Math 233 Calculus 3 Spring 12 Final a
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e Do any 10 of the following 12 questions.
e You may use a calculator, but no notes.
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(1) (10 points) Let u be the vector (2, —1,2), and let v be the vector (2,1, —1).

(a) Write v as the sum of two vectors, one parallel to u, and one perpendic-
ular to u.

(b) Find the area of the triangle formed by the two vectors u and v.
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(2) (10 points)
@ (2) Give an example of a parameterized curve in R® which has constant
speed, but not constant velocity.
@ (b) A particle starts at the origin at time 0, and has velocity given by r'(t) =
(e=2t.t,1). Where is it at time t = 47
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(3) (10 points)
(a) Give a formula for the gradient vector, and describe its geametrlc prop-
erties.
(b) Find the gradient vector at the point (2, —1, 1) for the function f(x,y, 2) =
sin(zy — 2z2). |
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(4) (10 points) Find the critical points for the function f(z,y) = 2+ y*—3xy+x
and use the second derivative test to attempt to classify them.
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(5) (10 points) Evaluate the following integral by changing the order of integra-

tion. 1 2
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(6) (10 points) Integrate the function f(x,y) = 2+ ¥* in the region between the
circle of radius 2 and the circle of radius 3, which lies in the quadrant given
by # <0,y > 0. (Hint: use polar coordinates.)

{ ™ '




(7) (10 points) Write down limits for an integral over the region inside the cylinder
x? + y* = 4, with y > 0, and inside the sphere of radius 4. You may use any
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(8) (10 points) Write down limits for a 3-dimensional integral over the region in
the positive octant (i.e. x > 0,y > 0,z > 0), below the plane 2¢ +4y+ 2z = 8.
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(9) (10 points) Find the volume of the region inside the sphere z* + y* + 2° = 4,
with ¥ > 0, which lies above the cone z = /3(2? + y?).
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(10) Use the change of variable given by x = uv,y = u/v to evaluate the integral
f / i- drdy, where R is the region bounded by the lines y = 1/x, y = 4/x,
R

r =q.and 2 =44.
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(11) (10 points)
(a) Is the vector field F = (y, —z,x) conservative? If so, find the potential
function.

(b) Evaluate / F.ds, where (' is the arc of the circle of radius 3 in the
s

xy-plane, centered at the origin, which goes from (3,0,0). to (0,3,0).
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(12) (10 points)
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(a) Is the vector field F = (y,x—z2, —y) conservative? If so, find the potential

function.
(b) Evaluate

C
times around the origin between (1,0,0) and (9,0,0).

F.ds, where (' is the helix of radius 1 which rotates thtree



