- (1) Find a vector field on S^2 with exactly one zero.
- (2) Describe explicit cell structures on the following spaces, and then use cellular homology to compute their homology groups.
 - (a) The Möbius band.
 - (b) The solid torus $S^1 \times D^2$.
 - (c) The space formed by gluing the boundary of a disc to a figure eight curve in the interior of another disc; more precisely choose an embedding of $S^1 \vee S^1$ in the interior of the unit disc, and let a and b be the standard generators for $\pi_1(S^1 \vee S^1)$. Then glue in another disc along its boundary using the gluing map ab.
- (3) Use the Mayer-Vietoris theorem to compute the homology of the following spaces.
 - (a) The space formed by gluing the boundary of a Möbius band by a homeomorphism to an essential curve on a torus $S^1 \times S^1$.
 - (b) Let A be the unit disc with the interior of two disjoint open discs removed, and let $h: A \to A$ be an orientation preserving homeomorphism which swaps the two holes. Let X be $A \times I / \sim$ where $(x, 1) \sim (h(x), 0)$; equivalently, take a solid torus and remove a small neighbourhood of an unknotted curve which loops around the core curve twice. Compute the homology of X by applying the Mayer-Vietoris theorem to the solid torus as the union of X and the removed solid torus. You should get the same asnwer as in (a), why is this?
 - (c) The space Y formed by taking two copies of X and gluing their boundaries together by the identity homeomorphism.

Also: Hatcher §2.2 Q29