Linear Algebra Spring 13 Sample Final

(1) Find all solutions to the following system of linear equations.

$$x_1 + x_2 + 2x_3 - x_4 = 0$$

$$2x_1 + x_2 + 3x_3 + x_4 = 0$$

$$x_1 + x_3 + x_4 = 0$$

- (2) (a) Write down a matrix for a linear transformation of \mathbb{R}^3 which rotates by $\pi/2$ anticlockwise about the z-axis.
 - (b) Write down a matrix for a linear transformation of \mathbb{R}^3 which doubles lengths in the *x*-direction.
 - (c) Write down a matrix for a linear transformation of \mathbb{R}^3 which reflects in the *xy*-plane.
 - (d) Use your answers above to write down a matrix for a linear transformation of \mathbb{R}^3 which doubles lengths in the *x*-direction, then rotates by $\pi/2$ anticlockwise about the *z*-axis, and then reflects in the *xy*-plane.
- (3) (a) Write down a linearly independent set in \mathbb{R}^4 which is not a basis.
 - (b) Write down a basis for \mathbb{R}^4 which is not orthogonal.
 - (c) Write down a set of three vectors which span a two-dimensional subspace of \mathbb{R}^4 .
- (4) Let $S = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3}$ be a basis for \mathbb{R}^3 , where

$$\mathbf{v}_1 = \begin{bmatrix} 1\\1\\-1 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 1\\-1\\2 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}.$$

Use the Gram-Schmidt process to find an orthogonal basis.

- (5) Let $V = \text{Span}\{(-1, 2, 1), (1, 3, -1), (-3, 1, 3)\}$ in \mathbb{R}^3 .
 - (a) What is the dimension of V?
 - (b) Find a basis for V^{\perp} .
- (6)

$$A = \begin{bmatrix} 7 & 5\\ -10 & -8 \end{bmatrix}$$

(a) Find the eigenvalues of A.

- (b) Find the eigenvectors for A.
- (c) Diagonalize A, i.e. find matrices P and D such that $P^{-1}AP = D$.
- (d) Write down products of matrices which give you A^k and e^{At} .

(7) Let $L: \mathbb{R}^2 \to \mathbb{R}^2$ be given by L(x, y) = (x - 3y, 2x + y). Let

$$S = \left\{ \begin{bmatrix} 2\\ 3 \end{bmatrix}, \begin{bmatrix} -1\\ -1 \end{bmatrix} \right\}$$

be a basis for \mathbb{R}^2 , and let T be the standard basis for \mathbb{R}^2 .

- (a) Find the matrix for L with respect to T.
- (b) Find the matrix for the change of basis from S to T.
- (c) Find the matrix for L with respect to S. Don't worry if its not diagonal.
- (8) If A is a non-singular $n \times n$ matrix such that $A^{-1} = A^T$, what can you say about the determinant of A?
- (9) Let A be a 3×5 matrix such that the sum of the rows add up to the zero vector.
 - (a) What can you say about the column rank of A?
 - (b) If A determines a linear map $L : \mathbb{R}^5 \to \mathbb{R}^3$ given by $L(\mathbf{x}) = A\mathbf{x}$, what can you say about the kernel of L?

 $\mathbf{2}$