Math 233 Calculus 3 Spring 12 Midterm 12 b

Name: Solutions

- Do any 8 of the following 10 questions.
- You may use a calculator, but no notes.

1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	(Company)
9	10	
10	10	
	80	

Midterm 1	
Overall	

(1) (10 points) Find the angle between the two vectors (1, -2, 1) and (1, -3, 1).

V.w = 1/4/1/1/2/1 (080

610 = 8 \[\sigma \sig

(2) (10 points) Find the area of the triangle with vertices (1, -1, -1), (1, 3, -2)and (2, 1, 3).

$$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} i & + k \\ 0 & 4 - 1 \end{vmatrix} = \langle 18, -1, -4 \rangle$$

(3) (10 points) Find a parametric equation for the line of intersection of the two planes x - y + z = 1 and x - y + 2z = 2.

$$M_1 = \langle 1, -1, 17 \rangle$$
 $M_2 = \langle 1, -1, 2 \rangle$
 $M_1 = \langle 1, -1, 2 \rangle$
 $M_1 = \langle 1, -1, 2 \rangle$
 $M_2 = \langle 1, -1, 2 \rangle$
 $M_1 = \langle 1, -1, 2 \rangle$

find point by
$$7=0$$
: $x-y=1$ down if whe $x-y=2$

hy
$$1=0: 0 - y+1=1$$
 $0-0: 7=1 => y=0$ $-y+1=2$

(4) (10 points) Find the projection of the vector $\langle 4, -2, -1 \rangle$ onto the vector $\langle 2, -1, 1 \rangle$.

projection is

$$\frac{u.v}{v.v} = \frac{8+2-1}{4+1} = \frac{9}{6} (2,-1,1)$$

(5) (10 points) Find the equation of the plane containing the line (0, 1, -3) + t(1, 1, 2) and the point (-1, 2, 1). (Hint: find the normal vector.)

plane contains
$$\langle 1,1,2 \rangle$$
 and $\langle -1,1,4 \rangle$
 $y = \begin{vmatrix} i & k \\ 1 & 2 \end{vmatrix} = \langle 2,-6,2 \rangle$
 $-1 \cdot 14 \begin{vmatrix} 1 & 2 \\ 2 & 4 \end{vmatrix}$
 $(2c-46)(2c-6)(2c-6)(2c-6)(2c) = 0$

$$2x - 6y + 27 = -12$$

(6) (10 points) Sketch the surfaces and label their intersections with the coordinate axes.

(a)
$$z^2 = 4x^2 + y^2$$

(a)
$$z^2 = 4x^2 + y^2$$

(b) $x^2 + 4y^2 = 9z^2 + 36$

interects axes at (0,0,0)

hyperboloid of are sheet interaction with axes are:

$$(0, \pm 3, 0)$$

no intersections with z-axis

(7) (10 points) Write down a parameterization for the straight line segment from (-1,2,1) to (2,4,2). Use the integral formula for arc length to find the length of this line.

$$\Gamma(t) = \langle -1, 2, 1 \rangle + t \langle 3, 2, 1 \rangle$$
 0 $\leq t \leq 1$
 $\| C'(t) \| = \| \langle 3, 2, 1 \rangle \| = \sqrt{14'}$
 $\| C'(t) \| = \| \langle 3, 2, 1 \rangle \| = \sqrt{14'}$
 $\| C'(t) \| = \| \langle 3, 2, 1 \rangle \| = \sqrt{14'}$

(8) (10 points) The position of a particle is given by $\mathbf{r}(t) = \langle \ln(t-1), e^{-t/2}, \tan(2x) \rangle$, find the acceleration of the particle.

$$\Gamma'(t) = \left\langle \frac{1}{t-1}, -\frac{1}{2}e^{t/2}, 2\sec^{2}(2x) \right\rangle$$

$$\Gamma''(t) = \left\langle \frac{1}{(t-1)^{2}}, \frac{1}{4}e^{-t/2}, 4\sec(2x).\sec(2x)\tan(2x).2 \right\rangle$$

$$= \left\langle \frac{1}{(t-1)^{2}}, \frac{1}{4}e^{t/2}, 8\sec^{2}(2x)\tan(2x).7 \right\rangle$$

(9) (10 points) An object is thrown from the origin with initial velocity $\langle 20, 20, 20 \rangle$ m/s. Find an expression for the position of the object at time t it moves under the gravitational force $\mathbf{F} = \langle 0, 0, -gm \rangle$ m/s². Feel free to take g = 10.

$$\Gamma''(t) = \langle 0,0,-107 \rangle$$
 $\Gamma''(t) = \langle 0,0,-10t \rangle + \sqrt{0}$
 $\Gamma''(t) = \langle 0,0,-10t \rangle + \sqrt{0}$

perpendicular.

(10) (10 points) The position of an object is given by $\mathbf{r}(t)$, and it moves with constant speed.

(a) Does the object have to move in a straight line?

(b) What can you say about $\mathbf{r}'(t)$?

(c) Show that $\mathbf{r}'(t)$ is perpendicular to $\mathbf{r}''(t)$.

a) No
b)
$$||r'(t)||^2 = c^2$$

$$r'(t).r'(t) = c^2$$

$$r'(t).r'(t) = c^2$$

$$r'(t).r'(t) + r'(t).r'(t) = 0$$

$$2r'(t).r''(t) = 0$$

$$r'(t).r''(t) = 0$$

rilt) and rilt) are