Math 233 Calculus 3 Spring 12 Final a

	Solutions	
Name:	Sulling	

- Do any 10 of the following 12 questions.
- You may use a calculator, but no notes.

- 8		1
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	
11	10	
12	10	
	100	

Midterm 3	
Overall	

- (1) (10 points) Let \mathbf{u} be the vector (2, -1, 2), and let \mathbf{v} be the vector (2, 1, -1).
 - (a) Write **v** as the sum of two vectors, one parallel to **u**, and one perpendicular to **u**.
 - (b) Find the area of the triangle formed by the two vectors \mathbf{u} and \mathbf{v} .

a)
$$\frac{u.v}{u.u} u = \frac{4-1-2}{4+1+4}u = \frac{1}{9} \langle z_1 - 1, 2 \rangle$$

$$\frac{v}{q} = \langle \frac{1}{9}, \frac{1}{9}$$

(2) (10 points)

(a) Give an example of a parameterized curve in \mathbb{R}^3 which has constant speed, but not constant velocity.

(b) A particle starts at the origin at time 0, and has velocity given by $\mathbf{r}'(t) = \langle e^{-2t}, t, 1 \rangle$. Where is it at time t = 4?

a)
$$\Gamma(t) = \langle \omega st_1 s int_1 o \rangle \Gamma'(t) = \langle -s int_1 \omega st_1 o \rangle$$
 let our fait $|\Gamma'(t)| = |\Gamma'(t)| = |\Gamma'(t)| = |\Gamma'(t)|$

b)
$$\Gamma(t) = \langle -\frac{1}{2}e^{2t}, \frac{1}{2}t^{2}, t \rangle + C$$

 $\Gamma(0) = \langle -\frac{1}{2}, 0, 0 \rangle + C = 0 \Rightarrow C = \langle \frac{1}{2}, 0, 0 \rangle$
 $\Gamma(4) = \langle \frac{1}{2} - \frac{1}{2}e^{-8}, 8, 4 \rangle$

- (3) (10 points)
 - (a) Give a formula for the gradient vector, and describe its geometric properties.
 - (b) Find the gradient vector at the point (2, -1, 1) for the function f(x, y, z) =

of paints in the direction of greatest rate of increase, length is greatest rate of increase.

b) Af = < cos (xy-22).y, cos (xy-22).x, cos (xy-22).(-2)?

 $\nabla f(2_1-1_11) = \langle -\cos(4), \cos(4), -\cos(4) \rangle$.

(4) (10 points) Find the critical points for the function $f(x,y) = x^2 + y^2 - 3xy + x$ and use the second derivative test to attempt to classify them.

$$\frac{2f}{dx} = 2x - 3y + 1 = 0$$

$$\frac{2f}{dy} = 2y - 3x$$

$$= 0$$

$$y = \frac{3}{2}x$$

$$\text{caihical paint } (\frac{2}{5} - \frac{7}{5})$$

$$f_{xx} = 2$$

$$f_{xx} = 2$$

$$f_{xy} = -3$$

$$f_{yy} = 2$$

$$f_{yy} = 2$$

(5) (10 points) Evaluate the following integral by changing the order of integration.

$$\int_{0}^{1} \int_{2y}^{2} e^{-x^{2}} dx dy$$

$$\int_{0}^{2} \int_{0}^{2/2} e^{-x^{2}} dy dx$$

$$\int_{0}^{2} \frac{x^{2}}{2} e^{-x^{2}} dx = \left[-\frac{1}{4} e^{-x^{2}} \right]_{0}^{2} = \frac{x}{2} e^{-x^{2}}$$

(6) (10 points) Integrate the function $f(x,y) = x^2 + y^2$ in the region between the circle of radius 2 and the circle of radius 3, which lies in the quadrant given by $x \le 0, y \ge 0$. (Hint: use polar coordinates.)

$$\begin{cases}
\frac{1}{4} & \frac{1}{4} \\
\frac{1}{4} & \frac{1}{4}
\end{cases} = \frac{1}{4} (81 - 16)$$

(7) (10 points) Write down limits for an integral over the region inside the cylinder $x^2 + y^2 = 4$, with $y \ge 0$, and inside the sphere of radius 4. You may use any coordinate system.

