Linear Algebra Spring 13 Sample Midterm 3

- (1) Let A be the matrix $A = \begin{bmatrix} 3 & 1 \\ -5 & -3 \end{bmatrix}$.
 - (a) Find the eigenvalues of A.
 - (b) Diagonalize A, i.e. find matrices P and D such that $P^{-1}AP = D$.
 - (c) Find an exact formula for A^k .
 - (d) What are the eigenvalues for A^k ?
- (2) Let $L: \mathbb{R}^2 \to \mathbb{R}^2$ be given by L(x, y) = (x 2y, x + 2y). Let

$$S = \left\{ \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$$

be a basis for \mathbb{R}^2 , and let T be the standard basis for \mathbb{R}^2 .

- (a) Find the matrix for L with respect to T.
- (b) Find the matrix for L with respect to S.
- (c) What is the rank and nullity of L?
- (3) Suppose q_1, q_2 and q_3 are orthonormal vectors in \mathbb{R}^3 . Find all possible values for the following determinants, and justify your answers.
 - (a) det $\begin{bmatrix} q_1 & q_2 & q_3 \end{bmatrix}$ (b) det $\begin{bmatrix} q_1 + q_2 & q_2 + q_3 & q_3 + q_1 \end{bmatrix}$
 - (c) det $\begin{bmatrix} q_1 & q_2 & q_3 \end{bmatrix}$ times det $\begin{bmatrix} 2q_2 & q_1 & q_3 \end{bmatrix}$
- (4) A 4×4 matrix A has the same number x in its first row and column, and the other values can be any numbers, i.e.

$$\det \begin{bmatrix} x & x & x & x \\ x & a_{22} & a_{23} & a_{24} \\ x & a_{32} & a_{33} & a_{34} \\ x & a_{42} & a_{43} & a_{44} \end{bmatrix}$$

- (a) The determinant of A is a polynomial in x. What is the degree of the polynomial?
- (b) If the bottom right 3×3 matrix is the identity matrix, which values of x give det A = 0?

(5) Let A be a matrix with eigenvalues 0, 1, 2 and 3. Suppose the matrix of eigenvalues is the (orthonormal) matrix

$$S = \frac{1}{2} \begin{bmatrix} 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \end{bmatrix}$$

- (a) What is $\det A$?
- (b) What is the easy way to work out S^{-1} ?
- (c) Write A as a product of three matrices.
- (d) Write $(A + I)^{-1}$ as a product of three matrices.
- (6) Let A be the matrix

$$A = \begin{bmatrix} -1 & 2 & 4\\ 0 & 0 & 5\\ 0 & 0 & 1 \end{bmatrix}$$

- (a) Find the eigenvalues and eigenvectors of A.
- (b) Explain why $A^{101} = A$. Is $A^{100} = I$?
- (c) Find the three diagonal entries of e^{At} .
- (7) Suppose the $n \times n$ matrix A has n orthonormal eignevectors $q_1, \ldots q_n$, with positive eigenvalues $\lambda_1, \ldots \lambda_n$.
 - (a) What are eigenvectors and eigenvalues of A^{-1} ? Justify your answer.
 - (b) Any vector v may be written as a linear combination of the q_i , i.e. $v = c_1q_1 + \cdots + c_nq_n$. What is a quick formula for the c_i using the orthogonality of the q_i ?
 - (c) The solution to Ax = b is also a combination of the eignevectors, i.e.

$$A^{-1}b = d_1q_1 + \dots + d_nq_n.$$

What is a quick formula for d_1 ?

- (8) Consider the set of vectors $B = \{ \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \}.$
 - (a) Is B a basis for \mathbb{R}^2 ? Justify your answer.
 - (b) Write the vector $\begin{bmatrix} 1\\ -1 \end{bmatrix}$ in terms of the basis *B*.
 - (c) Find a matrix for the linear map which changes you from the standard basis to the B basis.

2

(9) Let $S = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3}$ be a basis for \mathbb{R}^3 , where

$$\mathbf{v}_1 = \begin{bmatrix} 1\\-1\\2 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 0\\-1\\1 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 0\\1\\1 \end{bmatrix}.$$

Use the Gram-Schmidt process to find an orthonormal basis.

- (10) (a) Explain why every 3×3 matrix has a real eigenvalue.
 - (b) What does this say about rotations in \mathbb{R}^3 ?
 - (c) Write down a real 4×4 matrix all of whose eigenvalues are complex.
 - (d) What does this say about rotations in \mathbb{R}^4 ?