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Abstract

A Sturmian word is a map W : N → {0, 1} for which the set of {0, 1}-vectors
Fn(W ) := {(W (i), W (i + 1), . . . , W (i + n− 1))T : i ∈ N} has cardinality exactly n + 1 for each positive
integer n. Our main result is that the volume of the simplex whose n + 1 vertices are the n + 1 points
in Fn(W ) does not depend on W . Our proof of this motivates studying algebraic properties of the per-
mutation πα,n (where α is any irrational and n is any positive integer) that orders the fractional parts
{α}, {2α}, . . . , {nα}, i.e., 0 < {πα,n(1)α} < {πα,n(2)α} < · · · < {πα,n(n)α} < 1. We give a formula for
the sign of πα,n, and prove that for every irrational α there are infinitely many n such that the order of
πα,n (as an element of the symmetric group Sn) is less than n.

1 Introduction

A binary word is a map from the nonnegative integers into {0, 1}. The factors of W are the column vectors
(W (i),W (i + 1), . . . ,W (i + n− 1))T , where i ≥ 0 and n ≥ 1. In particular, the set of factors of length n of
a binary word W is defined by

Fn(W ) :=
{

(W (i),W (i + 1), . . . ,W (i + n− 1))T : i ≥ 0
}

.

Obviously, |Fn(W )| ≤ 2n for any binary word W . It is known [Lot02, Theorem 1.3.13] that if |Fn(W )| < n+1
for any n, then W is eventually periodic. If |Fn(W )| = n + 1 for every n—the most simple non-periodic
case—then W is called a Sturmian word. Sturmian words arise in many fields, including computer graphics,
game theory, signal analysis, diophantine approximation, automata, and quasi-crystallography. The new
book of Lothaire [Lot02] provides an excellent introduction to combinatorics on words; the second chapter
is devoted to Sturmian words.

Throughout this paper, W is always a Sturmian word, n is always a positive integer, and α is always an
irrational between 0 and 1. A typical example of a Sturmian word is given by cα(i) := b(i + 2)αc−b(i + 1)αc,
the so-called characteristic word with slope α. By routine manipulation, one finds that cα(i) = 1 if and only
if i + 1 ∈ {bkαc : k ∈ Z+}. The integer sequences (bkα + βc)∞k=1 are called Beatty sequences. The study of
Beatty sequences is intimately related to the study of Sturmian words, and the interested reader can locate
most of the literature through the bibliographies of [Sto76], [Bro93], and [Tij00].
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In this paper, we consider the n + 1 factors in Fn(W ) to be the vertices of a simplex in Rn. Our main
result is

Theorem 1.1. If W is a Sturmian word, then the volume of the simplex Fn(W ) is 1
n! .

The remarkable aspect of Theorem 1.1 is that the volume of the simplex Fn(W ) is independent of W .
The key to the proof of Theorem 1.1 is to study Fn(W ) for all Sturmian words W simultaneously. The
primary tool is the representation theory of finite groups.

Sturmian words are examples of one-dimensional quasicrystals, at least with respect to some of the
‘working definitions’ currently in use. In contrast to the study of crystals, group theory has not been found
very useful in the study of quasicrystals. According to M. Senechal [Sen95], “The one-dimensional case
suggests that symmetry may be a relatively unimportant feature of aperiodic crystals.” Thus, the prominent
role of symmetric groups in the proof of Theorem 1.1 comes as a surprise.

The proof of Theorem 1.1 reveals a deep connection between the simplex Fn(cα) and algebraic properties
of the permutation πα,n of 1, 2, . . . , n that orders the fractional parts {α}, {2α}, . . . , {nα}, i.e.,

0 < {πα,n(1)α} < {πα,n(2)α} < · · · < {πα,n(n)α} < 1.

The definition of πα,n has a combinatorial flavor, and accordingly some attention has been given to
its combinatorial qualities. Using the geometric theory of continued fractions, Sós [Sós57] gives a formula
for πα,n in terms of n, πα,n(n), and πα,n(1) (see Lemma 3.1.1). Boyd & Steele [BS79] reduce the problem
of finding the longest increasing subsequence in πα,n to a linear programming problem, which they then
solve explicitly. Schoißengeier [Sch84] used Dedekind eta sums to study πα,n and give his formula for the
star-discrepancy of nα-sequences.

Here, motivated by the appearance of πα,n in our study of the simplex Fn(W ), we initiate the study
of algebraic properties of πα,n. If σ is an element of a group (with identity element id), we let ord(σ) be
the least positive integer t such that σt = id, or ∞ if no such integer exists. We use this notation with
permutations, matrices, and congruence classes (the class will always be relatively prime to the modulus). For
any permutation σ, let sgn(σ) be the sign of σ, i.e., sgn(σ) = 1 if σ is an even permutation and sgn(σ) = −1
if σ is an odd permutation. Our main results concerning πα,n are stated in Theorems 1.2 and 1.3.

Theorem 1.2. For every irrational α, there are infinitely many positive integers n such that ord(πα,n) < n.

Theorem 1.3. For every irrational α and positive integer n,

sgn(πα,2n) = sgn(πα,2n+1) =
n∏

`=1

(−1)b2`αc.

In particular, although πα,n is “quasi-random” in the sense of [Coo02], it is highly structured in an
algebraic sense.

Sections 2 and 3 are logically independent and may be read in either order. In Section 2, we consider
Sturmian words and the simplex Fn(W ). Section 3 is devoted to proving Theorems 1.2 and 1.3. Section 4
is a list of questions raised by the results of Sections 2 and 3 that we have been unable to answer. A
Mathematica notebook containing code for generating the functions and examples in this paper is available
from the author.

2 Sturmian Words

2.1 Introduction to Sturmian Words

An excellent introduction to the theory of Sturmian words is given in [Lot02, Chapter 2]. We restate the
results needed in this paper in this subsection.
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If α ∈ (0, 1) is irrational and β is any real number, then the words sα,β and s′α,β defined by

sα,β(i) := b(i + 1)α + βc − biα + βc
s′α,β(i) :=

⌈
(i + 1)α + β

⌉
−
⌈
iα + β

⌉
are Sturmian, and every Sturmian word arises in this way [Lot02, Theorem 2.3.13]. The irrational number
α is called the slope of the word, and the word cα := sα,α is called the characteristic word of slope α. It is
easily shown [Lot02, Proposition 2.1.18] that Fn(W ) depends only on the slope of W , and so it is consistent
to write Fn(α) in place of Fn(W ). In fact, we shall use the equation Fn(α) = Fn(sα,β) for all β. It is often
easier to think in terms of ‘where the 1s are’; elementary manipulation reveals that

cα(i) =

{
1 i + 1 ∈ {

⌊
k
α

⌋
: k ≥ 1}

0 otherwise.

The n + 1 elements of Fn(α) are n-dimensional vectors, naturally defining a simplex in Rn. Whenever
a family of simplices arises, there are several questions that must be asked. Can the simplex Fn(α) be
degenerate? If Fn(α) is not degenerate, can one express its volume as a function of n and α? Under what
conditions on α, β, n is Fn(α) ∼= Fn(β)?

The first and second questions are answered by Theorem 1.1, which we prove in Subsection 2.5 below.
Computer calculation suggests a simple answer to the third question, which we state as a conjecture in
Section 4.

Example: The characteristic word with slope e−1 ≈ 0.368 begins

(ce−1(0), ce−1(1), ce−1(2), . . . ) = (0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, . . . ).

Note that

ce−1(i) =

{
1 i + 1 ∈ {bnec : n ≥ 1} = {2, 5, 8, 10, . . . }
0 otherwise.