COORDINA

19 77 78

x+42=4 1 -2= 4651=2 x+42+2=16 1 -2+2=16

1

-VK-121

-VK-121

(8) (10 points) Write down limits for a 3-dimensional integral over the region in the positive octant (i.e. $x \ge 0, y \ge 0, z \ge 0$), below the plane 2x + 4y + z = 8.

(9) (10 points) Find the volume of the region inside the sphere $x^2 + y^2 + z^2 = 4$, with $y \ge 0$, which lies above the cone $z = \sqrt{3(x^2 + y^2)}$.

(10) Use the change of variable given by x = uv, y = u/v to evaluate the integral $\int_{R} \frac{1}{y} dxdy$, where R is the region bounded by the lines y = 1/x, y = 4/x, x = y and x = 4y.

リースとの ツーロンとの リューロットー y=x 4 5 4= uv 60 = 460 V= 2

 $\int_{1}^{2} \int_{1}^{2} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}$

- (11) (10 points)
 - (a) Is the vector field $\mathbf{F} = \langle y, -z, x \rangle$ conservative? If so, find the potential function.
 - (b) Evaluate $\int_C \mathbf{F} \cdot d\mathbf{s}$, where C is the arc of the circle of radius 3 in the xy-plane, centered at the origin, which goes from (3,0,0). to (0,3,0).

a)
$$\nabla x F = \begin{bmatrix} 1 & + & h \\ 3 & 3y & 5z \\ y & -z & x \end{bmatrix} = \begin{bmatrix} 1 & -1 & -1 & -1 \\ -1 & -1 & -1 & -1 \end{bmatrix} \neq 0$$

b)
$$\int_{x}^{2}$$
 $\Gamma(t) = \langle 3\cos t, 3\sin t, 0 \rangle$ $0 \leq t \leq \frac{\pi}{2}$

$$\Gamma'(t) = \langle -3\sin t, 3\cos t, 0 \rangle$$

$$\int_{C} F.ds = \int_{C} \frac{\pi}{2} \sin t = \int_{C} \frac{3 \cos t}{2} = \frac{3 \sin t}{2} \frac{3 \cos t}{2} = \frac{3 \sin t}{2} \frac{3 \cos t}{2} = \frac{3 \sin t}{2} \frac{3 \cos t}{2} = \frac{3 \sin^{2} t}{2} = \frac{3 \sin^{2} t}{2} = \frac{3 \sin^{2} t}{2} = \frac{3 \sin^{2} t}{2} = \frac{3 \cos^{2} t}{2} = \frac{3 \cos$$

$$= \int_{0}^{\pi/2} -9(\frac{1}{2}-\frac{1}{2}\cos 2\theta) dt = 9[t + \frac{1}{4}\frac{1}{2}\sin 2t]^{\pi/2}$$

(12) (10 points)

- (a) Is the vector field $\mathbf{F} = \langle y, x-z, -y \rangle$ conservative? If so, find the potential function.
- (b) Evaluate $\int_C \mathbf{F} \cdot d\mathbf{s}$, where C is the helix of radius 1 which rotates thtree times around the origin between (1,0,0) and (9,0,0).

a)
$$\nabla x F = \begin{vmatrix} i & j & k \\ 3i & x^2 & 3i \end{vmatrix} = \langle -1+1 & 0 & | 1-1 \rangle = 0$$
conservative.

$$\begin{cases}
y \, dx = xy + 4(y_1 z) \\
\int x + z \, dy = xy - zy + 4(xy z)
\end{cases}$$

$$\begin{cases}
x + z \, dy = xy - zy + 4(xy z) \\
-y \, dz = -xy + 4(xy z)
\end{cases}$$

b)
$$\int_{C} f \cdot ds = f(1_{10}_{10}) - f(9_{10}) = 0$$