§ 13.1 Functions of several variables

We've seen functions of 1-variable: \(f: \mathbb{R} \rightarrow \mathbb{R} \) \(f: \mathbb{R} \rightarrow \mathbb{R}^2 \) etc.

In general: \(f: \text{(domain)} \rightarrow \text{(range)} \)
\[x \mapsto f(x) \]
\[t \mapsto (x(t), y(t)) \]

Functions of 2-variables:
\(f: \mathbb{R}^2 \rightarrow \mathbb{R} \)
\((x, y) \mapsto f(x, y) \)

Example: \((x, y) \mapsto x^2 y^2 \)

Convention: \(f: \text{domain} \rightarrow \text{range} \) (usually not defined explicitly).

Example: \(f: (x, y) \mapsto \frac{1}{x^2 y^2} \)

Domain is \(\mathbb{R}^2 \setminus (0,0) \).
Range is \((0, \infty) \).

Example: \(\int_a^b f(x) \, dx \)

Function of \(a \) to \(b \)!

Not a function of \(f \).
Could be a function of \(f \) to \(\mathbb{R} \).

\[\int_a^b \, dx : \{ \text{functions?} \} \rightarrow \mathbb{R} \]

Graphs of functions of two variables

1-variable:
\(f: \mathbb{R} \rightarrow \mathbb{R} \)
\(x \mapsto f(x) \)
\(x \mapsto x^2 \)

Graph of function is a curve.

2-variables:
\(f: \mathbb{R}^2 \rightarrow \mathbb{R} \)
\((x, y) \mapsto f(x, y) \)
\(x \mapsto x^2 + y^2 \)

Graph of function is a surface.

Q: When is a surface a graph of a function? A: Vertical line test.

Sphere is not a graph of a function.
Level sets / contour lines

Q: how do we know what \(z = f(x,y) \) looks like?
A: by drawing level sets = contour lines = horizontal cross sections.

Example: \(f(x,y) = x^2 + y^2 \)

\[z = f(x,y) = x^2 + y^2 \]

The graph needs an extra dimension.

Find intersection with horizontal plane \(z = c \) \(c = x^2 + y^2 \) circle of radius \(\sqrt{c} \).

Example: \(f(x,y) = x^2 - y^2 \). xy level sets in \(\mathbb{R} \).

\[f: \mathbb{R}^2 \rightarrow \mathbb{R} \]

Functions of 3 variables

\(f: \mathbb{R}^3 \rightarrow \mathbb{R} \) \(f(x,y,z) \) graph of function needs 4th.

Level sets: \(f(x,y,z) = c \) hence are surfaces in \(\mathbb{R}^3 \).

Examples: \(f(x,y,z) = x + y + z \) \(f(x,y,z) = x^2 + y^2 + z^2 \)