The set of factors of ce−1 of length 6, arranged in anti-lexicographic order, is

F6(ce−1) = F6(e−1) =




1
0
1
0
0
1

 ,


1
0
0
1
0
1

 ,


1
0
0
1
0
0

 ,


0
1
0
1
0
0

 ,


0
1
0
0
1
0

 ,


0
0
1
0
1
0

 ,


0
0
1
0
0
1




.

�

2.2 Definitions

To analyze a simplex, one first orders the vertices (we order them anti-lexicographically). Then, one translates
the simplex so that one vertex is at the origin (we move the last factor to ~0). Finally, one writes the
coordinates of the other vertices as the columns of a matrix. If this matrix is non-singular, then the simplex
is not degenerate. In fact, the volume of the simplex is the absolute value of the determinant divided by n!.
We are thus led to define the matrixMn(α), whose j-th column is ~vj−~vn+1, where Fn(α) = {~v1, ~v2, . . . , ~vn+1}
ordered anti-lexicographically.
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Example:

M6(e−1) =


1 1 1 0 0 0
0 0 0 1 1 0
0 −1 −1 −1 −1 0
0 1 1 1 0 0
0 0 0 0 1 1
0 0 −1 −1 −1 −1

 .

�

When a list of vectors is enclosed by parentheses, it denotes a matrix whose first column is the first
vector, second column the second vector, and so on. For example,

Mn(α) := (~v1 − ~vn+1, ~v2 − ~vn+1, . . . ~vn − ~vn+1) .

We also define Vk to be the n × n matrix all of whose entries are 0, save the k-th column, which is ~ek−1 −
2~ek + ~ek+1.

We shall make frequent use of Knuth’s notation:

[[Q]] =

{
1 Q is true;
0 Q is false.

We denote the symmetric group on the symbols 1, 2, . . . , n by Sn. We use several notations for per-
mutations interchangeably. We use standard cycle notation when convenient, and frequently use one-line
notation for permutations, i.e.,

σ = [σ(1), . . . , σ(n)].

Thus, if a list of distinct numbers is surrounded by parentheses then it is a permutation in cycle notation, and
if the numbers 1, 2, . . . , n are in any order and surrounded by brackets then it is a permutation in one-line
notation. We multiply permutations from right to left. Also, set Pσ = (pij), with pij = [[j = σ(i)]]. This is
the familiar representation of Sn as permutation matrices.

One permutation we have already defined is πα,n. For notational convenience we set πα,n(0) := 0 and
πα,n(n + 1) := n + 1. Also, set Pj := {jα} for 0 ≤ j ≤ n, and set Pn+1 := 1. Thus

0 = Pπα,n(0) < Pπα,n(1) < Pπα,n(2) < · · · < Pπα,n(n) < Pπα,n(n+1) = 1.

We write ~ei (1 ≤ i ≤ n) be the n-dimensional column vector with every component 0 except the i-th
component, which is 1. We set ~en+1 = ~0, the n-dimensional 0 vector. We denote the identity matrix as
I := (~e1, ~e2, . . . , ~en). Let ~δi := ~ei+1 − ~ei (1 ≤ i ≤ n). In particular, ~δn = −~en.

We will also use the notation h(~v) for the Hamming weight of the {0, 1}-vector ~v, i.e., the number of
1’s.

Set
D(σ) := {1} ∪ {k : σ−1(k − 1) > σ−1(k)}.

In other words, D(σ) consists of those k for which k − 1 does not occur before k in [σ(1), σ(2), . . . , σ(n)].
For example, D([1, 3, 5, 4, 2, 6]) = {1, 3, 5}.

Set
~wσ

1 :=
∑

i∈D(σ)

~ei

and for 1 ≤ j ≤ n, set
~wσ

j+1 := ~wσ
j + ~δσ(j).
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We now define two matrices: the n× (n + 1) matrix

Lσ := (~wσ
1 , ~wσ

2 , . . . , ~wσ
n, ~wσ

n+1),

and the square n× n matrix

Mσ := (~wσ
1 − ~wσ

n+1, ~wσ
2 − ~wσ

n+1, . . . , ~wσ
n − ~wσ

n+1).

Proposition 2.3.1 below shows that Mn(α) = Mπα,n , justifying our definitions.

Example: Set n = 5 and σ = [5, 2, 3, 1, 4] = (1, 5, 4)(2)(3). We find that D(σ) = {1, 2, 5}, and so
~wσ

1 = ~e1 + ~e2 + ~e5. By definition ~wσ
2 = ~wσ

1 + ~δσ(1) = ~wσ
1 + ~e6 − ~e5 = ~e1 + ~e2, and so on. Thus

Lσ =


1 1 1 1 0 0
1 1 0 0 1 1
0 0 1 0 0 0
0 0 0 1 1 0
1 0 0 0 0 1

 and Mσ =


1 1 1 1 0
0 0 −1 −1 0
0 0 1 0 0
0 0 0 1 1
0 −1 −1 −1 −1

 .

Note that the first column of Mσ is ~e1; that this is always the case is proven in Lemma 2.4.2. Further,
the second column of Mσ is ~e1 + ~δσ(1), the third is ~e1 + ~δσ(1) + ~δσ(2), and so forth. This pattern holds in
general and is proved in Lemma 2.4.3 below. It is not immediate from the definitions that Lσ is always a
{0, 1}-matrix or that Mσ is a {−1, 0, 1}-matrix; we prove this in Lemma 2.4.4.

In Lemma 2.4.5 we prove that if σ 6= τ then Mσ 6= Mτ . The proof relies on reconstructing σ and Lσ

from Mσ. This reconstruction proceeds as follows. The ‘−1’ entries of Mσ are in the second and fifth rows;
this gives ~wσ

6 = ~e2 + ~e5, which is the last column of Lσ. In fact, the j-th column of Lσ is the j-th column of
Mσ plus ~e2 + ~e5. Once we know the columns of Lσ := (~wσ

1 , ~wσ
2 , . . . , ~wσ

6 ), we can use the definition of ~wσ
j+1

to find σ(j). For example, ~δσ(4) = ~wσ
5 − ~wσ

4 = ~e2 − ~e1 = ~δ1, and so σ(4) = 1.
Lemma 2.4.6 generalizes the observation that

M[1,2,4,3,5] = M(4,3) =


1 0 0 0 0
0 1 0 0 0
0 0 1 1 0
0 0 0 −1 0
0 0 0 1 1

 = I + V4.

With φ =
√

5−1
2 , we compute that πφ,5 = [5, 2, 4, 1, 3] = (1, 5, 3, 4)(2), and one may directly verify that

Mπφ,5 = Mφ(5). This is no accident, by Proposition 2.3.1 below Mα(n) = Mπα,n for all α and n. The
equation

M(4,3)Mπφ,5 = M(4,3)(1,5,3,4)(2) = M(1,5,4)(2)(3),

which is the same as
1 0 0 0 0
0 1 0 0 0
0 0 1 1 0
0 0 0 −1 0
0 0 0 1 1




1 1 1 1 0
0 0 −1 −1 0
0 0 1 1 1
0 0 0 −1 −1
0 −1 −1 0 0

 =


1 1 1 1 0
0 0 −1 −1 0
0 0 1 0 0
0 0 0 1 1
0 −1 −1 −1 −1

 ,

is an example of the isomorphism of Proposition 2.4.1. �

5



2.3 The Matrices Mn(α) and Mπα,n

Proposition 2.3.1. Mn(α) = Mπα,n
.

