Math 229 Calculus Computer Lab Fall 10 Sample Final

• You may use only MATLAB during this exam. No calculators.

Problem 1. (10pts.) Use MATLAB to find all x (to <u>three</u> decimal places) where

$$5\cos(4x) = x^2 - 12$$

Give the answer, and write the MATLAB commands used to get your answer.

Problem 2. (10pts.) Let $f(x) = \cos(x) - 2x$. Starting at $x_0 = 1$, apply Newton's method to find where f(x) = 0 to four decimal places. Write the iterations x_1, x_2, \ldots as many as needed.

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Problem 3. (10pts.) Let $f(x) = 3x^6 - 8x^2 - 24$.

- (a) Write the commands to compute the roots of f(x) using the roots function in MATLAB.
- (b) How many real and complex roots are listed as the output of the **roots** function?
- (c) What are the real root(s) to <u>four</u> decimal places?

Problem 4. (10 pts.)

Find the minimum of $f(x) = \left(2\sin(x+1) + \frac{2}{(x-\pi)^4}\right)$ on $(0,\pi)$. Write the x-value to <u>three</u> decimal places, and the final MATLAB commands you used to get your answer.

Problem 5. (20pts.) Let $f(x) = \sqrt{5x} \sin\left(\frac{3}{\sqrt{x}}\right)$ for x > 0.

- (a) Write the m-file for the function f(x).
- (b) Compute $f(\sqrt{7})$ to <u>ten</u> decimal places. (Do not use scientific notation.)
- (c) Compute $\lim_{x\to 0^+} f(x)$ to <u>four</u> decimal places. (Do not use scientific notation.)
- (d) Compute $\lim_{x\to\infty} f(x)$ to <u>four</u> decimal places. (Do not use scientific notation.)
- (e) Find the x-value of the absolute minimum of f(x) to three decimal places.

Problem 6. (20pts.) Let $f(x) = \tan(x/6) \cos(x-1)$.

- (a) Write the m-file for the function f(x).
- (b) Plot f(x) and its approximate derivative with h = 0.001, for $0 \le x \le 2\pi$. Find the x-coordinates of the following points (accurate to three decimal places):
 - (i) Points where f(x) = 0:
 - (*ii*) Points where f'(x) = 0:
 - (*iii*) Points where f''(x) = 0 (Recall, f''(x) is the first derivative of f'(x)):
 - (*iv*) Points where f(x) = f'(x):

Problem 7. (20pts.) Find the point P(x, y) on the curve $y = e^{x/2}$ that is closest to the point Q(5, 3).

- (a) What function d(x, y) gives the distance from P(x, y) on the curve to Q(5, 3)?
- (b) Write the m-file for the function d(x) (depending only on x) that gives the distance from P(x, y) on the curve to Q(5, 3).
- (c) Using d(x) from part (b), what is diffuo for d'(x) with h = 0.001?
- (d) Plot difquo for $0 \le x \le 5$. For which x is d'(x) = 0 (to <u>three</u> decimal places)?
- (e) What is P(x, y) on the curve? Give coordinates to three decimal places.
- (f) Why is this x-value a minimum for d(x)? Apply the first derivative test: How does the graph cross the x-axis?