Random walks on the mapping class group

Joseph Maher
maher@math.okstate.edu

Oklahoma State University

May 2008
• Random walks

• Random walks on the mapping class group

 Theorem: A random walk on the mapping class group gives a pseudo-Anosov element with asymptotic probability one.

• Random Heegaard splittings

 Theorem: A random Heegaard splitting is hyperbolic with asymptotic probability one.
A random walk on \mathbb{Z}

At time $t = 0$ start at $w_0 = 0$

$$w_{t+1} = \begin{cases}
 w_t + 1 & \text{with probability } 1/2 \\
 w_t - 1 & \text{with probability } 1/2
\end{cases}$$
The nearest neighbour random walk on a (finite valence) graph:

- Start at a particular vertex at time 0.
- At time n jump to one of your nearest neighbours, chosen with equal probability.

Random walks on groups:

Pick a (symmetric) generating set A.

The *Cayley graph* of a finitely generated group is the graph with

- vertices: elements of the group
- edges: connect elements which differ by a generator

The graph depends on the choice of generating set A, but any two choices give quasi-isometric graphs.
Example of a Cayley graph:

\[F_2 = \langle a, b \mid \rangle \]

Key example: the nearest neighbour random walk on a Cayley graph of the mapping class group.

- Start at the identity at time 0.
- At time \(n \) jump to one of your nearest neighbours, chosen with equal probability.
More generally: pick a probability distribution μ on G. Consider the Markov chain with set G, and transition probabilities $p(x, y) = \mu(x^{-1}y)$.

Time 0: start at identity.
Time 1: distributed according to μ.
Time 2: distributed according to $\mu^2 = \text{convolution of } \mu \text{ with itself}$.

$$\mu^2(x) = \sum_{y \in G} \mu(y)\mu(y^{-1}x)$$

Time n: distributed according to μ^n, n-fold convolution of μ with itself.
Path space: \((G^\mathbb{Z}^+, \mathbb{P})\), probability space.

\(G^\mathbb{Z}^+\) infinite product of \(G\)'s.

A sample path \(\omega \in G^\mathbb{Z}^+\) is an infinite sequence of group elements corresponding to the locations of the random walk.

Projection \(w_n : G^\mathbb{Z}^+ \to G\) to the \(n\)-th factor is a random variable which gives the location of the sample path at time \(n\).

The distribution of \(w_n\) is given by \(\mu^n\).

[Kolmogorov] This determines \(\mathbb{P}\).

Key point: this enables us to talk about infinite length random walks.
Example: \(\text{PSL}(2, \mathbb{Z}) \)

Sample paths converge to the boundary with probability one. This gives a measure on the boundary, called \textit{harmonic measure} \(\nu \).

\[\nu(X) = \mathbb{P}(\text{sample paths which converge to points in } X) \]
This harmonic measure on S^1 is \textit{not} Lebesgue measure.

\[\begin{align*}
\frac{1}{a_1 + \frac{1}{a_2 + \ldots}} &\mapsto 0.0\ldots01\ldots1\ldots \\
\end{align*} \]
Convergence to the boundary works for:

- matrix groups, e.g. \(\text{SL}(n, \mathbb{Z}) \) [Furstenberg]
 - random matrices are irreducible [Rivin, Kowalski]

- \(\delta \)-hyperbolic groups [Kaimanovich-Woess]
 - random elements are hyperbolic, translation length tends to infinity

- Mapping class groups, braid groups [Kaimanovich-Masur]
 - random elements are pseudo-Anosov [M]
The mapping class group of a surface S is
\{surface diffeomorphisms\}/isotopy.
$G = \text{MCG}(S) = \text{Diff}^+(S)/\text{Diff}_0(S)$

The mapping class group is finitely generated by Dehn twists.
The surface S may have boundary or punctures

The mapping class group of the n-punctured disc is also known as the braid group.

Thurston’s classification of surface homeomorphisms

- Reducible:

The map fixes a disjoint collection of simple closed curves.
• Periodic:

Some power of the map is isotopic to the identity.

• Pseudo-Anosov:

Everything else...
Useful facts about the mapping class group.

[Masur-Minsky] The mapping class group is weakly relative hyperbolic.

G finitely generated by A, gives word metric on G (same as Cayley graph metric).

$\hat{G} = G$ with word metric from an infinite generating set $A \cup \{H_i\}$.

In this case $H_i = \text{stab}(\alpha_i)$, where α_i are representatives of simple closed curves under the action of G.