Proof. For brevity, we write π in place of πα,n. First observe that ~wπ
1 , ~wπ

2 , . . . , ~wπ
n+1 are in anti-lexicographic

order by definition, and so for 1 ≤ i < j ≤ n + 1 we have ~wπ
i 6= ~wπ

j . We know from [Lot02, Proposition
2.1.18] that Fn(α) = Fn(sα,β) for every β, and from [Lot02, Theorem 2.1.13] that |Fn(α)| = n + 1. Thus, it
suffices to show that ~wπ

j ∈ Fn(sα,β) for some β. In fact, we shall show that(
sα,βj

(1), sα,βj
(2), . . . , sα,βj

(n)
)

= ~wπ
j

with βj := −P1 − Pπ(j).
Using the identities bxc = x− {x} and {x− y} = {x} − {y}+ [[{x} < {y}]], we have

sα,βj
(i) =

⌊
(i + 1)α− P1 − Pπ(j)

⌋
−
⌊
iα− P1 − Pπ(j)

⌋
= α− Pi + Pi−1 − [[Pi < Pπ(j)]] + [[Pi−1 < Pπ(j)]]
= [[Pi < Pi−1]]− [[Pi < Pπ(j)]] + [[Pi−1 < Pπ(j)]]. (1)

The last equality follows from the knowledge that sα,βj (i) ∈ Z, and consequently if Pi < Pi−1 then α−Pi +
Pi−1 > α > 0 must in fact be 1, and if Pi > Pi−1 then α− Pi + Pi−1 < α < 1 must in fact be 0.

We first consider j = 1. We have P1 > P0, P1 ≥ Pπ(1), and P0 < Pπ(1), whence sα,β1(1) = 1 = [[1 ∈
D(π)]]. For 2 ≤ i ≤ n, we have Pi ≥ Pπ(1) and Pi−1 ≥ Pπ(1), whence

sα,β1(i) = [[Pi < Pi−1]] = [[π−1(i) < π−1(i− 1)]] = [[i ∈ D(π)]].

Therefore, (sα,β1(1), sα,β1(2), . . . , sα,β1(n)) = ~wπ
1 .

Now suppose that 2 ≤ j ≤ n + 1. Since ~wπ
j is defined by ~wπ

j − ~wπ
j−1 = ~δπ(j−1) = ~eπ(j−1)+1 −~eπ(j−1), we

need to show that sα,βj (i)− sα,βj−1(i) = [[i = π(j − 1) + 1]]− [[i = π(j − 1)]]. By Eq. (1), we have

sα,βj
(i)− sα,βj−1(i) = −[[Pi < Pπ(j)]] + [[Pi−1 < Pπ(j)]] + [[Pi < Pπ(j−1)]]− [[Pi−1 < Pπ(j−1)]]

=
(
[[Pi−1 < Pπ(j)]]− [[Pi−1 < Pπ(j−1)]]

)
−
(
[[Pi < Pπ(j)]]− [[Pi < Pπ(j−1)]]

)
= [[i− 1 = π(j − 1)]]− [[i = π(j − 1)]].

We remark that in the same manner one may prove that if

1− {πα,n(j)α} ≤ {iα + β} < 1− {πα,n(j − 1)α},

then
(sα,β(i), sα,β(i + 1), . . . , sα,β(i + n− 1)) = ~w

πα,n

j .

From this it is easy to prove that Fn(sα,β) does not depend on β and has cardinality n+1, the two results of
[Lot02] that we used. There is another fact that can be proved in this manner that we do not use explicitly
but which may help the reader develop an intuitive understanding of the simplices Fn(W ). If r, r′ are
consecutive Farey fractions of order n + 1 and r < α < γ < r′, then Fn(α) = Fn(β).

2.4 A Curious Representation

Proposition 2.4.1. The map σ 7→ Mσ is an isomorphism.
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The proof we give of this is more a verification than an explanation. We remark that there are several
anti-isomorphisms involved in our choices. We have chosen to multiply permutations right-to-left rather
than left-to-right. We have chosen to consider the list [a, b, c, . . . ] as the permutation taking 1 to a, 2 to b,
3 to c, etc., rather than the permutation taking a to 1, b to 2, c to 3, etc. Finally, we have chosen to define
the vectors ~wσ to be columns rather than rows. If we were to change any two of these conventions, then we
would still get an isomorphism.

We begin with some simple observations about Mσ before proving Proposition 2.4.1. We defined
~wσ

j+1 := ~wσ
j + ~δσ(j). An easy inductive consequence of this definition is that ~wσ

j+1 = ~wσ
1 +

∑j
i=1

~δσ(i) for
1 ≤ j ≤ n; we use this repeatedly and without further fanfare.

Lemma 2.4.2. ~wσ
1 − ~wσ

n+1 = ~e1.

Proof. Since ~wσ
n+1 = ~wσ

1 +
∑n

i=1
~δσ(i), all we need to show is that

∑n
i=1

~δσ(i) = −~e1. As {1, 2, . . . , n} =
{σ(1), σ(2), . . . , σ(n)}, we have

~wσ
n+1 − ~wσ

1 =
n∑

i=1

~δσ(i) =
n∑

i=1

~δi =
n∑

i=1

(~ei+1 − ~ei) = ~en+1 − ~e1 = −~e1.

Lemma 2.4.3. The j-th column of Mσ is ~e1 +
∑j−1

i=1
~δσ(i).

Proof. The j-th column of Mσ is defined as ~wσ
j − ~wσ

n+1. If j = 1, then this lemma reduces to Lemma 2.4.2.
If j > 1, then Lemma 2.4.2 gives

~wσ
j − ~wσ

n+1 =

(
~wσ

1 +
j−1∑
i=1

~δσ(i)

)
− (~wσ

1 − ~e1) = ~e1 +
j−1∑
i=1

~δσ(i).

Lemma 2.4.4. The entries of Lσ are 0 and 1. The entries of Mσ are -1, 0, and 1.

Proof. It is easily seen from Lemma 2.4.3 that Mσ is a {−1, 0, 1}-matrix, and this also follows from the
more subtle observation that Lσ is a {0, 1}-matrix. To prove that Lσ is a {0, 1}-matrix is the same as
showing that each ~wσ

j (1 ≤ j ≤ n + 1) is a {0, 1}-vector. This is obvious for ~wσ
1 :=

∑
i∈D(σ) ~ei. We have

~wσ
j+1 = ~wσ

1 +
∑j

i=1
~δσ(i); define ~v, ci by ~v :=

∑j
i=1

~δσ(i) =
∑n

i=1 ci~ei.
The i-th component of ~v can only be affected by ~δi−1 (which adds 1 to the i-th component) and ~δi (which

subtracts 1). It is thus clear that ci is (-1), (0), (0), or (1) depending, respectively, on whether (only i), (i−1
and i), (neither i− 1 nor i), or (only i− 1) is among {σ(1), σ(2), . . . , σ(j)}. To show that ~wσ

j+1 = ~wσ
1 + ~v is

a {0, 1}-vector, we need to show two things. First, if ci = −1 then i ∈ D(σ) (and so the i-th component of
~wσ

1 is 1). Second, if ci = 1 then i 6∈ D(σ) (and so the i-th component of ~wσ
1 is 0).

If ci = −1, then i is and i− 1 is not among {σ(1), . . . , σ(j)}. This means that σ−1(i− 1) > j ≥ σ−1(i),
and so by the definition of D, i ∈ D(σ). If, on the other hand, ci = 1, then i − 1 is and i is not among
{σ(1), . . . , σ(j)}. This means that σ−1(i− 1) ≤ j < σ−1(i), and so by the definition of D, i 6∈ D(σ).

Lemma 2.4.5. The map σ 7→ Mσ is 1-1.

Proof. Given Mσ, we find σ. We first note that moving from Lσ to σ is easy since ~wσ
j+1− ~wσ

j = ~δσ(j). Some
effort is involved in finding Lσ from Mσ. We need to find ~wσ

n+1.
Every row of Lσ contains at least one 0 (explanation below). Thus Mσ will contain a −1 in exactly

those rows in which ~wσ
n+1 contains a 1, and we are done. We have ~wσ

j+1 = ~wσ
j +~δσ(j) = ~wσ

j +~eσ(j)+1−~eσ(j).
The σ(j)-th row of ~eσ(j)+1 is 0, and ~wσ

j , ~eσ(j) are {0, 1}-vectors, so the σ(j)-th row of ~wσ
j+1 is either 0 or −1.

