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A random walk on Z

At time t =0 start at wp =0

T + 1 with probability 1/2
171 we — 1 with probability 1/2
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t=3 1 0 3 0 3 0 1 /8
t=4/1 0 4 0 6 0 4 1 /16
In general P(we =t —2k) = 3 <Z>

Average distance from 0 is E(|w|) ~ /t

P(w; = 0) ~ \% = P(w; hits 0 infinitely often) =1

We say the random walk on Z is recurrent.



A random walk on Z?2
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This is really two independent random walks on Z, so
P(we = (0,0)) ~ 1.
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The nearest neighbour random walk on a (finite valence) graph:

e Start at a particular vertex vy at time 0.

e At time t jump to one of your nearest neighbours, chosen
with equal probability.

The random walk on a four-valent tree is transient, i.e.
P(random walk hits vg finitely often) = 1.

The random walk makes linear progress, E(d(vp, wy)) ~ t.



Random walks on groups:
Pick a (symmetric) generating set A.

The Cayley graph of a finitely generated group is the graph with

e vertices: elements of the group

e edges: connect elements which differ by a generator

The graph depends on the choice of generating set A, but any two
choices give quasi-isometric graphs.

e Fo=(ab])
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r|_ (aba1)(ab) = abaa~1b = ab?

Thm[Kesten, Day]: A random walk on a group has a linear rate of
escape iff the group is non-amenable



SL(2,7Z): 2 x 2 integer matrices with determinant +1

a b
[ c d ] acts on C by z — ijig preserves upper half space.

real axis

11 —z—z+1 0 -1 &z =1/
01 1 0 z z



Sample paths converge to the boundary with probability one.
This gives a measure on the boundary, called harmonic measure v.

v(X) = P(probability you converge to X)



Harmonic measure is not Lebesgue measure




— O —

=

o —
©

S

==

— —I

= ol=

— oo

- |0

—— —Im

= I=

— —i=r

- —nho

— ol

1
2

Lebesgue measure: P(a; = n) ~

1
2n

n) ~

Harmonic measure: P(a;
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= quadratische Irrationalzahl, y rational
g =100 und nicht dyadisch;

= rational, y dysdisch.

Hermann Minkowski, 1904.



Generic elements in groups.
A subset X C G is generic if it has
e High probability:
P(w, € X) — 1, as n — oo.
e High density:

[ X1 Bn(1)]

i — 1 .
|GﬁBn(1)\_> , as N — 00

e High density with respect to some other metric on G.

Example: Fo x 0 C F, X Z



Convergence to the boundary works for:
matrix groups, e.g. SL(n,Z) [Furstenberg]

e random matrices are irreducible [Rivin][Kowalski]

d-hyperbolic groups [Kaimanovich-Woess|

e random elements are hyperbolic,
translation length tends to infinity

Mapping class groups, braid groups [Kaimanovich-Masur]

e random elements are pseudo-Anosov [Rivin]|[Kowalski][M]



Surface or 2-manifold: space locally modelled on R?

O

Classification of surfaces
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=5t x gt genus 2

Add handles: - ‘ &



The mapping class group of a surface ¥ is

G = {surface homeomorphisms} /isotopy.

The mapping class group is finitely generated by Dehn twists.
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Thurston's classification of surface homeomorphisms

Reducible:

Periodic:

= @ =

Pseudo-Anosov: everything else



Anosov: A € SL(2,7Z) with trace > 2, e.g. ( i 1 >

Pseudo-Anosov: e.g. branched cover of an Anosov map.




Application to 3-manifolds: Heegaard splittings

gluing map w,
handlebody handlebody

o [M] P(M(w,) is hyperbolic) — 1 as n — oc.
e [M] vol(M(w,)) grows linearly n.

[Dunfield-W. Thurston] P(M(w,) is Q — homology sphere) — 1.

[Dunfield-D. Thurston] P(M(w,) is fibered) — 0. (genus 2)



The mapping class group G acts on the complex of curves C(X).
C(X) is a simplicial complex.

e vertices: isotopy classes of simple closed curves.
e simplices: spanned by disjoint simple closed curves.

Finite dimensional, but not locally finite.

[Masur-Minsky] C(X) is d-hyperbolic.
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[Gromov] A metric space is d-hyperbolic if every geodesic triangle
is 0-thin, i.e. any side is contained in a d-neighbourhood of the
other two.

Examples: hyperbolic space, trees, the complex of curves C(S).
Isometries of d-hyperbolic spaces are:

e elliptic, fix a point in the interior (periodic, reducible)
e parabolic (none of these in G)

e hyperbolic (pseudo-Anosov)



