is it true that

inf
E⊆R

λ(E)=1

lim inf
ε→0

∆E(ε)

ε2
> 0 ?

Most of the work in this paper generalizes easily from E = [0, 1] to E = [0, 1]d. We have
had difficulties, however, in finding good kernel functions in higher dimensions. That is, we
need functions K(x̄) such that ∑

j̄∈Zd

∣∣K̂(j̄)∣∣4/3

is as small as possible, while K(x̄) ≥ 1 if all components of x̄ are less than 1
4

in absolute
value. This restricts K on one-half of the space in 1 dimension, one-quarter of the space in 2
dimensions, and only 2−d of the space in d dimensions. For this reason one might expect that
better kernels exist in higher dimensions, but the computational difficulties have prevented
us from finding them.
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