Math 233 Calculus 3 Fall 15 Sample midterm 1

- 1. Let $\vec{\mathbf{u}} = \langle -2, 3, 4 \rangle$ and $\vec{\mathbf{v}} = \langle 1, -2, 3 \rangle$.
 - (a) Find $||\operatorname{proj}_{\vec{\mathbf{v}}}\vec{\mathbf{u}}||$.
 - (b) Express $\vec{\bf u}$ as the sum of $\vec{\bf m}=\vec{\bf u}_{||}$ parallel to $\vec{\bf v}$, and $\vec{\bf n}=\vec{\bf u}_{\perp}$ orthogonal to $\vec{\bf v}$.
- 2. Consider three points A(-1, -2, 2), B(1, 2, -2), C(3, 1, 2).
 - (a) Find the area of the triangle formed by A, B, C.
 - (b) Find the equation of the plane that contains A, B, C.
- 3. Find the equation of the plane that passes through the point (5, -7, 4) and is perpendicular to the line (6, -3, -1) + t(2, -1, -2).
- 4. For each equation below, sketch the surface in \mathbb{R}^3 that it describes.
 - (a) $x^2 + 4y^2 + 4z^2 = 16$
 - (b) $z = 9x^2 4y^2$
 - (c) $4x^2 + 9z^2 = 2y^2 72$
 - (d) $9x^2 4y^2 = 72$
- 5. A particle starts at location $\mathbf{i} 2\mathbf{j} + 3\mathbf{k}$ with initial velocity $2\mathbf{i} + 3\mathbf{j} 3\mathbf{k}$. Its acceleration is $\mathbf{a}(t) = 3\mathbf{i} + 12t^2\mathbf{j} 6t\mathbf{k}$. Find the location of the particle at t = 2.
- 6. A string in the shape of a helix has a height of 12cm and makes four full rotations over a circle of radius 3cm.
 - (a) Find a parametrization $\boldsymbol{r}(t)$ for the string.
 - (b) Compute the length of the string.
- 7. Show that the following limit does not exist.

$$\lim_{(x,y)\to(0,0)} \frac{x^2 - xy}{x^2 + y^2}$$

8. Find all the second order partial derivatives of

$$f(x, y, z) = ye^{xy+z} + (x+z)\tan(y+z)$$

You may assume that mixed partials are equal.

- 9. Find the equation of the tangent plane to the surface $z = 2x^2 4y^2$ at the point (1, 1, -2).
- 10. Find the linear approximation to the function $f(x, y, z) = e^{4yz} + \ln(x + z)$ at the point (4, -2, 1).
- 11. Find the normal vector to the surface $z^2 = 3x^2 2y^2$ at the point (3, -1, 5).