But by Lemma 2.4.4, Lσ is a {0, 1}-matrix, whence the σ(j)-th row of the (j + 1)-st column of Lσ is 0.
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Recall that Vk is defined to be the matrix all of whose entries are 0, save the k-th column, which is
~ek−1 − 2~ek + ~ek+1.

Lemma 2.4.6. M(k,k−1) = I + Vk, for 2 ≤ k ≤ n.

Proof. Follow the definitions. With σ = (k, k− 1), we have D(σ) = {1, k}, ~w
(k,k−1)
j = ~ej +~ek for n ≥ j 6= k,

~w
(k,k−1)
k = ~ek−1 + ~ek+1 and ~w

(k,k−1)
n+1 = ~ek.

We have laid the necessary groundwork, and turn now to proving Proposition 2.4.1.

Proof. We have already seen in Lemma 2.4.5 that the map σ 7→ Mσ is 1-1; all that remains is to show that
this map respects multiplication, i.e., for any σ, τ ∈ Sn, MτMσ = Mτσ. Since we may write τ as a product
of transpositions of the form (k, k − 1) it is sufficient to show that M(k,k−1)Mσ = M(k,k−1)σ for every k
(2 ≤ k ≤ n) and σ ∈ Sn.

We need to split the work into two cases: σ−1(k − 1) < σ−1(k) and σ−1(k − 1) > σ−1(k). In each
case we first describe the rows of M(k,k−1)Mσ −Mσ using Lemma 2.4.6, and then compute the columns
of M(k,k−1)σ −Mσ from the definition. We will find that M(k,k−1)Mσ −Mσ = M(k,k−1)σ −Mσ in each
case, which concludes the proof. Since the two cases are handled similarly, we present only the first case.

Suppose that σ−1(k − 1) < σ−1(k). By Lemma 2.4.6, M(k,k−1)Mσ −Mσ = VkMσ. The matrix Vk is
zero except in the (k− 1, k), (k, k), and (k + 1, k) positions (note: we sometimes refer to positions which do
not exist for k = n; the reader may safely ignore this detail), where it has value 1, −2, 1, respectively. Thus
VkMσ is zero except in the (k− 1)-st and (k + 1)-st rows (which are the same as the k-th row of Mσ), and
the k-th row (which is −2 times the k-th row of Mσ).

We now describe the k-th row of Lσ. By the hypothesis of this case, k 6∈ D(σ), so the k-th row
of ~wσ

1 is 0. Since ~wσ
j+1 = ~wσ

1 +
∑j

i=1
~δσ(i), the k-th row of ~wσ

j is 0 for 1 ≤ j ≤ σ−1(k − 1), is 1 for
σ−1(k− 1) < j ≤ σ−1(k), and is 0 for σ−1(k) < j ≤ n + 1. This gives the k-th row of Mσ as σ−1(k− 1) ‘0’s
followed by σ−1(k)− σ−1(k − 1) ‘1’s, followed by n− σ−1(k) ‘0’s.

We now compute M(k,k−1)σ −Mσ. The columns of L(k,k−1)σ are given by ~w
(k,k−1)σ
j+1 = ~w

(k,k−1)σ
1 +∑j

i=1
~δ(k,k−1)σ(i) (except the first, but the first column of Mτ is ~e1, independent of τ). Now (k, k− 1)σ(i) =

σ(i) for i 6∈ {σ−1(k), σ−1(k−1)}, so that
∑j

i=1
~δ(k,k−1)σ(i) =

∑j
i=1

~δσ(i) for j < σ−1(k−1) and for j ≥ σ−1(k).
For σ−1(k − 1) ≤ j < σ−1(k),

j∑
i=1

~δ(k,k−1)σ(i) =

(
j∑

i=1

~δσ(i)

)
− ~δk−1 + ~δk.

Thus the (j + 1)-st column of M(k,k−1)σ −Mσ is(
~w

(k,k−1)σ
j+1 − ~w

(k,k−1)σ
n+1

)
−
(
~wσ

j+1 − ~wσ
n+1

)
=

j∑
i=1

~δ(k,k−1)σ(i) −
j∑

i=1

~δσ(i),

which is ~0 for j < σ−1(k− 1) and for j ≥ σ−1(k), and −~δk−1 + ~δk = ~ek−1 − 2~ek + ~ek+1 for σ−1(k− 1) ≤ j <
σ−1(k). We have shown that M(k,k−1)Mσ −Mσ = M(k,k−1)σ −Mσ in the case σ−1(k − 1) < σ−1(k).

2.5 Proof of Theorem 1.1

Proof of Theorem 1.1. The volume of the n-dimensional simplex whose vertices have coordinates ~v1, ~v2, . . . , ~vn+1

is 1
n! times the absolute value of the determinant of the matrix

(~v1 − ~vn+1, ~v2 − ~vn+1, . . . , ~vn − ~vn+1) .
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In our case, this means that the volume of the simplex Fn(α) is 1
n! |det(Mn(α))|. We will show that

det(Mn(α)) = ±1.
Now Mn(α) = Mπα,n by Proposition 2.3.1, and for any integer t we have

(
Mπα,n

)t = Mπt
α,n

by
Proposition 2.4.1. Since πα,n ∈ Sn, a finite group, there is a positive integer t such that πt

α,n is the identity
permutation (which we denote by id). Thus

(detMn(α))t =
(
detMπα,n

)t = det
(
Mt

πα,n

)
= det

(
Mπt

α,n

)
= det (Mid) = det I = 1.

Consequently, detMn(α) is a t-th root of unity, and since the entries of Mn(α) are integers, detMn(α) =
±1.

2.6 The Character of the Representation

We review the needed facts and definitions from the representation theory of finite groups (an excellent
introduction is [Sag01]). A representation of a finite group G is a homomorphism R : G → SLm(C) for
some m ≥ 1. The representation is said to be faithful if the homomorphism is in fact an isomorphism. Thus,
Proposition 2.4.1 implies that {Mσ : σ ∈ Sn} is a faithful representation of Sn. The character of R is the
map g 7→ tr(R(g)), with tr being the trace function. We will use Corollary 1.9.4(5) of [Sag01], which states
that if two representations R1,R2 of G have the same character, then they are similar, i.e., there is a matrix
Q such that ∀g ∈ G

(
Q−1R1(g)Q = R2(g)

)
. Any such matrix Q is called an intertwining matrix for the

representations R1,R2.

Proposition 2.6.1. The representations {Pσ : σ ∈ Sn} and {Mσ : σ ∈ Sn} are similar.

Proof. The character of {Pσ : σ ∈ Sn} is obviously given by tr(Pσ) = #{i : σ(i) = i}. We will show that
tr(Mσ) = #{i : σ(i) = i} also, thereby establishing that the representations are similar.

We first note that tr(Mσ) = tr(Lσ)− h(~wσ
n+1), since every “1” in ~wσ

n+1 is subtracted from exactly one
diagonal position when we form Mσ from Lσ by subtracting ~wσ

n+1 from each column. We show below that

tr(Lσ) = h(~wσ
1 )− 1 + #{i : σ(i) = i}, (2)

so by Lemma 2.4.2 we have

tr(Mσ) = h(~wσ
1 )− 1 + #{i : σ(i) = i} − h(~wσ

n+1) = #{i : σ(i) = i},

which will conclude the proof.
Until this point we have found it convenient to think of Lσ in terms of its columns. That is not the

natural viewpoint to take in proving Eq. (2), however. The difference between the (j+1)-st and j-th columns
of Lσ is ~δσ(j) = ~ei+1−~ei; we think of this relationship as a “1” moving down from the i-th row to the (i+1)-st
row. In looking at the matrix Lσ we see each “1” in the first column continues across to the east, occasionally
moving down a row (southeast), or even ‘off’ the bottom of the matrix. We call the path a “1” takes a snake.

