§ 3.4 Differentials

1 var

\(y = f(x) \) the differential of \(y \) is \(dy = f'(x)\Delta x \)

\[\Delta y = f(x + \Delta x) - f(x) \]
\[\Delta y \approx dy = f'(x)\Delta x = f'(x)\Delta x. \]

\(\Delta x \): small change in \(x \).
\(\Delta y \): corresponding change in \(f(x) \).

\(dy = f'(x)dx \) a (linear) equation approximating \(\Delta y \) for small \(\Delta x \).

2 var

\[\Delta z = f(x + \Delta x, y + \Delta y) - f(x, y) \]

the differential of \(z \) is \(dz = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy = f_x(x, y)dx + f_y(x, y)dy \)

(a linear equation approximating \(\Delta z \) for small \(\Delta x, \Delta y \)).

\[\Delta z \approx f_x \Delta x + f_y \Delta y \]

3 vars \(\omega = f(x, y, z) \) has differential \(d\omega = f_x dx + f_y dy + f_z dz \)

\[\Delta \omega \approx f_x \Delta x + f_y \Delta y + f_z \Delta z \] for small \(\Delta x, \Delta y, \Delta z \).

Example \(z = x^2 + y^2 \) \(dz = 2x dx + 2y dy \).

Differentiability of functions of two vars.

\(z = f(x, y) \) is differentiable at \((x_0, y_0) \) if \(\Delta z \) can be written as

\[\Delta z = f_x(x_0, y_0)\Delta x + f_y(x_0, y_0)\Delta y + \epsilon(\Delta x, \Delta y) \quad \text{where} \quad \epsilon \to 0 \quad \text{as} \quad (\Delta x, \Delta y) \to 0. \]

Useful fact \(f_x f_y \) is at \((x_0, y_0) \) \(\Rightarrow f \) is differentiable.
Using differentials for approximations

\[z = f(x, y) : \Delta z \approx f_x(x_0, y_0) \Delta x + f_y(x_0, y_0) \Delta y \]

Example
\[z = \sqrt{\frac{x^2}{6} - y^2} \]
\[f(x, y) = \frac{x^2}{6} - y^2 \]

Approximate \[f(0.01, 0.01) \]
\[f_x(x, y) = \frac{1}{2} \left(\frac{x^2}{6} - y^2 \right)^{-1/2} \cdot 2x \]
\[f_y(x, y) = \frac{1}{2} \left(\frac{x^2}{6} - y^2 \right)^{-1/2} \cdot (-2y) \]

\[\Delta z \approx f_x(1, 1)(0.01) + f_y(1, 1)(0.01) \]
\[= \frac{-2}{2.2} (0.01) + \frac{-2}{2.2} (0.01) \approx -0.01 \]

\[\therefore f(1.01, 1.01) \approx 1.99 \]

Example
A tin can has a base \(12 \text{ cm} \) in radius, \(5 \text{ cm} \) high and walls \(0.2 \text{ cm} \) in thickness, and the sides have thickness \(0.1 \text{ cm} \). Estimate the amount of metal in the can.

Area \(\approx \) change in volume, \(V = 2\pi rh \)

\[\Delta V \approx \frac{\partial V}{\partial r} \Delta r + \frac{\partial V}{\partial h} \Delta h = 2\pi rh \Delta r + 2\pi r h \Delta h \]

\[h = 10, \Delta h = 0.2 \]
\[r = 5, \Delta r = 0.1 \]

\[\Delta V \approx \pi r h (0.1) + \pi r h (5 \times 0.2) \]
\[\approx 6\pi \]
§B.5 Chain rule

Recall \[\frac{d}{dx} (f(g(x))) = f'(g(x)) \cdot g'(x). \]

For \(f(y), y = g(x) \), \[\frac{df}{dx} = \frac{df}{dy} \cdot \frac{dy}{dx}. \]

Chain rule for many variables: “differentiate with respect to all possible variables.”

Special case \(w = f(x,y) \) where \(x = g(t) \)
\[y = h(t) \]
\[(w(t) = f(g(t),h(t)) \]
\[\frac{dw}{dt} = \frac{\partial w}{\partial x} \frac{dx}{dt} + \frac{\partial w}{\partial y} \frac{dy}{dt} \]

Example \(w = xy \) \[x = t \]
\[y = \sin(t) \]
\[\frac{dw}{dt} = 2xy 1 + x^2 \cos(t) = 2t \sin(t) + t^2 \cos(t) \]

Special case \(w = f(x,y) \) \[x = g(s,t) \]
\[y = h(s,t) \]
\[\frac{\partial w}{\partial s} = \frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial s} + \frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial s} \]
\[\frac{\partial w}{\partial t} = \frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial t} \]

Example \(w = xy \) \[x = s^2 t^2 \]
\[y = \sqrt{t} \]
\[\frac{\partial w}{\partial s} = y 2s + x 2t = \frac{2s^2}{t} + 2t (s^2 t^2) \]