- (1) Show that the following spaces have the same chomology groups in each dimension, but are not homotopy equivalent.
 - (a) \mathbb{CP}^2 and $S^2 \vee S^4$
 - (b) \mathbb{RP}^3 and $\mathbb{RP}^2 \vee S^3$.
- (2) Construct explicit co-cycles and cup products for the following CW complexes, with given coefficients, obtained by identifying a polygon using the following words.
 - (a) a^5 with $\mathbb{Z}/5\mathbb{Z}$ coefficients.
 - (b) a^3b^3 with $\mathbb{Z}/3\mathbb{Z}$ coefficients.
- (3) Let $T^2 = S^1 \times S^1$ and K be the Klein bottle.
 - (a) Prove that $f^* \colon H^2(T^2; \mathbb{Z}) \to H^2(S^2; \mathbb{Z})$ is trivial for any map $f \colon S^2 \to T^2$.
 - (b) Prove that $f_* \colon H_2(S^2; \mathbb{Z}) \to H_2(T^2; \mathbb{Z})$ is trival.
 - (c) Can you say the same about g^* for any map $g: T^2 \to S^2$?
 - (d) Prove that $f^* \colon H^2(K; \mathbb{Z}/2\mathbb{Z}) \to H^2(S^2; \mathbb{Z}/2\mathbb{Z})$ is trivial for any map $f \colon S^2 \to K$.
 - (e) Prove that $f^* : H^2(T^2; \mathbb{Z}/2\mathbb{Z}) \to H^2(K; \mathbb{Z}/2\mathbb{Z})$ is trivial for any map $f : K \to T^2$.
 - (f) Prove that $f^*: H^2(K; \mathbb{Z}/2\mathbb{Z}) \to H^2(T^2; \mathbb{Z}/2\mathbb{Z})$ is trivial for any map $f: T^2 \to K$.
- (4) Let M_g denote the closed orientable surface of genus $g \ge 1$.
 - (a) Prove that for each nonzero $\alpha \in H^1(M_g; \mathbb{Z})$, there exists $\beta \in H^1(M_g; \mathbb{Z})$ with $\alpha \cup \beta \neq 0$.
 - (b) Prove that for any map $f: M_m \to M_n$ with n > m, the map $f^*: H^2(M_n) \to H^2(M_m)$ is trivial.
 - (c) Prove that M_g is not homotopy equivalent to a wedge sum $X \lor Y$ of CW complexes, each with nontrivial reduced homology.
- (5) Prove that a degree 1 map between manifolds induces a surjection on the fundamental groups.

Also: Hatcher $\S3.2 \ Q \ 3.8$.