9



Example: With σ = [1, 4, 5, 8, 2, 3, 9, 6, 10, 7], we find

Lσ =



1 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
1 1 0 0 0 0 1 1 1 1 1
0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0 1 1 0
1 1 1 1 0 0 0 0 0 0 1
0 0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0


The matrix Lσ has 3 snakes beginning in positions (1, 1), (4, 1), and (8, 1). The first snake occupies the
positions (1, 1), (2, 2), (2, 3), (2, 4), (2, 5), (3, 6), (4, 7), (4, 8), (4, 9), (4, 10), and (4, 11). �

Only the last snake moves off the bottom of Lσ; after all, n only occurs once in a permutation. The
other snakes, of which there are h(~wσ

1 )−1, begin on or below the diagonal and end on or above the diagonal.
Thus each must intersect the diagonal at least once. Moreover, each fixed point of σ will keep a snake on a
diagonal for an extra row. Thus, tr(Lσ) = h(~wσ

1 )− 1 + #{i : σ(i) = i}.

We turn now to identifying the intertwining matrices, i.e., the matrices Q such that Q−1MσQ = Pσ

for every σ ∈ Sn.

Proposition 2.6.2. The n × n matrix Q = (qij) satisfies Q−1MσQ = Pσ for every σ ∈ Sn iff there are
complex numbers a, b with (na + b)bn−1 6= 0 and q11 = a + b, q1k = a, qkk = b, qk,k−1 = −b (2 ≤ k ≤ n).

Proof. We first note that it is sufficient to restrict σ to a generating set of Sn. To see this, let Sn =
〈σ1, . . . , σr〉. If Q satisfies Q−1MσQ = Pσ for every σ ∈ Sn, then clearly Q−1Mσi

Q = Pσi
(1 ≤ i ≤ r). In

the other direction, if Q satisfies Q−1MσiQ = Pσi (1 ≤ i ≤ r) and σ = σi1σi2 . . . σis , then

Q−1MσQ = Q−1
(
Mσi1

Mσi2
. . .Mσis

)
Q =

s∏
j=1

(
Q−1Mσij

Q
)

=
s∏

j=1

Pσij
= P∏s

j=1 σij
= Pσ.

Thus we can restrict our attention to the transpositions (k, k − 1) (2 ≤ k ≤ n). We identified M(k,k−1)

in Lemma 2.4.6 as M(k,k−1) = I + Vk, where Vk is the matrix all of whose entries are zero, save the k-th
column, which is ~ek−1 − 2~ek + ~ek+1.

We suppose that Q = (qij) satisfies M(k,k−1)Q = QP(k,k−1) to find linear constraints on the unknowns
qij . We will find that these constraints (for 2 ≤ k ≤ n) are equivalent to q11 = a + b, q1k = a, qkk = b,
qk,k−1 = −b (2 ≤ k ≤ n). The determinant of Q is easily seen to be (na + b)bn−1, so that as long as this is
nonzero, Q−1MσQ = Pσ for every σ ∈ Sn.

We have M(k,k−1)Q = IQ+VkQ, so that M(k,k−1)Q = QP(k,k−1) is equivalent to VkQ = Q(P(k,k−1)−
I). This is a convenient form since most entries in the matrices Vk and P(k,k−1) − I are zero. The entries
of the product VkQ are 0 except for the (k − 1)-st, k-th, and (k + 1)-st rows which are equal to the k-th
row of Q, to −2 times the k-th row of Q, and to the k-th row of Q, respectively. The entries of the product
Q(P(k,k−1) − I) are 0 except for the (k − 1)-st and k-th columns, which are equal to the k-th column of Q
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minus the (k−1)-st column of Q, and to the (k−1)-st column of Q minus the k-th column of Q, respectively.
The entries which are zero in one matrix or other lead to the families of equations qkj = 0 (for j 6∈ {k−1, k})
and qjk = qj,k−1 (for j 6∈ {k − 1, k, k + 1}). The entries which are non-zero in both products give the six
equations  qk,k−1 qkk

−2qk,k−1 −2qkk

qk,k−1 qkk

 =

qk−1,k − qk−1,k−1 qk−1,k−1 − qk−1,k

qkk − qk,k−1 qk,k−1 − qkk

qk+1,k − qk+1,k−1 qk+1,k−1 − qk+1,k

 ,

which are equivalent to qk−1,k−1 = qk−1,k +qk,k, qk,k−1 = −qkk, and qk+1,k−1 = qk+1,k +qkk. Taking qnn = b
and q1n = a, the result follows.

Corollary 2.6.3.

Mσ =



1
−1 1 0

−1 1
. . .

0
. . .
−1 1


· Pσ ·



1
1 1 0
1 1 1
...

. . .
... 1

. . .
. . . . . . . . . 1 1


.

Proof. Set a = 0, b = 1 in Theorem 2.6.2. All that needs to be checked is that Q−1 is as claimed, i.e., the
n× n matrix with “1”s on and below and the diagonal and “0”s above the diagonal.

We remark that, since it is easy to recover Lσ from Mσ (see the proof of Lemma 2.4.4) this Corollary
gives a simple method for computing the factors of length n of a Sturmian word with slope α given only the
permutation ordering {α}, . . . , {nα} (we don’t even need α). Also, we note that the matrix with “1”s on
and below the diagonal is a summation operator, and its inverse is a difference operator. If one could prove
Corollary 2.6.3 directly, this would provide a second proof of Theorem 1.1.

2.7 The Simplex Fn(W )

Stolarsky & Porta [personal communication] observed experimentally that Mn(α) has determinant ±1, and
moreover that the roots of its characteristic polynomial are roots of unity. The first observation was proved
in the course of the proof of Theorem 1.1 in Subsection 2.5. The second observation also follows from the
fact that Mn(α) lies in a finite group.

We now summarize the results of this paper as they relate to Mn(α) and Fn(α).

Theorem 2.1. Let α ∈ (0, 1) be irrational, and n ≥ 1 an integer.

i. The volume of the simplex Fn(α) is 1
n! .

ii. det(Mn(α)) = ±1.

iii. Mn(α) = Mπα,n
= QPπα,n

Q−1 (see Theorem 2.6.2 for the definition of Q);

iv. det(M2n(α) = det(M2n+1(α)) =
∏n

`=1(−1)b2`αc.

v. If πα,n(n) = n, then

ord(Mn−1(α)) = ord(Mn(α)) = ord(πα,n(1) mod n).

11



vi. If πα,n(1) = n, then
ord(Mn−1(α)) = ord(−πα,n(n) mod n)

and
ord(Mn(α)) = ord(−πα,n(n) mod gn),

where g is the smallest positive integer such that gcd
(
n,

πα,n(n)+1
g

)
= 1.

Items (i) and (ii) are proved in Subsection 2.5. Item (iii) is a combination of Theorem 2.6.2 and
Proposition 2.3.1. Items (iv), (v) and (vi) are immediate consequences of Proposition 2.3.1, the facts
det(Mσ) = sgn(σ) and ord(Mσ) = ord(σ), and Theorem 3.1. They are included here for the purpose
of listing everything known about Mn(α) in one place.

3 Ordering Fractional Parts

3.1 Statement of Results

Table 1 gives the sign and multiplicative order of πe,n for 2 ≤ n ≤ 136. Visually inspecting the table,
one quickly notices that sgn(πe,2n) = sgn(πe,2n+1) for all n, and that ord(πe,n) is surprisingly small for
n = 70, 71, 109, 110. The first several convergents to e are 2, 3, 8

3 , 11
4 , 19

7 , 87
32 , 106

39 , 193
71 ; the value 71 is the

denominator of a convergent, and 110 = 71 + 39 is the sum of two denominators. Note also that for some
values of n, ord(πe,n) is extraordinarily large, e.g., ord(πe,123) = 22383900. None of these observations are
peculiar to the irrational e. Some of these observations are explained by Theorem 3.1 below, and the others
remain conjectural.