If \hat{G} is δ-hyperbolic then we say that G is weakly relatively hyperbolic (with respect to $\{H_i\}$).
Recall a metric space is δ-hyperbolic if every geodesic triangle is δ-thin, i.e. any side is contained in a δ-neighbourhood of the other two.

Examples: hyperbolic space, trees, the complex of curves $\mathcal{C}(S)$.

[Masur-Minksy] show that the relative space $\hat{\mathcal{G}}$ is quasi-isometric to the complex of curves.
The complex of curves is a simplicial complex.

- vertices: isotopy classes of simple closed curves.
- simplices: spanned by disjoint simple closed curves.

Finite dimensional, but not locally finite.

[Masur-Minsky] the complex of curves is δ-hyperbolic.
Isometries of δ-hyperbolic spaces are
- elliptic, fix a point in the interior (periodic, reducible)
- parabolic (none of these)
- hyperbolic (pseudo-Anosov)

Gromov boundary: \{ set of quasi-geodesic rays \}/ ~
Two rays are equivalent if they stay a bounded distance apart.

[Klarreich] The Gromov boundary of the complex of curves is F_{min}
the space of minimal foliations in PMF, Thurston’s space of
projective measured foliations.

PMF is a sphere of dimension $6g - 5$, $g =$ genus of S.

pseudo-Anosov maps act on $C(S) \cup F_{\text{min}}$ as translations along an
axis with a unique pair of fixed points, the attracting and repelling fixed points.
[Kaimanovich-Masur, + Klarreich] A random walk on the mapping class group converges almost surely to a uniquely ergodic foliation in PMF, as long as the support of μ is a non-elementary subgroup. The resulting harmonic measure ν on F_{min} is non-atomic.

uniquely ergodic \Rightarrow minimal

non-elementary: the subgroup contains a pair of pseudo-Anosov elements with distinct endpoints.

Recall $\nu(X) =$ proportion of sample paths which converge into X.

ν governs the long time behaviour of sample paths.
Theorem [Rivin, Kowalski]: The probability that \(w_n(\omega) \) is pseudo-Anosov tends to 1 as \(n \to \infty \).

Consider the action on homology, i.e. map from \(G \) to \(Sp(2g, \mathbb{Z}) \).

[Casson-Bleiler] If image of \(g \) is irreducible, no roots of unity as eigenvalues, characteristic polynomial not a power of a lower degree polynomial, then \(g \) is pseudo-Anosov.

Theorem [M]: The probability that the translation length of \(w_n(\omega) \) on \(C(S) \) is at most \(K \) tends to zero as \(n \to \infty \).

Requires support of \(\mu \) generates a non-elementary subgroup not contained in a centralizer.

Translation length of \(g \): \(\lim_{n} \frac{1}{n} d_{C(S)}(x, g^n x) \).
Sketch of proof.

Observation: if $X \subset G$ and limit set of X has (harmonic) measure zero in \mathcal{F}_{\min}, then the random walk is transient on X. (A sample path hits X finitely many times almost surely.)

Let $R =$ elements of G of translation length at most K. Then $\nu(\overline{R}) = 1$.

Let $R_k =$ k-dense elements of R, i.e. $r \in R$ such that there is some other $r' \in R$ such that $d_G(r, r') \leq k$.

Claim: $\nu(\overline{R}_k) = 0$.
\[P(w_n(\omega) \in R) = P(w_n(\omega) \in R_k) + P(w_n \in R \setminus R_k) \]

- \(P(w_n(\omega) \in R_k) \to 0 \) as \(n \to \infty \) by transience.
- \(P(w_n(\omega) \in R \setminus R_k) \leq 1/k \)

True for all \(k \) implies \(P(w_n(\omega)) \to 0 \) as \(n \to \infty \).
More details:

\[\overline{R}_k = \bigcup \overline{C(g)} \], where word length of \(g \) at most \(k \).

\(C(g) \) = centralizer of \(g \), i.e. \(h \in G \) such that \(gh = hg \).

- \(g \) pseudo-Anosov: \(C(g) \) virtually cyclic, limit set is fixed points.
- \(g \) reducible: centralizer bounded diameter in \(\hat{G} \), limit set empty.
- \(g \) periodic: \(C(g) \) lower dimensional sphere.

[Nielsen] a finite cyclic subgroup of \(G \) fixes a point in Teichmüller space = set of hyperbolic structures on \(S \).

