Asymptotics for pseudo-Anosovs in Teichmüller lattices

Joseph Maher
joseph.maher@csi.cuny.edu

College of Staten Island, CUNY

May 2010
S closed orientable surface

Def: $G = \text{MCG}(S) = \text{Homeo}^+(S)/\text{isotopy}$

[Thurston] Classification of elements of G:
 • Periodic
 • Reducible
 • Pseudo-Anosov
Teichmüller space $\mathcal{T}(S) \cong \mathbb{R}^{6g-6}$

- Space of conformal structures on S
- Space of hyperbolic structures on S

Teichmüller metric: $d_T(x, y) = \inf \frac{1}{2} \log K$

- (\mathcal{T}, d_T) infinite diameter, complete
- G acts by isometries on \mathcal{T}, properly discontinuously
- unique geodesic connecting any pair of points
- moduli space \mathcal{T}/G finite volume
Teichmüller lattice: G_y

$|G_y \cap B_r(x)| \sim C(x, y)e^{hr}$

cf [Margulis]
Def: $R =$ non-pseudo-Anosov elements of G.

Thm[M]:
\[
\frac{|Ry \cap B_r(x)|}{|Gy \cap B_r(x)|} \to 0 \text{ as } r \to \infty.
\]

$Q =$ unit area quadratic differentials $= \text{"unit tangent bundle of } T\text{"}$

$g_t : Q \to Q$ geodesic flow

$\pi : Q \to T$, $S(x) = \pi^{-1}(x) = \text{visual boundary}$
bisector: $U \subset S(x), V \subset S(y)$

$g \in B(U, V) \iff q_x(gy) \in U \text{ and } q_y(\gamma^{-1}x) \in V$
Thm[ABEM]:

$$|Gy \cap B_r(x), g \in B(U, V)| \sim \frac{1}{h} e^{hr} \Lambda^+(U)\Lambda^-(V)$$

Λ^+, Λ^- measures on $S(x), S(y)$ respectively, defined in terms of the Masur-Veech measure μ on Q, which is g_t-invariant, with $\mu(Q/G) = 1$.

Note: distribution of leaving directions $q_x(gy)$ given by Λ^+, distribution of arriving directions $q_y(g^{-1}x)$ given by Λ^-, independent.
Consider $R =$ set of non-pseudo-Anosov elements.
$R_k = \{ g \in R \mid d_T(gy, g'y) \leq k, \text{ some } g' \in R \setminus g \}$ “k-dense”
$R \setminus R_k$ “k-separated”

Thm[M]: $\overline{R_k}$ has measure zero in visual boundary
Equidistribution:
Thm[Veech]: The Teichmüller geodesic flow is mixing.

\[
\lim_{t \to \infty} \int_{Q/G} \alpha(g_t q) \beta(q) d\mu(q) = \int_{Q/G} \alpha(q) d\mu(q) \int_{Q/G} \beta(q) d\mu(q)
\]

Conditional mixing:

\[
\lim_{t \to \infty} \int_{S(x)} \alpha(g_t q) \beta(q) ds_x(q) = \int_{Q/G} \alpha(q) d\mu(q) \int_{S(x)} \beta(q) ds_x(q)
\]

Here \(\alpha, \beta \) continuous, compact support.
Go back distance $k/2$ along geodesic from x to gy, look for lattice point distance at most $d < k/2$ away, get at least $|Gy \cap B_{k/2-d}(y)|$ lattice points in $B_k(gy) \cap B_r(x)$.

i.e. this estimate works for the proportion of lattice points in $\partial B_{k/2}(y)$ which lie in $N_d(Gx)$, mixing implies this is $\text{vol}(N_d(x))$ in Q/G, tends to 1 as $d \to \infty$.