As in Section 2, we make frequent use of Knuth’s notation:

[[Q]] =

{
1 Q is true;
0 Q is false.

Lemma 3.1.1, giving πα,n in terms of only πα,n(1), πα,n(n), and n, is proved by V. T. Sós in [Sós57].
Her method of proof is similar to our proof of Lemma 3.3.1 below. The lemma is also proved—in terse
English—in [Sla67]. We will derive Theorem 3.1 from Sós’s Lemma.

Lemma 3.1.1 (Sós). Let α be irrational, n a positive integer, and π = πα,n. Then

π(k + 1) = π(k) + π(1) [[π(k) ≤ π(n)]]− π(n) [[n < π(1) + π(k)]]

for 1 ≤ k < n.

The surprising Three-Distance Theorem is an easy corollary: If α is irrational, the n + 2 points
0, {α}, {2α}, . . . , {nα}, 1 divide the interval [0, 1] into n+1 subintervals which have at most 3 distinct lengths.
Alessandri & Berthé [AB98] give an excellent and up-to-date survey of generalizations of the Three-Distance
Theorem.

The primary goal of this section is to prove Theorem 3.1, which refines Theorem 1.2, and to prove
Theorem 1.3. Corollary 3.2.1 is of independent interest.

Theorem 3.1. Let α 6∈ Q and n ∈ Z+.

i. If πα,n(n) = n, then ord(πα,n−1) = ord(πα,n) = ord(πα,n(1) mod n).

ii. If πα,n(1) = n, then ord(πα,n−1) = ord(−πα,n(n) mod n), and

ord(πα,n) = ord(−πα,n(n) mod gn),

where g is the least positive integer such that gcd
(
n,

πα,n(n)+1
g

)
= 1.
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3.2 The Multiplicative Order of the Permutation

Theorem 3.1 follows from Sós’s Lemma.

Proof of Theorem 3.1(i). Suppose that πα,n(n) = n. We have

πα,n(k) =

{
πα,n−1(k) 1 ≤ k ≤ n− 1;
k k = n,

and so obviously ord(πα,n−1) = ord(πα,n). We show that the length of every orbit divides ord(πα,n(1) mod n),
and that the length of the orbit of 1 is exactly ord(πα,n(1) mod n). From Sós’s Lemma (Lemma 3.1.1), we
have in this case for 1 ≤ k < n the congruence πα,n(k + 1) ≡ πα,n(k) + πα,n(1) (mod n). By induction, this
gives πα,n(k) ≡ kπα,n(1) (mod n) for 1 ≤ k ≤ n. Thus, the orbit of the point k is

k, kπα,n(1), kπα,n(1)2, kπα,n(1)3, . . .

The length of the orbit of k divides ord(πα,n(1) mod n), and in particular the orbit of 1 has length equal to
ord(πα,n(1) mod n).

Proof of Theorem 3.1(ii). Suppose that πα,n(1) = n. Sós’s Lemma gives

πα,n(k) ≡ (1− k)πα,n(n) (mod n).

Table 1: Algebraic properties of πα,n with α = e and 2 ≤ n ≤ 136

n sgn(πα,n) ord(πα,n) n sgn(πα,n) ord(πα,n) n sgn(πα,n) ord(πα,n)

2 -1 2 47 -1 44 92 1 2107
3 -1 2 48 -1 540 93 1 13244
4 -1 2 49 -1 120 94 -1 18810
5 -1 4 50 1 680 95 -1 20034
6 -1 6 51 1 1848 96 -1 3348
7 -1 6 52 -1 50 97 -1 11256
8 1 7 53 -1 90 98 -1 1702
9 1 6 54 -1 962 99 -1 188

10 -1 10 55 -1 1848 100 1 957
11 -1 10 56 -1 588 101 1 2100
12 -1 12 57 -1 276 102 -1 102
13 -1 36 58 1 165 103 -1 2052
14 -1 40 59 1 1260 104 -1 1950
15 -1 14 60 -1 1848 105 -1 1260
16 1 15 61 -1 2040 106 -1 5964
17 1 3 62 -1 62 107 -1 13860
18 1 3 63 -1 15640 108 1 54366
19 1 15 64 1 2040 109 1 10
20 1 77 65 1 424 110 -1 10
21 1 12 66 -1 966 111 -1 2310
22 -1 12 67 -1 1476 112 -1 720
23 -1 12 68 -1 56 113 -1 3738
24 1 4 69 -1 232 114 1 1938
25 1 4 70 -1 14 115 1 112
26 1 36 71 -1 14 116 -1 92820
27 1 48 72 1 6840 117 -1 11220
28 1 6 73 1 406 118 -1 5520
29 1 24 74 -1 390 119 -1 60060
30 -1 210 75 -1 780 120 -1 14280
31 -1 4 76 -1 192 121 -1 1680
32 -1 4 77 -1 228 122 1 6240
33 -1 180 78 -1 32130 123 1 22383900
34 -1 210 79 -1 390 124 -1 820820
35 -1 420 80 1 630 125 -1 215460
36 1 120 81 1 72 126 -1 9360
37 1 37 82 1 2728 127 -1 17160
38 -1 12 83 1 6138 128 1 68640
39 -1 12 84 1 152 129 1 47888
40 -1 40 85 1 6669 130 -1 7276
41 -1 1980 86 -1 31920 131 -1 508
42 -1 414 87 -1 400 132 -1 6720
43 -1 42 88 1 192 133 -1 4914
44 1 580 89 1 14616 134 -1 1560
45 1 168 90 1 18585 135 -1 11752
46 -1 1120 91 1 25080 136 1 3045
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For 1 ≤ k < n we have

πα,n−1(k) = πα,n(k + 1) ≡ (1− (k + 1))πα,n(n) = −kπα,n(n) (mod n).

Thus for r ≥ 1 we have πr
α,n−1(k) ≡ k(−πα,n(n))r (mod n). The length of the orbit of k under πα,n−1

divides ord(−πα,n(n) mod n), and in particular the orbit of 1 has length equal to ord(−πα,n(n) mod n).
This proves that ord(πα,n−1) = ord(−πα,n(n) mod n).

For notational convenience, set x = −πα,n(n). Now from

πα,n(k) ≡ (1− k)πα,n(n) = (k − 1)x (mod n)

it is readily seen by induction that for R ≥ 0 we have

πR
α,n(k) ≡ kxR −

(
x + x2 + · · ·+ xR

)
(mod n). (3)

Let r be the least positive integer for which ∀k
(
πr

α,n(k) = k
)
, i.e., let r be the least common multiple of the

length of the orbits of πα,n. We must show that r = ord(x mod gn).
Define the integer γ by gγ = x − 1, and note that gcd(γ, n) = 1. We may rearrange Eq. (3), setting

R = r, as
xr − 1
x− 1

≡ (k − 1)(xr − 1) (mod n), (4)

the division being real, not modular. With k = 1, Eq. (4) becomes 0 ≡ xr−1
x−1 = xr−1

gγ (mod n), which holds
iff xr−1

g ≡ 0 (mod n). This, in turn, holds iff there is an integer β with βn = xr−1
g , i.e., βng = xr − 1. Thus

r is a multiple of ord(x mod gn), and in particular r ≥ ord(x mod gn).
We claim that ∀k

(
π

ord(x mod gn)
α,n (k) = k

)
, so that r ≤ ord(x mod gn), which will conclude the proof.

