Homework 1

Topology I, Math 70700, Fall 2015

Instructor: Ilya Kofman

http://www.math.csi.cuny.edu/~ikofman/topology.html

Due: Thursday, September 3, before class

Problems

1. Let $f: X \to Y$ be a function of sets. Then for any $A, B \subset X$ and $V, W \subset Y$,

$$f(A \cup B) = f(A) \cup f(B)$$
 $f^{-1}(V \cup W) = f^{-1}(V) \cup f^{-1}(W)$

$$f(A\cap B)\subset f(A)\cap f(B) \qquad \qquad f^{-1}(V\cap W)=f^{-1}(V)\cap f^{-1}(W)$$

$$f(A) - f(B) \subset f(A - B)$$

$$f^{-1}(V - W) = f^{-1}(V) - f^{-1}(W)$$

Give examples where equality fails to hold on the LHS, and verify that equality still holds on the RHS.

- 2. Let $X = \{\frac{1}{n} \mid n \in \mathbb{N}\} \subset \mathbb{R}$ and $Y = X \cup \{0\} \subset \mathbb{R}$. Show that X is discrete but Y is not.
- 3. Show that the collection $\{\{a\} \times (b,c) \subset \mathbb{R}^2 \mid a,b,c \in \mathbb{R}\}$ of vertical intervals in the plane is a basis for a topology on \mathbb{R}^2 , which is called the *vertical interval topology* on \mathbb{R}^2 . Compare this topology with the standard topology on \mathbb{R}^2 .
- 4. Problems # 2, 5, 9 13 of Hatcher's notes.
- 5. State the universal properties and draw the appropriate commutative diagrams related to Prop. 2.3 and 2.5 of J.P. May's notes.