\(\Rightarrow \) finite cyclic groups realized by covering translations.

So fixed set is lower dimensional Teichmüller space inside original one, so limit set is a lower dimensional PMF inside original one.

[distance reducing maps \(G \to \mathcal{T}(S) \to \hat{G} \)]
Relative conjugacy bounds:

If a and b are conjugate in G then there is a conjugating word w such that $|\hat{w}| \leq K(|\hat{a}| + |\hat{b}|)$.

This implies if g is conjugate to a short word s, and w is a shortest conjugating word in the relative metric, then the path $ws\bar{w}^{-1}$ is a quasi-geodesic path, where the quasi-geodesic constants depend on the length of s.
s has bounded length, so thin triangles implies if w very long, then a final segment of w fellow-travels with an initial segment of w^{-1}. So red path is a short conjugate of s, so could have chosen a shorter conjugating word.

If $r \in R_k$, then there is g of word length at most k such that $rg = r' \in R_k$, so R_k is a finite union of $R \cap Rg$.
Claim: \(\overline{R \cap Rg} = \overline{C(g)} \)

\[
r = wsw^{-1} \quad \text{and} \quad r' = w's'w'^{-1}, \quad \text{paths are quasi-geodesic, so fellow travel. Write } w = xy, \quad w' = xy', \quad \text{for } y, y' \text{ of bounded length.}
\]

\[x^{-1}gx \text{ short group element, so conjugate by short } z \text{ to } g.
\]

\[x^{-1}gx = zg^{-1} \Rightarrow g(xz) = (xz)g \Rightarrow x \text{ close to } C(g).
\]
Random Heegaard splittings.

Theorem [M]: The probability that the splitting distance of $M(w_n)$ is at most K tends to zero as n tends to infinity.

Requires support of μ generates a subgroup which is dense in the boundary.

Given S as the boundary of a handlebody H, the disc set Δ is the collection of simple closed curves which bound discs in H.
A Heegaard splitting has two handlebodies, with disc sets Δ and $w_n\Delta$.

Splitting distance: minimum distance between Δ and $w_n\Delta$ in $C(S)$.

[T. Kobayashi; Hempel] If the splitting distance is more than two, then M is irreducible, atoroidal and not Seifert fibered.

[Perelmann] Geometrization $\Rightarrow M$ is hyperbolic.

Corollary: Probability $M(w_n)$ is hyperbolic tends to 1 as $n \to \infty$.
[Kerckhoff] Limit set of \triangle has harmonic measure zero.

Need to understand (joint) distribution of attracting and repelling endpoints.
If g is pseudo-Anosov let $\lambda^+(g)$ be the attracting fixed point and let $\lambda^-(g)$ be the repelling fixed point.

Define $\lambda_n : G^\mathbb{Z}_+ \to \mathcal{F}_{\text{min}} \times \mathcal{F}_{\text{min}} \cup \emptyset$ by $\omega \mapsto (\lambda^+(w_n(\omega)), \lambda^-(w_n(\omega)))$ if $w_n(\omega)$ is pseudo-Anosov.

Claim: $\lambda_n \to \nu \times \tilde{\nu}$ as $n \to \infty$.

Reflected harmonic measure $\tilde{\nu}$ is harmonic measure determined by the random walk generated by the reflected measure $\tilde{\mu}(g) = \mu(g^{-1})$.

Halfspace: $H(1, x) = \{ y \in \hat{G} \mid \hat{d}(y, x) \leq \hat{d}(y, 1) \}$.
If the translation length of g is bigger than $K(\delta)$, then $\lambda^+(g) \in H(1, g)$, and $\lambda^-(g) \in H(1, g^{-1})$.

So $\lambda_n \sim (w_n, w_n^{-1})$.
$H(1, w_n)$

$$P(w_{2n}(\omega) \in H(1, w_n(\omega))) \to 1 \text{ as } n \to \infty.$$

$$P(w_{2n}^{-1}(\omega) \in H(1, w_{2n}^{-1}w_n(\omega))) \to 1 \text{ as } n \to \infty.$$

So $(w_{2n}, w_{2n}^{-1}) \sim (w_n, w_{2n}^{-1}w_n)$.

If $w_{2n} = s_1 \ldots s_n s_{n+1} \ldots s_{2n}$, then $w_n = s_1 \ldots s_n$ and $w_{2n}^{-1}w_n = s_{2n}^{-1} \ldots s_{n+1}^{-1}$, are independent.