We have
xord(x mod gn) − 1

x− 1
=

βgn

gγ
=

βn

γ

and
(k − 1)(xord(x mod gn) − 1) ≡ 0 (mod n),

so that substituting r = ord(x mod gn) into Eq. (4) we write βn
γ ≡ 0 (mod n), which holds for all k since

gcd(γ, n) = 1. Thus r ≤ ord(x mod gn).

For quadratic irrationals one can easily identify the convergents and intermediate fractions and, if the
denominators have enough structure, explicitly compute ord(πα,n) when n or n + 1 is such a denominator.
We have for example

Corollary 3.2.1. Let φ =
√

5−1
2 , and fn be the n-th Fibonacci number. Then for n ≥ 2,

ord(πφ,−1+f2n
) = ord(πφ,f2n

) = 2

and
ord(πφ,−1+f2n+1) = ord(πφ,f2n+1) = 4.

Proof. From the continued fraction expansion of φ we know that πφ,f2n
(f2n) = f2n and πφ,f2n

(1) = f2n−1.
The identity f2

2n−1− f2nf2n−2 = 1 shows that ord(f2n−1 mod f2n) = 2 for n ≥ 2, whence by Theorem 3.1(i)
we have ord(πφ,−1+f2n

) = ord(πφ,f2n
) = 2.

The continued fraction expansion of φ also tells us πφ,f2n+1(1) = f2n+1 and
πφ,f2n+1(f2n+1) = f2n. The identity f2

2n − f2n+1f2n−1 = −1 shows ord(−f2n mod f2n+1) = 4 for n ≥ 2,
whence by Theorem 3.1(ii), ord(πφ,−1+f2n+1) = 4.
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We defined g to be the least positive integer such that gcd
(
f2n+1,

f2n+1
g

)
= 1. In particular, g|f2n + 1,

and so the identity

(−f2n)4 − 1 = f2n−1(f2n − 1)f2n+1(f2n + 1) ≡ 0 (mod gf2n+1)

shows that ord(−f2n mod gf2n+1) divides 4, and the identity (−f2n)2 − f2n+1f2n−1 = −1 shows that

ord(−f2n mod gf2n+1) ≥ ord(−f2n mod f2n+1) = 4,

whence ord(−f2n mod gf2n+1) = 4 and by Theorem 3.1(ii), ord(πφ,f2n+1) = 4.

3.3 The Sign of the Permutation

Recall that a k-cycle is even exactly if k is odd. We define ρ(n, k) to be the (n− k)-cycle

ρ(n, k) := (n, n− 1, . . . , k + 1) = (n, n− 1)(n− 1, n− 2) · · · (k + 2, k + 1).

Define also
Bα(k) := #{q : 1 ≤ q < k, {qα} < {kα}},

which counts the integers in [1, k) that are ‘better’ denominators for approximating α from below. Clearly,

πα,n = πα,n−1 ρ(n, Bα(n))
= ρ(1, Bα(1)) ρ(2, Bα(2)) . . . ρ(n, Bα(n))

=
n∏

k=1

ρ(k, Bα(k))

so that πα,n is the product of
∑n

k=1(k−Bα(k)− 1) transpositions. We will show that for k odd, Bα(k) ≡ 0
(mod 2), which will be used to demonstrate that sgn(πα,2n) = sgn(πα,2n+1).

Our proof of Lemma 3.3.1 is similar in spirit to Sós’s proof of Lemma 3.1.1.

Lemma 3.3.1. For k ≥ 3 and 0 < α < 1/2, α irrational, Bα(k) + B1−α(k) = k − 1, and

Bα(k)− 2Bα(k − 1) + Bα(k − 2) =


1− k, {kα} ∈ [0, α);
k − 1, {kα} ∈ [α, 2α);
0, {kα} ∈ [2α, 1).

Proof. Observe that 0 < {qα} < {kα} iff {k(1− α)} < {q(1− α)} < 1, so that q with 1 ≤ q < k is in either
the set {q : 1 ≤ q < k, {qα} < {kα}} or in the set {q : 1 ≤ q < k, {q(1 − α)} < {k(1 − α)}}, and is not in
both. Thus, Bα(k) + B1−α(k) = k − 1.

We think of the points 0, {α}, . . . , {kα} as lying on a circle with circumference 1, and labeled P0, P1, . . . , Pk,
respectively, i.e., Pj := 1

2π e2πjα
√
−1 = 1

2π e2π{jα}
√
−1. “The arc PiPj” refers to the half-open counterclock-

wise arc from Pi to Pj , containing Pi but not Pj . We say that three distinct points A,B,C are in order if
B 6∈ CA. We say that A,B, C, D are in order if both A,B,C and C,D,A are in order. Essentially, if when
moving counter-clockwise around the circle starting from A, we encounter first the point B, then C, then
D, and finally A (again), then A,B,C, D are in order.

By rotating the circle so that Pi 7→ Pi+1 (0 ≤ i ≤ k), we find that each P on the arc Pk−2Pk−1 is
rotated onto a P on the arc Pk−1Pk. Specifically, the number of P0, P1, . . . , Pk−2 on Pk−2Pk−1 is the same
as the number of P1, P2, . . . , Pk−1 on Pk−1Pk. Set

X := {P0, P1, . . . , Pk−2} and Y := {P1, P2, . . . , Pk−1},
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so that what we have observed is ∣∣X ∩ Pk−2Pk−1

∣∣ = ∣∣Y ∩ Pk−1Pk

∣∣ . (5)

Also, we will use
Bα(k) =

∣∣Y ∩ P0Pk

∣∣ .
Now, first, suppose that {kα} ∈ [0, α), so that the points P0, Pk, Pk−2, Pk−1 are in order on the circle.

We have

X ∩ Pk−2Pk−1 = X ∩
(
P0Pk−1 \ P0Pk−2

)
=
(
X ∩ P0Pk−1

)
\
(
X ∩ P0Pk−2

)∣∣X ∩ Pk−2Pk−1

∣∣ = ∣∣(X ∩ P0Pk−1

)∣∣ − ∣∣(X ∩ P0Pk−2

)∣∣
= (Bα(k − 1) + 1)− (Bα(k − 2) + 1)
= Bα(k − 1)−Bα(k − 2),

and similarly

Y ∩ Pk−1Pk =
(
Y ∩ Pk−1P0

)
∪
(
Y ∩ P0Pk

)
=
(
Y \

(
Y ∩ P0Pk−1

))
∪
(
Y ∩ P0Pk

)∣∣Y ∩ Pk−1Pk

∣∣ = (|Y | −
∣∣Y ∩ P0Pk−1

∣∣) +
∣∣Y ∩ P0Pk

∣∣
= (k − 1−Bα(k − 1)) + Bα(k)
= Bα(k)−Bα(k − 1)− (1− k),

so that Eq. (5) becomes Bα(k− 1)−Bα(k− 2) = Bα(k)−Bα(k− 1)− (1− k), as claimed in the statement
of the theorem.

Now suppose that {kα} ∈ [α, 2α), so that the points P0, Pk−1, Pk, Pk−2 are in order. By arguing as in
the above case, we find

X ∩ Pk−2Pk−1 =
(
X \

(
X ∩ P0Pk−2

))
∪
(
X ∩ P0Pk−1

)
,

and so
∣∣X ∩ Pk−2Pk−1

∣∣ = Bα(k − 1)−Bα(k − 2) + (k − 1). Likewise,

Y ∩ Pk−1Pk =
(
Y ∩ P0Pk

)
\
(
Y ∩ P0Pk−1

)
so that

∣∣Y ∩ Pk−1Pk

∣∣ = Bα(k)−Bα(k−1). Thus, in this case Eq. (5) becomes Bα(k−1)−Bα(k−2)+(k−1) =
Bα(k)−Bα(k − 1), as claimed in the statement of the theorem.

