Math 231 Calculus 1 Spring 12 Midterm 2a

Name:

- Do any 8 of the following 10 questions.
- You may use a calculator, but no notes.

1	10	
	10	
3	10	
4	10	X-92-11-2-2-11-11
-	10	
6	10	
7	10	
8	10	
9	10	
10	10	Jun Q
	80	

Midterm 2	
Wildterin 2	
Overall	

(1) (10 points) Find the derivative of $f(x) = e^{-3x^2} \sin(x)$.

$$f'(x) = e^{-3x^2} - 6x \sinh(x) + e^{-3x^2} \cos(x)$$

(2) (10 points) Find the derivative of

$$f(x) = \frac{\cos(x)}{x^2 + 1}.$$

$$f'(x) = (x^2+1).(-sih(x))-2\pi.ces(x)$$

$$\frac{-(x^2+1)^2}{(x^2+1)^2}$$

(3) (10 points) Find the derivative of $f(x) = \tan^{-1}(1/x)$.

$$f'(x) = \frac{1}{1 + (1/x)^2} \cdot -x^{-2} = \frac{-1/x^2}{1 + 1/x^2} = \frac{-1}{x^2 + 1}$$

(4) (10 points) Find the second derivative of
$$f(x) = \sqrt{x^2 + 1} = (x^2 + 1)^{5}$$
.

$$f'(n) = \frac{1}{2}(x^2+1)^{-1/2} \cdot 2x = x(x^2+1)^{-1/2}$$

$$f''(x) = (x^{2}+1)^{-1/2} + x \cdot -\frac{1}{2}(x^{2}+1)^{-3/2} \cdot 2x$$

$$= (x^{2}+1)^{-1/2} - x^{2}(x^{2}+1)^{-3/2}$$

(5) (10 points) Draw the graph of a function f(x) with f(x) < 0 and f'(x) > 0.

Sketch f'(x) for the graph you drew above.

(6) (10 points) The graphs of the functions f(x) and g(x) are shown below.

- (a) If h(x) = g(f(x)), what is h'(1)?
- (b) If h(x) = f(x)/g(x), what is h'(2)?

a)
$$h'(x) = g'(f(x)) \cdot f'(x)$$

 $h'(1) = g'(f(1)) \cdot f'(1) = g'(\frac{3}{2}) \cdot \frac{1}{2} = 2 \cdot \frac{1}{2} = -1$
b) $h'(x) = \frac{g'(x) f'(x) - g'(x) f(x)}{g(x)^2}$
 $h'(2) = \frac{g(2) f'(2) - g'(2) f'(2)}{(g(2))^2} = \frac{4 \cdot 3 - 2 \cdot 1}{4^2} = \frac{-4}{14} = -\frac{1}{4}$

(7) (10 points) Find the tangent line to the curve given by $x^3 + 2xy^2 + xy = 4$ at the point (1,1).

at
$$(11)$$
: $6 + 5 \frac{dy}{dx} = 0 \frac{dy}{dx} = -\frac{6}{5}$

tangent line:
$$y-1=-\frac{6}{5}(x-1)$$

(8) (10 points) Use linear approximation to estimate $\sqrt{83}$. What is the percentage error?

error?

Use
$$f(x) = \sqrt{x} = x^2$$
 $f(x) = \sqrt{x} = x^2$
 $f(x) = \sqrt{x} = x^2$

actual value V83 = 9.1104

(9) (10 points) A rocket is launched vertically upwards from a point 10 km away. When you see the rocket at an angle of $\pi/6$ radians, the angle is increasing at a rate of 0.1 radians per second. How fast is the rocket moving?

$$\frac{h}{10} = \tan \theta$$

$$\frac{1}{10} \frac{dh}{dt} = \sec^2 \theta \frac{d\theta}{dt}$$

$$\frac{dh}{dt} = 10 \sec^2 (\theta - 1) = \sec^2 (\pi 1/6) = \frac{4}{3} \tan |s|$$

$$= 4800 \tan |h|.$$

(10) We start from the same point, and I drive east at 20 mph, and you drive north at 40 mph. How fast is the distance between us increasing?

1 hour.

h= 2+42

2hdh=2xdx+2ydy

 $\chi=20 \quad \frac{dx}{dt}=2$

1 = 40 dy = 40

 $h = \sqrt{2^{2}+40^{2}} = 20\sqrt{5}$

$$\frac{dh}{dt} = \frac{20.20 + 40.40}{20\sqrt{5}} = \frac{100}{\sqrt{5}} = \frac{20\sqrt{5}}{uph}$$