Finally, suppose that {kα} ∈ [2α, 1), so that the points P0, Pk−2, Pk−1, Pk are in order. We find

X ∩ Pk−2Pk−1 =
(
X ∩ P0Pk−1

)
\
(
X ∩ P0Pk−2

)
and

∣∣X ∩ Pk−2Pk−1

∣∣ = Bα(k − 1)−Bα(k − 2). Also,

Y ∩ Pk−1Pk =
(
Y ∩ P0Pk

)
\
(
Y ∩ P0Pk−1

)
and so

∣∣Y ∩ Pk−1Pk

∣∣ = Bα(k)−Bα(k−1). As claimed, we have Bα(k−1)−Bα(k−2) = Bα(k)−Bα(k−1).

Lemma 3.3.2 makes explicit the connection between Lemma 3.3.1, arithmetic properties of Bα, and the
permutation πα,n.
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Lemma 3.3.2. Let α ∈ (0, 1) be irrational and n ∈ Z+. If k is odd, then Bα(k) is even. If k is even, then
Bα(k) ≡ bkαc+ 1 (mod 2).

Proof. By Lemma 3.3.1, Bα(k) + B1−α(k) = k − 1. Thus for odd k, Bα(k) + B1−α(k) is even, and so either
both Bα(k) and B1−α(k) are even or both are odd. This means that, for odd k, without loss of generality
we may assume that 0 < α < 1

2 .
Reducing the recurrence relation in Lemma 3.3.1 modulo 2, under the hypothesis that k is odd, we find

that Bα(k) ≡ Bα(k − 2) (mod 2). Since Bα(1) = 0, we see that Bα(k) ≡ 0 (mod 2) for all odd k.
Now suppose that k is even and 0 < α < 1

2 . The recurrence relation in Lemma 3.3.1 reduces to

Bα(k) + Bα(k − 2) ≡ [[{kα} ∈ [0, 2α)]] (mod 2).

Set β = 2α, k = 2` and B′(i) = Bα(2i). We have

Bα(k) = Bα(2`) = B′(`)
≡ B′(`− 1) + [[{`β} ∈ [0, β)]] (mod 2)

≡ B′(1) +
∑̀
i=2

[[{iβ} ∈ [0, β)]] (mod 2)

= Bα(2) + b`βc
= 1 + b2`αc = 1 + bkαc ,

since
∑`

i=2[[{iβ} ∈ [0, β)]] (with β ∈ (0, 1)) counts the integers in the interval (β, `β]. This proves the lemma
for 0 < α < 1

2 and k even.
Now suppose that k is even and 1

2 < α < 1. By Lemma 3.3.1, Bα(k) = k− 1−B1−α(k) ≡ 1 + B1−α(k)
(mod 2). By the argument (for 0 < α < 1

2 ) given above, B1−α(k) ≡ 1 + bk(1− α)c (mod 2). We have

Bα(k) ≡ bk(1− α)c (mod 2)
= k − bkαc − {k(1− α)} − {kα}
≡ bkαc+ 1 (mod 2),

where we have used {k(1− α)}+ {kα} = 1 (since α is irrational).

Proof of Theorem 1.3. We have πα,2n+1 = πα,2n ρ(2n+1, Bα(2n+1)). The permutation ρ(2n+1, Bα(2n+1))
is the product of 2n + 1 − Bα(2n + 1) − 1 transpositions, which is an even number by Lemma 3.3.2. Thus
sgn(πα,2n+1) = sgn(πα,2n).

By Lemma 3.3.2, for all integers k

k −Bα(k) + 1 ≡
{

0, k odd;
bkαc , k even.

Since the sign of the permutation ρ(k, Bα(k)) is (−1)k−Bα(k) and (−1)2n = 1, we have

sgn(πα,2n) = (−1)2n sgn

(
2n∏

k=1

ρ(k,Bα(k))

)
=

2n∏
k=1

(−1) sgn (ρ(k, Bα(k)))

=
2n∏

k=1

(−1)(−1)k−Bα(k) =
2n∏

k=1

(−1)k−Bα(k)+1 =
n∏

`=1

(−1)b2`αc.
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4 Unanswered Questions

The most significant question we have been unable to answer is why the matrices formed from Sturmian
words in Section 2 lie in a common representation of Sn. We made two choices with little motivation: we
ordered the factors anti-lexicographically; and we subtracted the last factor from the others. What happens
if we order the factors differently, or subtract the second factor from the others? Understanding why the
structure revealed in Section 2 exists might allow us to predict other phenomena.

Lucas Wiman [personal communication] has proved that{
Mn−1

(
c
n

)
: gcd(c, n) = 1

}
is isomorphic to the multiplicative group modulo n, and asks if this is the largest subset of {Mn−1(α) : 0 <
α < 1} that is a group.

We have shown that the volume of the simplex Fn(α) is independent of α. When are two such simplices
actually congruent?

Conjecture: For α, β ∈ (0, 1) be irrational, Fn(α) ∼= Fn(β) (as simplices) iff Fn(α) = Fn(β) or Fn(α) =
Fn(1− β).

We have verified this conjecture for n ≤ 20 by direct computation. At least, can any such simplex
be cut and reassembled (in the sense of Hilbert’s 3rd Problem: see Eves [Eve72] for the basic theory and
Sydler [Syd65] for a complete characterization) into the shape of another?

While we have identified the matrix Mn(α), there are many interesting questions that we remain
unable to answer. We don’t believe that there is a bound on

∑N
n=1 det(Mn(α)) =

∑N
n=1 sgn(πα,n) that is

independent of N , but this sum must grow very slowly. We suspect that∣∣∣∣∣
N∑

n=1

sgn(πα,n)

∣∣∣∣∣� log N

for almost all α. For example, with α =
√

5−1
2 and N < e13 ≈ 442413,∣∣∣∣∣

N∑
n=1

sgn(πα,n)

∣∣∣∣∣ < 10.

In Section 3.1 we showed that ord(πα,n) is regularly extremely small relative to the average order of a
permutation on n symbols. For each irrational α, are there infinitely many values of n for which ord(πα,n)
is exceptionally large?

One might hope for an explicit formula for ord(πα,n) in terms of the base-α Ostrowski expansion of n,
but this seems to be extremely difficult. Are metric results more approachable? Specifically, what is the
distribution of ord(πα,n) and sgn(πα,n) for α taken uniformly from (0, 1)?

Since ord(πα,n) appears to vary wildly, it may be advantageous to consider its average behavior. Can
one give an asymptotic expansion of

∑N
n=1 ord(πα,n)? What can be said about I(n) :=

∫ 1

0
ord(πα,n) dα?

Surprisingly, although I(n) seems to be rapidly increasing, it is not monotonic, e.g., I(35) > I(36) > I(37).
Is this the ‘law of small numbers,’ or are there infinitely many values of n for which I(n + 1) > I(n)? We
are not aware of any non-trivial bounds, upper or lower, on I(n). Figure 1 shows I(n) for 1 ≤ n ≤ 60.

Bα is an interesting function in its own right. We gave a formula for Bα(n) (mod 2) in Lemma 3.3.2. Is
it possible to give a nice formula for Bα(n) for other moduli? It seems likely that there are arbitrarily large
integers which are not in the range of Bα, although we have been unable to show that it does not contain
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n

I(n)

Figure 1: I(n) for 1 ≤ n ≤ 60

all nonnegative integers. For example, B(
√

5−3)/2(k) 6= 3, B√
2(k) 6= 7 and Be−1(k) 6= 23 for k ≤ 107. It is

perhaps noteworthy that the least k for which Be−1(k) = 25 is k = 22154, a reminder that Bα can take new,
small values even at large k. From the theory of continued fractions we know that there are infinitely many
k for which Bα(k) = 0. Is there an x 6= 0 and irrational α for which there are infinitely many k such that
Bα(k) = x?
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